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PaccmaTprBaeTcsi CBEpXBBICOKOYACTOTHBIH HHTEP(EPEHIIMOHHBII METO/ U3MEPEHH s, KOTOPBIN IIHPOKO HC-
TIONB3YeTCs IS OIPEIENICHNS IepeMeIeHNsI B Pa3INIHbIX TEXHUYECKUX NPUIOKEHUsX. 1lenbio faHHOH cTaThu
SBIISIETCS. Pa3pabOTKa METOJUKH yCTpaHEHHUs (ha30BOH HEONPEAENCHHOCTH NMPH M3MEPEHHN OTHOCHUTEIBHOTO Ie-
PEMEIIeHUs] MEXaHNIeCKUX OOBEKTOB C MOMOIIBIO ABYX30HJOBOH peanH3anuy HHTep(EpEHIHOHHOTO METOna.
Jlns ompeneneHuss HEpa3BEpPHYTOH (ha3bl M3 KBAAPaTYpPHUX CHIHAJIOB IIPEUIOKEHO HCIIONB30BAaTh MEHBIINH KO-
peHb OMKBAAPATHOTO YPaBHEHUS, CBS3BIBAIONIEr0 HEM3BECTHBINH KOA((HIIMEHT OTpa)XeHHsI C TOKAMHU IIOIyIpo-
BOJIHMKOBBIX JICTEKTOPOB, COCAMHEHHBIX C 30HAaMu. HaiiieHbl quana3oHbl KO3 (QUIHEHTa OTPAKECHUS U JICH-
CTBUTENILHON HEPa3BepHYTOH (hasbl, B KOTOPHIX OIpezensieMas TaKHUM 00pa3oM HepasBepHyTas (a3a sIBIIETCS
Kaxyuercs. IToka3zaHo, YTO MOrPENIHOCTh OINPEACNICHUS IepeMelleH s, 00YCIOBIEHHAs OTJIMYUEM Kaxyluehcs
Hepa3BepHyTOil a3kl OT AeHCTBUTENBHON, OTIMYHA OT HyJs TONBKO IS JOCTATOYHO OONBIIHX KO3((OUIHESHTOB
OTPAXCHHUS M HE IPEBBIIAET HECKOJBKHX HPOLECHTOB OT JUIMHBI BOJHBI 30HJMPYIOLIETO 3JIEKTPOMAarHUTHOTO
H3ITy9eHus. Y CTaHOBIICHO, YTO UL Pa3MEPOB KOHTPOJIHPYEMOTO O0BEKTa M PACcCTOSHHI MeXTy 0OBbEeKTOM U aH-
TEHHOI, [I1 KOTOPBIX BBIIOJIHACTCS HPUOIIDKEHNUE [IOCKOH BOJIHBI, NPEUIOKEHHAsT METOANKA MO3BOJISECT OMpe-
JeATH pa3Max KoJeOaHUi ¢ TOYHOCTBIO HOPs/IKa HECKOIBKUX JIECATHIX IPOLIEHTA AaXke IPH pa3Maxe, B HECKOIIb-
KO pa3 MPEBBIIIAIONIEM JTHHY BOJIHBI 30HIUPYIOIIETO HJIEKTPOMAarHUTHOTO n3iy4eHus. [IpennoxenHas MeToanka
MOXeT OBITh UCIIOJIb30BaHa MPH Pa3pabOTKe JaTYMKOB IIEPEMELICHHS C YITPOIICHHOMN anapaTHOH pean3annei.

Po3rIIsIIa€ThCsl HaABICOKOYACTOTHHI iHTEp(epeHLiHNII METO/I BUMIPIOBaHHS, SIKHil IIMPOKO BUKOPHUCTO-
BYETHCSI [UIsl BU3HAUCHHSI IEPEMILIICHHS B PI3HOMAHITHHX TEXHIYHUX 3aCTOCYBaHHs;X. METOIO i€l CTaTTi € po3po-
OKka MeTONMKH yCyHEHHS (pa30BOi HEBH3HAUCHOCTI IPH BHMIPIOBAHHI BIJHOCHOTO IEpPEMIlIEHHS MEXaHIYHUX
00’eKTiB 3a JOMOMOIOI IBO30HIOBOI peaiisaiii iHTepdepeHiifinoro Meroay. s BU3HAYCHHS HEPO3TOPHYTOL
(azu 3 KBafApaTypHUX CHIHAJIB 3aI[POIIOHOBAHO BUKOPHCTOBYBATH MEHILIHI KOPiHb GIKBaJPaTHOTO PiBHSHHS, IO
OB’ s13y€ HeBimoMuil KoehilieHT BigOUTTS 31 CTpyMaMu 3’€IHAHHX i3 30HAAMH HAIIBIPOBIAHHUKOBUX AETEKTOPIB.
3HaiineHo miama3oHH KoedimieHTa BiOWTTS # HificHOI Hepo3ropHyToi (a3, B SIKHX BH3HAYEHA TAKUM UYHHOM
Hepo3ropHyTa (asa € nozipaoro. [lokasaHo, 1m0 MOXHOKa BU3HAYEHHS MEPEMILICHHS, 3yMOBJICHA PI3HUIICIO MiX
MO3iIpHOIO i TIHICHOI HEPO3TrOPHYTO (a30r0, BIAPI3HAETHCS BiJl HYJISl TUIBKH JUIS JOCHThH BEIUKHX KOS(illieHTIB
BiIOHMTTS Ta HE MEPEBHIILYE ACKIIBKOX MPOLEHTIB BiJ JOBXHHH XBHIII 30HIYIOYOTO EJIEKTPOMATHITHOTO BUIIPOMi-
HIOBaHHS. BcTaHOBIIEHO, IO JUIS pO3MipiB KOHTPOJILOBAHOTO 00’€KTa M BiACTaHEH MiK 00’€KTOM Ta aHTEHOIO,
JUIS SIKMX BHKOHYEThCS HAOJIMKCHHS IIIOCKOI XBHIII, 3allpONOHOBAHAa METOAMKA JIO3BOJSE BH3HAYATH PO3Max
KOJIMBaHb 3 TOYHICTIO MOPSIIKY JEKUIBKOX JIECATHX MPOLEHTA HABITh IIPU PO3Maci, 10 y JeKiIbKa pasiB HepeBH-
LIy€ JAOBKHHY XBWJII 30HIYIOYOr0 €JIeKTPOMArHITHOTO BUIPOMIHIOBAaHHS. 3alpONOHOBAaHA METO/IMKA MOXe OyTH
BUKOPHCTaHa TIpU po3po0Ili 1aBadiB MepeMillleHHs 31 CIPOIIEHO0 allapaTHO peati3alfiero.

This paper addresses microwave interferometry, which is widely used for displacement determination in
various engineering applications. The aim of this paper is to develop a technique for phase ambiguity resolution in
measurements of the relative displacement of mechanical objects using a two-probe implementation of microwave
interferometry. To determine the wrapped phase from the quadrature signals, it is suggested to use the smaller
positive root of the biquadratic equation that relates the unknown reflection coefficient to the currents of the sem-
iconductor detectors connected to the probes. The reflection coefficient range and actual wrapped phase range in
which the wrapped phase determined in this way is an apparent one are found. It is shown that the displacement
determination error that is due to the difference of the apparent and the actual wrapped phase is nonzero only for
sufficiently large reflection coefficients and does not exceed a few percent of the operating wavelength. It is found
that for the target dimensions and the target—antenna distances for which the plane wave approximation holds, the
proposed technique determines the vibration peak-to-peak amplitude to within several tenths of a percent even for
peak-to-peak amplitudes several times greater than the operating wavelength. The proposed technique may be
used in the development of displacement sensors with a simplified hardware implementation.

Keywords: phase ambiguity, complex reflection coefficient, electrical probe,
semiconductor detector, waveguide section, interprobe distance.

Microwave measurements are widely used in the determination of various pa-
rameters such as distance, displacemet, speed, dielectric permittivity, etc. Micro-
wave interferometry is an ideal means in terms of the development of motion sen-
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sors [1]. This is due to its ability to provide fast noncontact measurements and its
applicability to dusty or smoky environments (as distinct from laser Doppler sen-
sors [2 — 4] or vision-based systems using digital image processing techniques [5]).
An important advantage over radar methods (both traditional pulse ones and re-
cently developed continuous-wave step-frequency ones [6, 7]) is its simple hard-
ware implementation. In microwave interferometry, the displacement of the object
under measurement (target) is extracted from the phase shift between the signal
reflected from the target and the reference signal, i. e. from the phase of the com-
plex reflection coefficient. A characteristic feature of such measurements is phase
ambiguity. This is due to the fact that the complex reflection coefficient phase,
which contains information on the parameters to be measured, in the general case
can only be determined to within 2x. In displacement measurements, this phase
ambiguity can be resolved by using two quadrature signals in combination with a
phase unwrapping method. At present, the usual way to form the quadrature sig-
nals is to use special hardware incorporating a power divider and a phase-detecting
processor, which is an analog [8] or a digital [9] quadrature mixer. The advantage
of the latter is that it can eliminate or at least minimize the nonlinearity of the
phase response of the former, which is caused by its phase and amplitude unbal-
ances and by the dc voltage offset in the amplifier. However, this is achieved at the
expense of the far more complex design of the meter, including the use of an in-
termediate frequency.

An intermediate frequency is also used in the method proposed in [10]. In that
method, the probing microwave signal is modulated with an intermediate-
frequency signal, whose wavelength is much longer than that of the probing signal.
The modulated signal reflected from the target is mixed with the nonmodulated
reference signal. As a result of the mixing, intermediate-frequency quadrature sig-
nals are formed followed by their extraction. The phase of the reflected signal is
found by mathematical treatment of the quadrature signals, and the target dis-
placement is determined from this phase. Due to the use of an intermediate fre-
guency, the hardware implementation of the above-described method is rather
complex and requires such devices as a phase-shift modulator, which phase-
modulates the probing signal with the intermediate frequency one; a digital-to-
analog converter, in which the modulating intermediate-frequency signal is
formed; a balance mixer, in which the modulated reflected signal interferes with
the nonmodulated reference signal and at the output of which the intermediate-
frequency quadrature signals are extracted; and two directional couplers with
matched loads to direct the microwave oscillator signal to the phase-shift modula-
tor and the reflected signal to the balance mixer.

As can be seen from the aforesaid, the above-considered traditional methods
of phase ambiguity resolution in displacement measurement by microwave inter-
ferometry are rather complex in hardware implementation. On the other hand, in-
formation on the phase of the complex reflection coefficient is also contained in
the electric field amplitude of the standing wave between the emitter and the tar-
get, which can be measured using an electrical probe and a semiconductor detector
connected thereto. The hardware implementation of probe measurements is much
simpler. Since the publication of the classic text by Tischer [11], there has been
general agreement that at least three probes are needed for phase ambiguity
resolution by determining or eliminating the unknown reflection coefficient
without recourse to detector current differentiation [12 — 18]. Of interest is to



consider whether the number of probes can be reduced to two because this
would allow one:

— to simplify the design of the waveguide section;

—to simplify the manufacture of the meter because only one interprobe dis-
tance must be held to close tolerances;

— to reduce the parasitic effect of multiple reflections between the probes;

—to reduce the number of channels of the analog-to-digital converter thus in-
creasing the upper bound of the sampling frequency.

The aim of this paper is develop a technique for phase ambiguity resolution in
mechanical object displacement measurement using two electrical probes.

Consider two probes 1 and 2 connected to square-law semiconductor detec-
tors. The probes are placed 1, /8 apart (here, A is the guided operating wave-

length) in a waveguide section between a microwave oscillator and a target, probe
2 being closer to the target. A measurement schematic is shown in Fig. 1.
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The detector currents J,, J, normalized to their values in the absence of a re-
flected wave are expressed in terms of the magnitude R and phase y of the com-
plex reflection coefficient at the location of probe 1

J, =1+ R? + 2Rcosy , (1)

J,=1+R*+2Rsiny . 2)

Information on the distance x between the target and probe 1 in contained in
the phase of the complex reflection coefficient
_ 4nx

v=-—*0, ©)

0

where Ao is the free-space operating wavelength and ¢ is the phase component that
is governed by the waveguide section and horn antenna geometry and the phase
shift caused by the reflection and does not depend on the distance X.



Let it be desired to find the displacement Ax of the target at time t relative to
its initial position x(t,). As indicated above, for phase ambiguity resolution in

relative displacement determination it is sufficient to have the quadrature signals
cosy u siny . According to Egs. (1) and (2), these signals are expressed in terms

of the unknown magnitude of the reflection coefficient as follows

a, —R?
CoS y = , 4
v=—"n (4)

. a,-R’
sinwy = , 5
v=""n (5)

where a, =J,-1and a,=J,-1.
The following biquadratic equation in R results from Eqgs. (4) and (5)
a;+a;,
2

This equation has two positive roots (the plus sign before the radical corre-
sponds to the root R, , and the minus sign corresponds to the root R,)

12
a, +a,+2  [(a,+a,+2fF a’+a’
R1,2 = 2 + 2 - 5 .

R*—(a, +a, +2)R? + 0. (6)

Clearly one of these roots is extraneous. So, the phase ambiguity resolution
problem reduces to the choice between the root R, and the root R,.

An explicit expression for the extraneous root may be obtained by rearranging
the absolute term of Eq. (6). From Egs. (4) and (5) we have

a’ =R* +2R°cosy +4R’cos’ v, (7)

a’=R*+2R’siny+4R%sin’y. (8)
Substituting Egs. (7) and (8) into the expression for the absolute term of
Eq. (6) gives

2 2
%zRZ[RZ+2\/§Rsin(\y+n/4)+2]. )

Since the absolute term of a quartic equation is equal to the product of its
roots, it follows from Eq. (9) that the positive extraneous root R_. of Eq. (6) is

ext

R, =[R2 +2\/§Rsin(\|/+n/4)+2]1/2. (10)

> R is satisfied. It

ext —

Let us find the condition under which the inequality R
follows from Eq. (10) that this condition is

. b8 1
Sln(W+4j2_xﬁR . (11)




This inequality is satisfied at any value of the phase y if R sl/\/i. Since
R, >R, , in this case the reflection coefficient magnitude R will always be given

by the root R,. Inthe case R > 1/\/5 , the condition of (11) will not be necessarily
satisfied. Because of this, the reflection coefficient magnitude R will be given by
the root R, if the condition of (11) is satisfied; otherwise it will be given by the

root R, .

First consider the case R < 1/ V2 . In this case, the reflection coefficient mag-
nitude R is unambiguously determined from Egq. (6) as its root R,, and thus
cosy and siny are unambiguously determined from Egs. (4) and (5). If
cosy and siny are known, the displacement Ax of the target at time
t,, n=0,1,2,..., from its initial position x(t,) can be found by the following
phase unwrapping algorithm [19]

arctan M, siny(t,) >0, cosy(t,) >0,
cosy(t,)
o(t,) =<arctan M+7‘c, cosy(t,) <0, (12)
cosy(t,)
sinwy(t,) :
arctan ———=+2m, sinwy(t,) <0, cosy(t,) >0,
cosu(t.) m, siny(t,) w(t,)
Ao(t,) =o(t,)—o(t, ), (13)
0, n=0,

0(t,) =10(t,,) +A0(t,), [Ao(t,)

<m n=12 .., (14)

0(t,_,) + Ap(t,) —2rsgn[Ae(t, )], |Ae(t,)>m n=1,2,..,

Ax(tn):%ﬁ(tn), n=0,12,..., (15)

where ¢ and 0 are the wrapped and the unwrapped phase, respectively.

Now consider the case R >1/\/§. In this case, R, will be equal to R only
for the values of y that satisfy the condition of (11). However, as will be shown
below, the displacement can also be determined to sufficient accuracy using the
root R, as the reflection coefficient magnitude. It follows from the condition of
(11) that the root R, will be extraneous if sin(y +m/4)<—1/+2R. In terms of
the wrapped phase ¢, this condition becomes

3n 1 n .1
I+arcsm—<(p<7—arcsm—,

J2R 2R

whence it follows that the wrapped phase that corresponds to the condition
sin(y +7/4)<—1/+/2 R lies in the third quadrant.



Let us find the phase error that is introduced when the extraneous root R_, is
used as the reflection coefficient magnitude. In this case, Egs. (4) and (5) will give
the apparent values cosy,, = (a1 RZ, )/ZReX[ and siny,, = (a2 RZ, )/ZR
which on substitution into Eq. (12) will give the apparent wrapped phase ¢, . The
final expression for the apparent wrapped phase is

ext !

1+ RCOScp+7T

=arctan
Per 1+Rsin @

The use of the apparent wrapped phase ¢,, instead of the actual wrapped
phase ¢ introduces the phase error A, (¢,R) =¢,, —¢. The function A¢,, (¢,R)
possesses the following properties:

. . . 5
— is antisymmetric in ¢ about ¢ = In;

1 (p—S—Tt and (p—7—n—arcsini-
J2R' 4" 4 V2R’

—atafixed ¢, increases in magnitude with R;

3n .
— becomes zero at ¢ = 7 +arcsin

and a

V2(1+R?)
3R

—atafixed R, has a negative minimum at ¢, = i—n +arcsin

f(+R)

positive maximum at ¢, = 4 —arcsin—————=, which are equal in magnitude

by virtue of the antisymmetry of the functlon.
It follows from these properties that the greatest possible phase error A, ...

is reached at R =1and is equal to

J2 41 242 3

1 +arcsin 3 e

As can be seen from the algorithm of (12) — (15), the displacement determina-
tion error is governed by the phase error only at the initial and the current meas-
urement point because the errors at the intermediate points cancel one another.
Because of this, the greatest possible displacement determination error AX., ..
will be reached at R=1 in the case where the initial measurement point corre-
sponds to one extremum of the function A, (9) and the current measurement

point corresponds to the other. As follows from the aforesaid, this error will be

A, .., = arctan

Axer max = k702A¢er max = 0'0447\‘0 ' (16)
47
As can be seen from Eq. (16), the greatest possible error Ax,, ., IS about

4.4 % of the free-space operating wavelength A, (notice that this is the worst-case
error, which occurs when the reflection coefficient magnitude is equal to unity, the
initial measurement point corresponds to one extremum of the function Ao, (o),
and the current measurement point corresponds to the other). So the proposed
phase ambiguity resolution technique, in which the reflection coefficient magni-
tude is taken to be equal to the smaller positive root of Eg. (6), allows the dis-



placement to be determined to sufficient accuracy at any value of the reflection
coefficient magnitude.

The above-described phase ambiguity resolution technique is based on the as-
sumption that both the incident wave and the reflected wave are plane. However,
for target dimensions comparable with the operating wavelength the reflected
wave may be considered as plane only within some distance, which in the general
case introduces a measurement error.

To relate the displacement measurement error to the antenna—target distance,
measurements were conducted using a set-up, which comprised a measuring wave-
guide section with two probes installed therein and two semiconductor detectors
connected to the probes, a horn antenna mounted at the end of the waveguide sec-
tion, a microwave oscillator, and an analog-to-digital converter. The target was put
into a reciprocal motion using a crank mechanism. The double amplitude of the
target was 150 mm. The measurements were made at 9.76 GHz, which corre-
sponds to a free-space operating wavelength of 3.07 cm. The semiconductor detec-
tor currents were measured and recorded using the analog-to-digital converter, and
the relative displacement of the target was determined from the detector currents.
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Fog. 2 shows the relative error A of double amplitude determination versus
the maximum distance D,,,, between the target and the horn antenna for targets in

the form of 30x30 mm, 40x40 mm, 50x50 mm, and 70x70 mm metal squares. As
can be seen from the figure, there exists a threshold distance beyond which the
double amplitude error sharply increases, and this threshold distance increases
with the target size. Within the threshold distance, the error depends only slightly
on the distance and does not exceed 1 %.

This behavior of the error is due to the features of the phase unwrapping algo-
rithm employed. This algorithm is based on the assumption that between two suc-
cessive measurements the phase of the reflection coefficient, which is given by
Eg. (3), changes in magnitude less than by .

Let the measurement time step be At . In the assumption that the target exe-
cutes a harmonic motion of amplitude A and frequency f,, , the maximum dis-

placement of the target in the time At will be 2=f  AAt, and in the plane wave

approximation the maximum phase change in that time will be 8r°f, AAt/%, .
Hence the algorithm applicability condition is



*f i AA
8ty AAL +Ap<T (17)

0

where Ag is the difference of the actual phase change and the phase change in the

plane wave approximation.

As the distance to the target increases, the reflected wave that returns to the
antenna differs more and more from a plane wave, thus increasing the error of
phase determination in the plane wave approximation. Eventually, there comes a
time where this error A@ increases to an extent that the condition of (17) is no

longer satisfied. As this takes place, the displacement determination error increases
in a stepwise manner. This can be seen in Fig. 3, which shows the time depend-
ence of the measured relative displacement of a 40x40 mm square target at
D,,.x= 600 mm (the double amplitude error is less than 1 %) and 1,500 mm (the

error increases sharply up to 4.3 %). As illustrated, at D, ,, = 1,500 mm the meas-
ured displacement shows jumps.

Ax (mm)
100 A R
80 _- ".' .---. .f'
60 ) : 3
404
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-80 +++ D_ =1500mm
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Fig. 3

So there exist a threshold distance between the antenna and the target beyond
which the target double amplitude determination error increases in a stepwise
manner, while within this threshold distance the error does not exceed several
tenths of one percent even for a double amplitude several times as large as the op-
erating wavelength.

The proposed technique may be used in the development of displacement me-
ters with simplified hardware implementation.
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