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1–D Schrödinger operators
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unbounded potentia
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Abstract. We study spectral properties of the One-dimensional Schrö-

dinger operators HX,α,q := − d2

dx2 +q(x)+
∑

xn∈X αnδ(x−xn) with local
interactions, d∗ = 0 and an unbounded potential q being a piecewise
constant function by using the technique of boundary triplets and the
corresponding Weyl functions. Using various sufficient conditions for
the self-adjointness, discreteness of Jacobi matrices, we obtain a self-
adjointness, discreteness condition for the operator HX,α,q.
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1. Introduction

Let R+ = [0,+∞), and letX = {xn}∞n=1 ⊂ R+ be a strictly increasing
sequence (xn+1 > xn for all n ∈ N) such that xn → +∞. We set x0 = 0,
dn := xn − xn−1 for all n ∈ N and

d∗ := inf
n∈N

dn = inf
n∈N

(xn − xn−1), d∗ := sup
n∈N

dn = sup
n∈N

(xn − xn−1).

Let HX,α,q be the minimal symmetric operator associated in L2(R+)
with the differential expression

ℓX,α,q := − d2

dx2
+ q(x) +

∑

xn∈X
αnδ(x− xn), x ≥ 0. (1.1)
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Namely, assuming that {αn}∞n=1 ⊂ R and q : R+ → R is locally square
integrable function on R+, q ∈ L2

loc(R+), define the pre-minimal operator
H0

X,α,q in L2(R+) by the differential expression

τq := − d2

dx2
+ q(x) (1.2)

on the domain

dom(H0
X,α,q) =

{
f ∈W 2,2

comp(R+ \X) : f ′(0) = 0, (1.3)

f(xn+) = f(xn−)
f ′(xn+)− f ′(xn−) = αnf(xn)

, n ∈ N

}
.

Clearly, H0
X,α,q is symmetric and we denote its closure by HX,α,q. Note

that if all the αn = 0, the operator HX,0,q =: HN
q is the Neumann

realization of the expression (1.2).
The operator HX,α,q describes δ-interactions on a discrete set X =

{xn}n∈N, and the coefficient αn is called the strength of the interaction
at x = xn. Let us stress that the operator HX,α,q is symmetric but not
automatically self-adjoint even in the case q ≡ 0 (see [21,22,34]).

Schrödinger operators with point interaction on a finite or a discrete
set arise in various physical applications (see [3]). In recent years spectral
properties of the operator HX,α,q have been studied in numerous papers
(see, e.g., [4, 7, 8, 15, 16, 18, 20–25, 27, 30, 31, 33, 34], and also [22] for a
comprehensive overview).

Here we study spectral properties of the Hamiltonian HX,α,q with
d∗ = 0 and an unbounded potential q being a piecewise constant function.
Namely, later on in this paper we make the following assumption:

Hypothesis 1. Assume that

q(x) ≡ qn > 0, x ∈ (xn−1, xn), (1.4)

for all n ∈ N, and the sequence {qn}n∈N satisfies the following condition:

sup
n∈N

dn
√
qn =: c <∞. (1.5)

Let us mention that (1.5) covers the very important case in our con-
siderations:

dn
√
qn → 0 as n→ ∞. (1.6)

Our main tool is a powerful approach developed recently in [21].
Namely, applying the technique of boundary triplets and the correspond-
ing Weyl function (see [12, 13, 17]), it was shown in [21] that spectral
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properties of the operator HX,α,q with a bounded potential q ∈ L∞(R+)
closely correlate with the corresponding properties of a certain class of
Jacobi matrices. Similar results were obtained later for Schrödinger oper-
ators with a matrix-valued potential [24] as well as for Dirac operators [9].
Our main aim is to extend the results of [21] to the case of unbounded
potentials satisfying Hypothesis 1. Namely, consider the following Jacobi
(three-diagonal) matrix

BX,α,q =




b1 a1 0 . . .
a1 b2 a2 . . .
0 a2 b3 . . .
. . . . . . . . . . . .


 , (1.7)

where

an = −
√
qn+1

rnrn+1 sinh(dn+1
√
qn+1)

, rn :=
√
dn + dn+1, (1.8)

bn =
αn

dn + dn+1
+

√
qn coth(dn

√
qn) +

√
qn+1 coth(dn+1

√
qn+1)

dn + dn+1
, n ∈ N

(1.9)

Our main result reads as follows.

Theorem 1.1. Assume that Hypothesis 1 holds, HX,α,q is the minimal
symmetric operator associated with (1.1). Let also BX,α,q be the minimal
operator associated with the Jacobi matrix (1.7). Then:

(i) The deficiency indices of HX,α,q and BX,α,q are equal and

n±(HX,α,q) = n±(BX,α,q) ≤ 1.

In particular, HX,α,q is self-adjoint if and only if BX,α,q is self-
adjoint.

(ii) The operator HX,α,q is lower semibounded if and only if so is the
operator BX,α,q.

In addition, assume that HX,α,q (and hence BX,α,q) is self-adjoint.
Then:

(iii) The operator HX,α,q is nonnegative if and only if so is BX,α,q.

(iv) The total multiplicities of the negative spectra of HX,α,q and BX,α,q

coincide:
κ−(HX,α,q) = κ−(BX,α,q). (1.10)



A. Yu. Ananieva 31

(v) For any p ∈ (0,∞], the following equivalence holds:

EHX,α,q
(R−)HX,α,q ∈ Sp ⇐⇒ EBX,α,q

(R−)BX,α,q ∈ Sp.

In particular, the negative part of the spectrum HX,α,q is discrete
if and only if the same holds for the negative spectrum of BX,α,q.

(vi) σc(HX,α,q) ⊆ [0,∞) if and only if σc (BX,α,q) ⊆ [0,∞).

(vii) σc(HX,α,q) ⊂ (0,∞) if and only if σc (BX,α,q) ⊂ (0,∞).

(viii) The operator HX,α,q has purely discrete spectrum if and only if
lim
n→∞

dn = 0 and BX,α,q has purely discrete spectrum.

(ix) Let α̃ = {α̃k}∞k=1 ⊂ R, and let BX,α̃,q be the minimal operator
associated with the matrix (1.7) and constructed by the sequence α̃
instead of α. If HX,α̃,q = H∗

X,α̃,q then BX,α̃,q = B∗
X,α̃,q, and for any

p ∈ (0,+∞] the following equivalence holds:

(HX,α,q − i)−1 − (HX,α̃,q − i)−1 ∈ Sp ⇐⇒ (BX,α,q − i)−1

−(BX,α̃,q − i)−1 ∈ Sp.

Combining Theorem 1.1(i) with the Carleman test (see, e.g., [1, Chap-
ter II]), we obtain the following result.

Proposition 1.2. Assume that Hypothesis 1 holds. Then the Hamilto-
nian HX,α,q is self-adjoint for any α = {αn}∞n=1 ⊂ R provided that

∞∑

n=1

d2n = ∞. (1.11)

Note that this result is sharp. Namely, if {dn}∞n=1 ∈ l2 and the coef-
ficients X = {xn}n∈N ⊂ R and αn ∈ R satisfy certain concavity assump-
tions, then the operator HX,α,q is symmetric with n±(HX,α,q) = 1 (see
Proposition 6.8). Note that in the case q ∈ L∞(R+) Proposition 1.2 was
first proved in [21]. More general result was proved later in [30].

Investigating discreteness and absolute continuity of spectra of the
operator BX,α,q we arrive at the following sufficient condition (see Propo-
sitions 6.17 and 6.23).

Proposition 1.3. Assume that Hypothesis 1 holds and limn→∞ dn
√
qn =

0. Assume also that limn→∞ dn = 0 and the operator BX,α,q is self-
adjoint. If

lim
n→∞

∣∣∣∣
αn−1

dn
+ qn

∣∣∣∣ = ∞, lim
k→∞

1

dk(αk + qk+1dk+1)
> −1

4
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and lim
n→∞

1

dnαn−1
> −1

4
, (1.12)

then the operator HX,α,q has discrete spectrum.

This result is of interest only in the case when the operator HX,α,q is
not semi-bounded since the lower-bounded below Hamiltonian HX,α,q is
always self-adjoint (see [4]).

Proposition 1.4. Assume that Hypothesis 1 holds, and assume that

∞∑

n=1

|αn|
dn+1

<∞. (1.13)

Then absolutely continuous part Hac
X,α,q of the Hamiltonian HX,α,q is uni-

tarily equivalent to the operator HN
q := HX,0,q that is the Neumann real-

ization of (1.2) in L2(R+). In particular,

σac(HX,α,q) = σac(H
N
q ), (1.14)

where dom(HN
q ) = dom(HX,0,q) ⊂ {W 2,2(R+) : f

′(0) = 0}.
If, in addition q ∈ L1(R+), then σac(HX,α,q) = R+.

The main results are announced in [5].

Notation. Let H, H stand for the separable Hilbert spaces. Further,
[H,H] denotes the set of bounded operators from H to H; [H] := [H,H];
Sp(H), (p ∈ (0,∞)), denotes the Neumann-Schatten ideal in H. In par-
ticular, S∞(H) is the set of compact operators in H, S1(H) is the trace
class of the operators in H, C(H) and C̃(H) are the sets of closed operators
and linear relations in H, respectively. Let T be a linear operator in a
Hilbert space H. In what follows dom(T ), ker(T ), and ran(T ) denote the
domain, the kernel and the range of T , respectively; σ(T ), ρ(T ) and ρ̂(T )
denote the spectrum, the resolvent set and the set of regular type points
of T , respectively; RT (λ) := (T − λI)−1, λ ∈ ρ(T ), is the resolvent of T .

By W 2,2(R+ \X), W 2,2
0 (R+ \X), and W 2,2

loc (R+ \X) we denote the
Sobolev spaces

W 2,2(R+ \X) := {f ∈ L2(R+) : f, f
′ ∈ ACloc(R+ \X), f ′′ ∈ L2(R+)},

W 2,2
0 (R+ \X) := {f ∈W 2,2(R+) : f(xk) = f ′(xk) = 0 for all xk ∈ X},
W 2,2

comp(R+ \X) := {f ∈W 2,2(R+ \X) : supp f is compact in R+}.

Let I be a subset of Z, I ⊆ Z. We denote by l2(I,H) the Hilbert space
of H-valued sequences such that ‖f‖2 =

∑
n∈I ‖fn‖2H < ∞; l20(I,H) is

a set of sequences with a finite number of nonzero components; we also
abbreviate l2 := l2(N,C), l20 := l20(N,C).
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2. Preliminaries

2.1. Boundary triplets and Weyl functions

In this section we briefly recall the notion of abstract boundary triplets
and associated Weyl functions in the extension theory of symmetric op-
erators (for a detailed study of boundary triplets we refer the reader
to [12,13,17]).

Linear relations, boundary triplets, and self-adjoint extensions

1. The set C̃(H) of closed linear relations in H is the set of closed
linear subspaces of H ⊕ H. Recall that dom(Θ) =

{
f : {f, f ′} ∈ Θ

}
,

ran(Θ) =
{
f ′ : {f, f ′} ∈ Θ

}
and mul (Θ) =

{
f ′ : {0, f ′} ∈ Θ

}
are the

domain, the range and the multivalued part of Θ , respectively. A closed
linear operator A in H is identified with its graph gr(A), so that the set
C(H) of closed linear operators in H is viewed as a subset of C̃(H). In
particular, a linear relation Θ is an operator if and only if mul (Θ) is
trivial. For the definition of the inverse linear relation, the resolvent set
and the spectrum of linear relations we refer to [14]. We recall that the
adjoint relation Θ∗ ∈ C̃(H) of Θ ∈ C̃(H) is defined by

Θ∗ =

{(
h
h′

)
: (f ′, h)H = (f, h′)H for all

(
f
f ′

)
∈ Θ

}
.

A linear relation Θ is said to be symmetric if Θ ⊂ Θ∗ and self-adjoint if
Θ = Θ∗.

For a symmetric linear relation Θ ⊆ Θ∗ in H , the multivalued part
mul (Θ) is the orthogonal complement of dom(Θ) in H. Setting Hop :=

dom(Θ) and H∞ = mul (Θ), one arrives at the orthogonal decomposition
Θ = Θop⊕Θ∞ , where Θop is a symmetric operator in Hop, the operator
part of Θ, and Θ∞ =

{(
0
f ′

)
: f ′ ∈ mul (Θ)

}
is a “pure” linear relation in

H∞.

2. Let A be a densely defined closed symmetric operator in the sep-
arable Hilbert space H with equal deficiency indices n±(A) = dimN±i ≤
∞, Nz := ker(A∗ − z).

Definition 2.1 ([17]). A triplet Π = {H,Γ0,Γ1} is called a boundary
triplet for the adjoint operator A∗ if H is a Hilbert space and Γ0,Γ1 :
dom(A∗) → H are bounded linear mappings such that the abstract Green
identity

(A∗f, g)H − (f,A∗g)H = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H, f, g ∈ dom(A∗),
(2.1)
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holds and the mapping Γ :=

(
Γ0

Γ1

)
: dom(A∗) → H⊕H is surjective.

First note that a boundary triplet for A∗ exists since the deficiency
indices of A are assumed to be equal. Moreover, n±(A) = dim(H) and
A = A∗ ↾ (ker(Γ0) ∩ ker(Γ1)) hold. Note also that a boundary triplet for
A∗ is not unique.

A closed extension Ã of A is called proper if A ⊆ Ã ⊆ A∗. Two proper
extensions Ã1 and Ã2 of A are called disjoint if dom(Ã1) ∩ dom(Ã2) =
dom(A) and transversal if , in addition , dom(Ã1)∔dom(Ã2) = dom(A∗).
The set of all proper extensions of A is denoted by ExtA. Fixing a bound-
ary triplet Π one can parameterize the set ExtA in the following way.

Proposition 2.2 ([13]). Let A be as above , and let Π = {H,Γ0,Γ1} be
a boundary triplet for A∗. Then the mapping Γ = {Γ0,Γ1} : dom(A∗) →
H×H establishes a bijective correspondence between the sets ExtA and
C̃(H) as follows:

Θ 7→ AΘ := A∗ ↾ Γ−1Θ = A∗ ↾
{
f ∈ dom(A∗) : {Γ0f,Γ1f} ∈ Θ

}
. (2.2)

At the same time, the following relations hold:

(i) A∗
Θ = AΘ∗ .

(ii) The extensions AΘ and A0 are disjoint (transversal) if and only if
Θ ∈ C(H)

(
Θ ∈ [H]

)
. In this case, AΘ admits a representation

AΘ = A∗ ↾ ker(Γ1 −ΘΓ0).

(iii) AΘ ∈ C(H) if and only if Θ ∈ C̃(H).

(iv) AΘ1 ⊆ AΘ2 if and only if Θ1 ⊆ Θ2.

(v) AΘ is symmetric (self–adjoint) if and only if the same is true for
Θ, and n±(AΘ) = n±(Θ) holds.

(vi) Let AΘ = A∗
Θ and A

Θ̃
= A∗

Θ̃
. Then for any p ∈ (0,+∞] there holds

the equivalence:

(AΘ−i)−1−(A
Θ̃
−i)−1 ∈ Sp(H) ⇐⇒ (Θ−i)−1−(Θ̃−i)−1 ∈ Sp(H).

Moreover, if dom(Θ) = dom(Θ̃), then the following implication
holds:

Θ− Θ̃ ∈ Sp(H) =⇒ (AΘ − i)−1 − (A
Θ̃
− i)−1 ∈ Sp(H).

Proposition 2.2 immediately implies that the extensions A0 := A∗ ↾
ker(Γ0) and A1 := A∗ ↾ ker(Γ1) are self-adjoint. Clearly, Aj = AΘj , j ∈
{0, 1}, where the subspaces Θ0 := {0} × H and Θ1 := H × {0} are self-
adjoint relations in H. Note that Θ0 is a “pure” linear relation.
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Weyl functions, γ-fields, and Krein type formula for resolvents

1. In [12,13] the concept of the classical Weyl–Titchmarshm-function
from the theory of Sturm–Liouville operators was generalized to the case
of symmetric operators with equal deficiency indices. The role of abstract
Weyl functions in the extension theory is similar to that of the classical
Weyl–Titchmarsh m-function in the spectral theory of singular Sturm–
Liouville operators.

Definition 2.3 ([12]). Let A be a densely defined closed symmetric opera-
tor in H with equal deficiency indices, and let Π = {H,Γ0,Γ1} be a bound-
ary triplet for A∗. The operator valued functions γ : ρ(A0) → [H,H] and
M : ρ(A0) → [H] defined by

γ(z) :=
(
Γ0 ↾ Nz

)−1
and M(z) := Γ1γ(z), z ∈ ρ(A0), (2.3)

are called the γ-field and the Weyl function, respectively, corresponding
to the boundary triplet Π.

The γ-field γ(·) and the Weyl function M(·) in (2.3) are well defined.
Moreover, both γ(·) andM(·) are holomorphic on ρ(A0) and the following
relations hold (see [12]):

γ(z) =
(
I + (z − ζ)(A0 − z)−1

)
γ(ζ), (2.4)

M(z)−M(ζ)∗ = (z − ζ)γ(ζ)∗γ(z), (2.5)

γ∗(z) = Γ1(A0 − z)−1, z, ζ ∈ ρ(A0). (2.6)

Identity (2.5) yields that M(·) is an RH-function (or Nevanlinna func-
tion), that is, M(·) is an ([H]-valued) holomorphic function on C \ R

and

Im z · ImM(z) ≥ 0, M(z∗) =M(z), z ∈ C \ R. (2.7)

Besides, it follows from (2.5) that M(·) satisfies 0 ∈ ρ(ImM(z)) for z ∈
C \R. Since A is densely defined, M(·) admits an integral representation
(see, for instance, [13]):

M(z) = C0 +

∫

R

(
1

t− z
− t

1 + t2

)
dΣM (t), z ∈ ρ(A0), (2.8)

where ΣM (·) is an operator-valued Borel measure on R satisfying∫
R

1
1+t2

dΣM (t) ∈ [H] and C0 = C∗
0 ∈ [H]. The integral in (2.8) is under-

stood in the strong sense.
In contrast to spectral measures of self-adjoint operators, the mea-

sure ΣM (·) is not necessarily orthogonal. However, the measure ΣM is
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uniquely determined by the Nevanlinna function M(·). The operator-
valued measure ΣM is called the spectral measure of M(·). If A is a
simple symmetric operator, then the Weyl function M(·) determines the
pair {A,A0} up to unitary equivalence (see [13, 26]). Due to this fact,
spectral properties of A0 can be expressed in terms of M(·).

2. The following result provides a description of resolvents and spec-
tra of proper extensions of the operator A in terms of the Weyl function
M(·) and the corresponding boundary parameters.

Proposition 2.4 ( [12]). For any Θ ∈ C̃(H) the following Krein type
formula holds:

(AΘ−z)−1− (A0−z)−1 = γ(z)(Θ−M(z))−1γ∗(z), z ∈ ρ(A0)∩ρ(AΘ).
(2.9)

Moreover, if z ∈ ρ(A0), then

z ∈ σi(AΘ) ⇔ 0 ∈ σi(Θ−M(z)), i ∈ {p, c, r}.

Formula (2.9) is a generalization of the well known Krein formula for
canonical resolvents (cf. [2]). We note also that all the objects in (2.9)
are expressed in terms of the boundary triplet Π.

The following result is deduced from (2.9).

Proposition 2.5 ([12]). Let Π = {H,Γ0,Γ1} be a boundary triplet for
A∗, Θ1,Θ2 ∈ C̃(H) , and let Sp, p ∈ (0,∞), the Neumann–Schatten
ideal. Then

(i) for any z ∈ ρ(AΘ1) ∩ ρ(AΘ2), ζ ∈ ρ(Θ1) ∩ ρ(Θ2) the following equiv-
alence holds:

(AΘ1−z)−1−(AΘ2−z)−1 ∈ Sp(H) ⇐⇒ (Θ1−ζ)−1−(Θ2−ζ)−1 ∈ Sp(H).
(2.10)

(ii) If, in addition, Θ1,Θ2 ∈ C(H) and dom(Θ1) = dom(Θ2), then

Θ1 −Θ2 ∈ Sp(H) =⇒ (AΘ1 − z)−1 − (AΘ2 − z)−1 ∈ Sp(H). (2.11)

(iii) Moreover, if Θ1,Θ2 ∈ [H], then implication (2.11) becomes equiva-
lence.

Extensions of a nonnegative operator

Assume that a symmetric operator A ∈ C(H) is nonnegative. Then
the set ExtA(0,∞) of its nonnegative self-adjoint extensions is non-empty
(see [2,19]). Moreover, there is a maximal nonnegative extension AF (also



A. Yu. Ananieva 37

called Friedrichs’ or hard extension), and there is a minimal nonnegative
extension AK (Krein’s or soft extension) satisfying

(AF+x)
−1 ≤ (Ã+x)−1 ≤ (AK+x)−1, x ∈ (0,∞), Ã ∈ ExtA(0,∞)

(for details we refer the reader to [2, 17]).

Proposition 2.6 ([12]). Let Π = {H,Γ0,Γ1} be a boundary triplet for
A∗ such that A0 = A∗

0 ≥ 0. Let M(·) be the corresponding Weyl function.
Then A0 = AF (A0 = AK) if and only if

lim
x↓−∞

(M(x)f, f) = −∞,
(
lim
x↑0

(M(x)f, f) = +∞
)
, f ∈ H \ {0}.

(2.12)

Proposition 2.7 ([12]). Let A be a non-negative symmetric operator in
H. Assume that Π = {H,Γ0,Γ1} is a boundary triplet for A∗ , and M(·)
is the corresponding Weyl function. Let also A0 = AF is the Friedrichs
extension. Then the following assertions hold:

(i) a linear relation Θ ∈ C̃self(H) is semibounded below;

(ii) a self-adjoint extension AΘ is semibounded below;

are equivalent if and only if M(·) uniformly tends to −∞ as x → −∞,
i.e., for any a > 0 there exists xa < 0 such that M(xa) < −a · IH.

In this case we will write M(x) ⇒ −∞ as x→ −∞.

3. Direct sums of boundary triplets

Let Sn be a densely defined symmetric operator in a Hilbert space
Hn with n+(Sn) = n−(Sn) ≤ ∞, n ∈ N. Consider the operator A :=⊕∞

n=1 Sn acting in H :=
⊕∞

n=1Hn, the Hilbert direct sum of Hilbert
spaces Hn. By definition, H = {f = ⊕∞

n=1fn : fn ∈ Hn,
∑∞

n=1 ‖fn‖2 <
∞}. Clearly,

A∗ =
∞⊕

n=1

S∗
n,

dom(A∗) = {f = ⊕∞
n=1fn ∈ H : fn ∈ dom(S∗

n),
∑

n∈N
‖S∗

nfn‖2 <∞}.

(3.1)
We equip the domains dom(S∗

n) =: Hn+ and dom(A∗) =: H+ with the
graph norms ‖fn‖2Hn+

:= ‖fn‖2+‖S∗
nfn‖2 and ‖f‖2H+

:= ‖f‖2+‖A∗f‖2 =∑
n ‖fn‖2Hn+

, respectively.
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Further, let Πn = {Hn,Γ
(n)
0 ,Γ

(n)
1 } be a boundary triplet for S∗

n, n ∈ N.

By ‖Γ(n)
j ‖ we denote the norm of the linear mapping Γ

(n)
j ∈ [Hn+,Hn],

j ∈ {0, 1}, n ∈ N.
Let H :=

⊕∞
n=1Hn be a Hilbert direct sum of Hn. Define mappings

Γ0 and Γ1 by setting

Γj :=
∞⊕

n=1

Γ
(n)
j ,

dom(Γj) =
{
f = ⊕∞

n=1fn ∈ dom(A∗) :
∑

n∈N
‖Γ(n)

j fn‖2Hn
<∞

}
. (3.2)

Clearly, dom(Γ) := dom(Γ1) ∩ dom(Γ0) is dense in H+. Define the

operators Snj := S∗
n ↾ ker Γ

(n)
j and Aj :=

⊕∞
n=1 Snj , j ∈ {0, 1}. Then A0

and A1 are self-adjoint extensions of A. Note that A0 and A1 are disjoint
but not necessarily transversal.

Definition 3.1. Let Γj be defined by (3.2) and H =
⊕∞

n=1Hn. A col-
lection Π = {H,Γ0,Γ1} will be called a direct sum of boundary triplets
and will be assigned as Π :=

⊕∞
n=1Πn.

The following criterions have been obtained in [9, 21].

Theorem 3.2. Let Πn = {Hn,Γ
(n)
0 ,Γ

(n)
1 } be a boundary triplet for S∗

n

and Mn(·) the corresponding Weyl function, n ∈ N. A direct sum Π =⊕∞
n=1Πn forms an ordinary boundary triplet for the operator A∗ =⊕∞
n=1 S

∗
n if and only if

C1 = sup
n

‖Mn(i)‖Hn <∞ and C2 = sup
n

‖(ImMn(i))
−1‖Hn <∞.

(3.3)

Theorem 3.2 makes it possible to construct a boundary triplet by
regularizing an arbitrary direct sum Π =

⊕∞
n=1Πn of boundary triplets.

Theorem 3.3 ( [28, 29]). Let Sn be a symmetric operator in Hn with
deficiency indices n±(Sk) = nn ≤ ∞ and Sn0 = S∗

n0 ∈ ExtSn, n ∈ N.

Then for any n ∈ N there exists a boundary triplet Πn = {Hn,Γ
(n)
0 ,Γ

(n)
1 }

for S∗
n such that ker Γ

(n)
0 = dom(Sn0) and Π =

⊕∞
n=1Πn forms an ordi-

nary boundary triplet for A∗ =
⊕∞

n=1 S
∗
n satisfying ker Γ0 = dom(Ã0) :=⊕∞

n=1 dom(Sn0).

Next we assume that the operator A =
⊕∞

n=1 Sn has a regular real
point, i.e., there exists an a = a ∈ ρ̂(A). The latter is equivalent to the
existence of ε > 0 such that

(a− ε, a+ ε) ⊂ ∩∞
n=1ρ̂(Sn). (3.4)
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Emphasize that condition a ∈ ∩∞
n=1ρ̂(Sn) is not enough for the inclu-

sion a ∈ ρ̂(A) to hold.

It is known that under condition (3.4) for every k ∈ N there exists
a selfadjoint extension S̃k = S̃∗

k of Sk preserving the gap (a − ε, a + ε).

Moreover, the Weyl function of the pair {Sk, S̃k} is regular within the
gap (a− ε, a+ ε).

Theorem 3.4 ([9, Theorem 2.12]). Let {Sn}∞n=1 be a sequence of sym-

metric operators satisfying (3.4). Let also Πn = {Hn,Γ
(n)
0 ,Γ

(n)
1 } be a

boundary triplet for S∗
n such that (a − ε, a + ε) ⊂ ρ(Sn0), and let Mn(·)

be the corresponding Weyl function. Then:

(i) Π =
⊕∞

n=1Πn forms a B-generalized boundary triplet for A∗ =⊕∞
n=1 S

∗
n if and only if

C3 := sup
n∈N

‖Mn(a)‖Hn <∞ and C4 := sup
n∈N

‖M ′
n(a)‖Hn <∞,

(3.5)
where M ′

n(a) := (dMn(z)/dz)|z=a.

(ii) Π =
⊕∞

n=1Πn is an ordinary boundary triplet for A∗ =
⊕∞

n=1 S
∗
n

if and only if, in addition to (3.5), the following condition is satisfied:

C5 := sup
n∈N

‖
(
M ′

n(a)
)−1‖Hn <∞. (3.6)

Corollary 3.5 ([9, Corollary 2.13]). Let {Sn}∞n=1 be a sequence of sym-

metric operators satisfying (3.4). Let also Π̃n = {Hn, Γ̃
(n)
0 , Γ̃

(n)
1 } be a

boundary triplet for S∗
n such that (a − ε, a + ε) ⊂ ρ(Sn0), Sn0 = S∗

n ↾

ker(Γ̃
(n)
0 ), and M̃n(·) the corresponding Weyl function. Assume also that

for some operators Rn such that Rn, R
−1
n ∈ [Hn], the following conditions

are satisfied:

sup
n

‖R−1
n (M̃ ′

n(a))(R
−1
n )∗‖Hn <∞ and

sup
n

‖R∗
n(M̃

′
n(a))

−1Rn‖Hn <∞, n ∈ N. (3.7)

Then the direct sum Π =
⊕∞

n=1Πn of boundary triplets

Πn = {Hn,Γ
(n)
0 ,Γ

(n)
1 } with Γ

(n)
0 := RnΓ̃

(n)
0 ,

Γ
(n)
1 := (R−1

n )∗
(
Γ̃
(n)
1 − M̃n(a)Γ̃

(n)
0

)
, (3.8)

forms a boundary triplet for A∗ =
⊕∞

n=1 S
∗
n.
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4. First boundary triplet for the operator Hn

In what follows R+ = [0,+∞) and X = {xn}∞n=0 ⊂ R+ is a strictly
increasing sequence.

Consider the following symmetric operator in L2(xn−1, xn)

Hn = − d2

dx2
+ qn, dom(Hn) =W 2,2

0 [xn−1, xn], (4.1)

where qn satisfies (1.5).

Lemma 4.1. Assume that Hypothesis 1 holds. Then the operator Hn is
a symmetric one with deficiency indices n±(Hn) = 2. Its adjoint H∗

n is
given by

H∗
n = Hn, dom(H∗

n) =W 2,2[xn−1, xn].

Moreover, the following assertions hold:

(i) A boundary triplet for the operator H∗
n can be chosen as follows:

H = C
2, Γ̃

(n)
0 =

(
f(xn−1)
f ′(xn)

)
, Γ̃

(n)
1 =

(
f ′(xn−1)
f(xn)

)
.

(4.2)

(ii) The corresponding Weyl function M̃n(·) is

M̃n(z) =

( √
z − qn tan(dn

√
z − qn)

1
cos(dn

√
z−qn)

1
cos(dn

√
z−qn)

tan(dn
√
z−qn)√

z−qn

)
. (4.3)

Proof. It is straightforward.

Clearly, Hmin is closed operator with n±(Hmin) = ∞, and

Hmax := H∗
min =

∞⊕

n=1

H∗
n,

dom(Hmax) ⊆W 2,2(R+\X) =
∞⊕

n=1

W 2,2[xn−1, xn].

Proposition 4.2. Assume that Hypothesis 1 holds. Let X = {xn}∞n=0

be as above and d∗ < +∞. Define the mappings Γ
(n)
j :W 2,2[xn−1, xn] →

C
2 , n ∈ N , j ∈ {0, 1} , by setting

Γ
(n)
0 =

(
d
1/2
n f(xn−1)

d
3/2
n f ′(xn)

)
, (4.4)
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Γ
(n)
1 =




d
−1/2
n f ′(xn−1) +

√
qn
dn

tanh(dn
√
qn)f(xn−1)− d

−1/2
n f ′(xn)

cosh(dn
√
qn)

d
−3/2
n f(xn)− d

−3/2
n f(xn−1)
cosh(dn

√
qn)

− tanh(dn
√
qn)f ′(xn)√

qnd3n


 .

(4.5)
Define the function Mn(z) given by

Mn(z)

=

(
1

dn
(
√
z − qn tan(dn

√
z − qn) +

√
qn tanh(dn

√
qn)) 1

d2n

(
1

cos(dn
√

z−qn)
− 1

cosh(dn
√

z−qn)

)

1
d2n

(
1

cos(dn
√

z−qn)
− 1

cosh(dn
√

z−qn)

)
1

d3n

(
tan(dn

√

z−qn)
√

z−qn
−

tanh(dn
√

qn)
√

qn

)

)
.

(4.6)
Then:

(i) For any n ∈ N the triplet Πn = {C2,Γ
(n)
0 ,Γ

(n)
1 } is the boundary

triplet for the operator H∗
n.

(ii) The Weyl function Mn(z) corresponding to the triplet Πn takes the
form (4.6).

(iii) The direct sum Π :=
⊕∞

n=1Π
(n) = {H,Γ0,Γ1} with H = C

2 and

Γj =
⊕∞

n=1 Γ
(n)
j , j ∈ {0, 1}, is a boundary triplet for the operator

H∗
min =

⊕∞
n=1H

∗
n.

Proof. (i) The proof is straightforward. Note, however, that it follows
from Lemma 4.1 since

Γ
(n)
0 := RnΓ̃

(n)
0 , Γ

(n)
1 := R−1

n (Γ̃
(n)
1 −QnΓ̃

(n)
0 ), n ∈ N, (4.7)

where

Rn :=

(
d
1/2
n 0

0 d
3/2
n

)
,

Qn := M̃n(0) =

( −√
qn tanh(dn

√
qn)

1
cosh(dn

√
qn)

1
cosh(dn

√
qn)

tanh(dn
√
qn)√

qn

)
, n ∈ N. (4.8)

(ii) It easily follows from (4.3) and (4.7) that

Mn(z) = R−1
n (M̃n(z)−Qn)R

−1
n , n ∈ N. (4.9)

(iii) We set vn := dn
√
qn. Then

M ′
n (0) = R−1

n M̃ ′
n (0)R

−1
n

=




sinh(vn) cosh(vn)+vn
2vn cosh2(vn)

sinh(vn)

2vn cosh2(vn)
sinh(vn)

2vn cosh2(vn)

sinh(vn) cosh(vn)−vn
2v3n cosh2(vn)


 , n ∈ N.

(4.10)
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Clearly, (1.5) implies

sinh(vn) < 2−1 exp(vn).

Since, in addition, lim
x→0

sinh(x)
x = 1, the matrices M ′

n(0) are uniformly

bounded
sup
n∈N

‖M ′
n(0)‖ =: c1 <∞. (4.11)

Further,

(M ′
n(0))

−1 = Rn(M̃
′
n(0))

−1Rn

=




2vn(sinh(vn) cosh(vn)−vn)

sinh2(vn)−v2n

−2v3n sinh(vn)

sinh2(vn)−v2n
−2v3n sinh(vn)

sinh2(vn)−v2n

2v3n(sinh(vn) cosh(vn)+vn)

sinh2(vn)−v2n


 , n ∈ N.

(4.12)

Similarly, (1.5) yields uniform boundedness of matrices (M ′
n(0))

−1, i.e.,

sup
n∈N

‖(M ′
n(0))

−1‖ =: c2 <∞. (4.13)

One completes the proof by applying Theorem 3.4.

Remark 4.3. Assume condition (1.6). Then we have

lim
n→∞

M ′
n(0) =

(
1 1

2
1
2

1
3

)
, n ∈ N, (4.14)

lim
n→∞

(M ′
n(0))

−1 =

(
4 −6
−6 12

)
, n ∈ N. (4.15)

5. Second boundary triplets for the operator Hn

In what follows R+ = [0,∞) ⊆ R denotes a bounded interval or
positive semi-axis, X = {xn}∞n=0 ⊂ R+ is a strictly increasing sequence.

Consider the following symmetric operator in L2(xn−1, xn):

Hn = − d2

dx2
+ qn, dom(Hn) =W 2,2

0 [xn−1, xn], (5.1)

where qn satisfies (1.5).

Lemma 5.1. Assume that Hypothesis 1 holds. Then the operator Hn is
a symmetric one with deficiency indices n±(Hn) = 2.
Its adjoint H∗

n is given by

H∗
n = Hn, dom(H∗

n) =W 2,2[xn−1, xn].

Moreover, the following assertions hold:
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(i) A boundary triplet for the operator H∗
n can be chosen as follows:

H = C
2, Γ̃

(n)
0 =

(
f(xn−1)
−f(xn)

)
, Γ̃

(n)
1 =

(
f ′(xn−1)
f ′(xn)

)
;

(5.2)

(ii) The corresponding Weyl function M̃n(·) is

M̃n(z) =

(
−√

z − qn cot(dn
√
z − qn) −

√
z−qn

sin(dn

√
z−qn)

−
√
z−qn

sin(dn

√
z−qn)

−√
z − qn cot(dn

√
z − qn)

)
.

(5.3)

Proof. It is straightforward.

Proposition 5.2. Assume that Hypothesis 1 holds. Let also
X = {xn}∞n=0 be as above , and let d∗ < +∞. For any n ∈ N, define the

boundary triplet Π(n) = {C2,Γ
(n)
0 ,Γ

(n)
1 } for H∗

n by setting

Γ
(n)
j :W 2,2[xn−1, xn] → C

2 , n ∈ N , j ∈ {0, 1} ,

Γ
(n)
0 =

√
dn

(
f(xn−1)
−f(xn)

)
, (5.4)

Γ
(n)
1 =

1√
dn


 f ′(xn−1) +

√
qnf(xn−1) coth(dn

√
qn)−

√
qnf(xn)

sinh(dn
√
qn)

f ′(xn) +
√
qnf(xn−1)

sinh(dn
√
qn)

−√
qnf(xn) coth(dn

√
qn)


 .

(5.5)
Define the function Mn(z) by

Mn(z) =

(
an(z) bn(z)
bn(z) an(z)

)
, (5.6)

where

an(z) :=
1

dn
(−√

z − qn cot(dn
√
z − qn) +

√
qn coth(dn

√
qn)),

bn(z) :=
1

dn

(
−

√
z − qn

sin(dn
√
z − qn)

+

√
qn

sinh(dn
√
qn)

)
.

Then:

(i) For any n ∈ N the triplet Πn = {C2,Γ
(n)
0 ,Γ

(n)
1 } is the boundary

triplet for operator H∗
n.

(ii) The Weyl function Mn(z) corresponding to the triplet Πn takes the
form (5.6).
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(iii) The direct sum Π :=
⊕∞

n=1Π
(n) = {H,Γ0,Γ1} with H = C

2 and

Γj =
⊕∞

n=1 Γ
(n)
j , j ∈ {0, 1}, is a boundary triplet for the operator

H∗
min =

⊕∞
n=1H

∗
n.

Proof. (i) The proof is straightforward. Note, however, that it follows
from Lemma 5.1 since

Γ
(n)
0 := RnΓ̃

(n)
0 , Γ

(n)
1 := R−1

n (Γ̃
(n)
1 −QnΓ̃

(n)
0 ), n ∈ N, (5.7)

where

Rn :=

(
d
1/2
n 0

0 d
1/2
n

)
,

Qn := M̃n(0) =


 −√

qn coth(dn
√
qn) −

√
qn

sinh(dn
√
qn)

−
√
qn

sinh(dn
√
qn)

−√
qn coth(dn

√
qn)


 , n ∈ N.

(5.8)

(ii) It easily follows from (5.3) and (5.7) that

Mn(z) = R−1
n (M̃n(z)−Qn)R

−1
n , n ∈ N. (5.9)

(iii) We set vn := dn
√
qn. Then

M ′
n (0) = R−1

n M̃ ′
n (0)R

−1
n

=




cosh(vn) sinh(vn)−vn
2vn sinh2(vn)

sinh(vn)−vn cosh(vn)

2vn sinh2(vn)
sinh(vn)−vn cosh(vn)

2vn sinh2(vn)

cosh(vn) sinh(vn)−vn
2vn sinh2(vn)


 , n ∈ N.

(5.10)

Clearly, (1.5) implies

cosh(vn) < 2−1 exp(vn).

Since, in addition, lim
x→0

sinh(x)
x = 1, the matrices M ′

n(0) are uniformly

bounded
sup
n∈N

‖M ′
n(0)‖ =: c3 <∞. (5.11)

Further,

(M ′
n(0))

−1 = Rn(M̃
′
n(0))

−1Rn

=
1

sinh2(vn)− v2n
·
(
2(cosh(vn) sinh(vn)− vn) 2(vn cosh(vn)− sinh(vn))
2(vn cosh(vn)− sinh(vn)) 2(cosh(vn) sinh(vn)− vn)

)
,

n ∈ N.
(5.12)
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Similarly, (1.5) yields uniform boundedness of matrices (M ′
n(0))

−1, i.e.,

sup
n∈N

‖(M ′
n(0))

−1‖ =: c4 <∞. (5.13)

One completes the proof by applying Theorem 3.4.

Remark 5.3. Assume that condition (1.6) is met. Then we get

M ′
n (0) = R−1

n M̃ ′
n (0)R

−1
n −→

(
1
3 −1

6
−1

6
1
3

)
, n→ ∞, (5.14)

(M ′
n(0))

−1 = Rn(M̃
′
n(0))

−1Rn −→
(
4 2
2 4

)
, n→ ∞. (5.15)

Proposition 5.4. Assume that Hypothesis 1 holds. Let also Π be the
boundary triplet for operator H∗

min defined in Proposition 5.2, and let
M(·) be the corresponding Weyl function. If

d∗ = sup
n∈N

dn < +∞, (5.16)

then
M(−a2) ⇒ −∞ as a→ +∞. (5.17)

Proof. The Weyl functionM(·) has the formM(z) = ⊕∞
n=1Mn(z), where

Mn(·) is given by (5.6). Introduce the following matrix-valued function

M(−a2; dn, qn) :=
(
Fa(dn, qn) Ga(dn, qn)
Ga(dn, qn) Fa(dn, qn)

)
, (5.18)

where

Fa(dn, qn) :=
1

dn

[
−
√
a2 + qn coth(dn

√
a2 + qn) +

√
qn coth(dn

√
qn)
]

=
1

d2n

[
−
√
d2na

2 + d2nqn coth(
√
d2na

2 + d2nqn) + dn
√
qn coth(dn

√
qn)
]
,

(5.19)

Ga(dn, qn) :=
1

dn

[
−

√
a2 + qn

sinh(dn
√
a2 + qn)

+

√
qn

sinh(dn
√
qn)

]

=
1

d2n

[
−

√
d2na

2 + d2nqn

sinh(
√
d2na

2 + d2nqn)
+

dn
√
qn

sinh(dn
√
qn)

]
.

(5.20)

Let us check that

Ga(dn, qn) > 0 and Fa(dn, qn) < 0 for a2 > 1.
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Consider the function f1(x) :=
sinh(

√
x)√

x
. Since

f ′1(x) =

(
sinh(

√
x)√

x

)′
=

√
x cosh(

√
x)− sinh(

√
x)

2x
√
x

=
e
√
x(
√
x− 1) + e−

√
x(
√
x+ 1)

4x
√
x

> 0 for x > 1,

then we have that f1(x) grows if x > 1. Hence the function f−1
1 (x) =√

x
sinh(

√
x)

decreases for x > 1. This implies that Ga(dn, qn) > 0 whenever

a2 > 1.

Further, consider function f2(x) :=
√
x coth(

√
x). Since

f ′2(x) =
(√
x coth(

√
x)
)′
=

cosh(
√
x) sinh(

√
x)−√

x

2
√
x sinh2(

√
x)

=
sinh(2

√
x)− 2

√
x

2
√
x sinh2(

√
x)

> 0 for x > 1,

then we have that f2(x) grows if x > 1. Hence Fa(dn, qn) < 0 for a2 > 1.

According to Hypothesis 1, we have dn
√
qn < c. Since

(
Fa(dn, qn) Ga(dn, qn)
Ga(dn, qn) Fa(dn, qn)

)
− (Fa(dn, qn) +Ga(dn, qn))I2

= Ga(dn, qn)

(
−1 1
1 −1

) (5.21)

and Ga(dn, qn) > 0, we get the following inequality:

M(−a2; dn, qn) ≤ (Fa(dn, qn) +Ga(dn, qn))I2.

Further, consider the function

Fa(dn, qn) +Ga(dn, qn) =
1

d2n

[
dn

√
qn

sinh(dn
√
qn)

{cosh(dn
√
qn) + 1}

−
√
a2d2n + d2nqn

sinh(
√
a2d2n + d2nqn)

{
cosh(

√
a2d2n + d2nqn) + 1

}]
.

(5.22)

Consider the function g(x) :=
√
x

sinh(
√
x)

(1 + cosh(
√
x)). Since

g′(x) =

( √
x

sinh(
√
x)

(
1 + cosh(

√
x)
))′

=
sinh(

√
x)−√

x

4
√
x sinh2(

√
x
2 )

> 0, (5.23)
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the function g(·) grows. Applying the Lagrange theorem to the right-
hand side of (5.22), we get

Fa(dn, qn) +Ga(dn, qn) = − 1

d2n

(
g(a2d2n + d2nqn)− g(d2nqn)

)
= −a2g′(ξn),

(5.24)
where ξn ∈ (d2nqn, a

2d2n + d2nqn). Further, since limx→0 g
′(x) = 1

6 > 0,
there exists ε > 0 such that

g′(x) >
1

12
, x ∈ [ε,∞). (5.25)

On the other hand,

lim
x→∞

sinh(
√
x)−√

x

4 sinh2(
√
x
2 )

=
1

2
. (5.26)

Combining this relation with the obvious inequality sinh(
√
x) >

√
x,

x > 0, one arrives at the two-sided estimate

C1 <
sinh(

√
x)−√

x

4 sinh2(
√
x
2 )

< C2, x ∈ [ε,∞). (5.27)

It follows with account of (5.23) that

C1√
x
< g′(x) =

sinh(
√
x)−√

x

4
√
x sinh2(

√
x
2 )

<
C2√
x
, x ∈ [ε,∞). (5.28)

Using d2nqn < c2 (see Hypothesis 1) and (5.16), we derive

C1√
a2d2n + d2nqn

>
C1√

a2d2n + c2
>

C1√
a2(d∗)2 + c2

. (5.29)

Combining the latter with (5.25) and (5.28), one has

inf
x∈(d2nqn,a2d2n+d2nqn)

g′(x) > β(a),

where β(a) = min

{
1

12
,

C1√
a2(d∗)2 + c2

}
.

(5.30)

Choosing a >
√
3c
d∗ , we continue this inequality as

inf
x∈(d2nqn,a2d2n+d2nqn)

g′(x) >
C1

2ad∗
, a >

√
3c

d∗
. (5.31)
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Combining this estimate with (5.24) yields

sup
n

(Fa(dn, qn) +Ga(dn, qn)) ≤ −a2 · C1

2ad∗
= −a C1

2d∗
. (5.32)

Since Mn(−a2) =M(−a2, dn), the preceding inequality implies

M(−a2) = ⊕∞
n=1Mn(−a2) ≤ −a C1

2d∗
, a >

√
3c

d∗
. (5.33)

Relation (5.17) is obviously yields.

Combining Proposition 5.2 with Proposition 2.2, we arrive at the
following parametrization of the set ExtHmin of closed proper extensions
of the operator Hmin :

H̃ = HΘ := H∗
min⌈dom(HΘ),

dom(HΘ) = {f ∈ dom(H∗
min) : {Γ0f,Γ1f} ∈ Θ}, (5.34)

where Θ ∈ C̃(l2) and Γ0, Γ1 are defined by (5.4)-(5.5).

Theorem 5.5. Let Π = ⊕∞
n=1Πn be a boundary triplet for H∗

min defined

in Proposition 5.2, Θ, Θ̃ ∈ C̃(H), and let HΘ, HΘ̃
∈ ExtHmin be proper

extensions of Hmin defined by (5.34). Then:

(i) The operator HΘ is symmetric (self-adjoint) if and only if so is Θ,
and n±(Hmin) = n±(Θ).

(ii) The self-adjoint (symmetric) operator HΘ is lower semibounded if
and only if so is Θ.

(iii) Let Θ = Θ∗. Then κ−(HΘ) = κ−(Θ). In particular HΘ ≥ 0 if and
if and only if Θ ≥ 0.

(iv) For any p ∈ (0,∞], z ∈ ρ(HΘ) ∩ ρ(HΘ̃
), and ζ ∈ ρ(Θ) ∩ ρ(Θ̃) the

following equivalence holds

(HΘ − z)−1 − (H
Θ̃
− z)−1 ∈ Sp ⇐⇒ (Θ− ζ)−1 − (Θ̃− ζ)−1 ∈ Sp.

(v) The operator HΘ = H∗
Θ has discrete spectrum if and only if dn ց 0

and Θ has discrete spectrum.

Proof. (i) is immediate from Proposition 2.2.

(ii), (iii) Combining Proposition 2.7 with Proposition 5.4 yields the
first statement.

(iv) is implied by Proposition 2.5.
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(v) First we show that conditions are sufficient. Indeed, the operator

H0 := H∗
min⌈ker(Γ0) = ⊕n∈NHn0, Hn0 := H∗

n⌈ker(Γ
(n)
0 ), (5.35)

has discrete spectrum if limn→∞ dn = 0. Moreover, the Krein resolvent
formula and discreteness of σ(Θ) implies RHΘ

(z) − RH0(z) ∈ S∞, z ∈
C+, and hence RHΘ

(z) ∈ S∞.

Let us show that condition dn ց 0 is necessary for discreteness of
σ(HΘ). Without loss of generality assume that 0 ∈ ρ(HΘ). Assume also
that lim supn→∞ dn > 0 andHΘ has discrete spectrum. Then there exists
a sequence {dnk

}∞k=1 such that dnk
≥ d∗/2 > 0. For ε ∈ (0, d∗/2), define

the function

ϕε(·) ∈W 2
2 (R), ϕε(x) =

{
1, ε ≤ x ≤ d∗ − ε,
0, x /∈ [0, d∗].

Note that ϕk(x) := PIϕε(x + xnk
) ∈ dom(HΘ), where PI is the or-

thoprojection in L2(R) onto L2(I). Moreover, ‖ϕk‖L2 ≡ const and
‖HΘϕk‖L2 ≡ const. Since the functions ϕk(·) have disjoint supports,
the operator (HΘ)

−1 is not compact. Contradiction.

Remark 5.6. Clearly, all statements of Theorem 5.5 with exception
of (ii)–(iii) remain valid for the boundary triplet Π = ⊕∞

1 Πn with Πn

defined by (4.4)–(4.5) in place of (5.4)–(5.5).

Corollary 5.7. If a is large enough, then HΘ ≥ −a2 whenever Θ ≥
− a

2d∗ Il2.

6. Schrödinger operators with δ-interactions

Now we return to the symmetric differential operator H0
X,α,q in

L2(R+)

H0
X,α,q := − d2

dx2
+ qn,

dom(H0
X,α,q) =

{
f ∈W 2,2

comp(I \X) :
f ′(0) = 0, f(xn+) = f(xn−)
f ′(xn+)− f ′(xn−) = αnf(xn)

}
.

(6.1)

As above, we denote by HX,α,q the closure of H0
X,α,q, HX,α,q = H0

X,α,q.
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6.1. Parametrization of the operator HX,α,q

Let Π1 = {H,Γ1
0,Γ

1
1} and Π2 = {H,Γ2

0,Γ
2
1} be the boundary triplets

defined in Propositions 5.2 and 4.2, respectively. According to Proposi-
tion 2.2, the extension HX,α(∈ ExtHmin) admits two representations

HX,α,q = HΘj := H∗
min⌈dom(HΘj ),

dom(HΘj ) = {f ∈ dom(H∗
min) : {Γj

0f,Γ
j
1f} ∈ Θj}, j ∈ {1, 2}. (6.2)

where Θj ∈ C̃(H) (j ∈ {1, 2}) are closed symmetric linear relations. In
this section we show that Θ2 as well as the operator part Θ′

1 of Θ1 is a
Jacobi matrix.

1. The first parametrization. At first we consider the triplet
Π1 = {H,Γ1

0,Γ
1
1} constructed in Proposition 4.2. For any α the operators

HX,α and H
(1)
0 := H∗

min⌈ker(Γ1
0) are disjoint. Hence Θ1 in (6.2) is a

(closed) operator in H = l2(N), Θ1 ∈ C(l2). More precisely, consider the
Jacobi matrix

BX,α,q :=




b1 a1 0 0 0 . . .
a1 b2 a2 0 0 . . .
0 a2 b3 a3 0 . . .
0 0 a3 b4 a4
...

...
. . .

. . .
. . .




(6.3)

where

b2k−1 = d−1
k (αk−1 +

√
qk tanh(dk

√
qk)), b2k = −tanh(dk

√
qk)

d3k
√
qk

,

a2k−1 = − 1

d2k cosh(dk
√
qk)

, a2k = d
−3/2
k d

−1/2
k+1 .

Let τX,α,q be a second order difference expression associated with (6.3).
One defines the corresponding minimal symmetric operator in l2 by (see
[1, 6])

B0
X,α,qf := τX,α,qf, f ∈ dom(B0

X,α,q) := l20 and BX,α,q = B0
X,α,q.

(6.4)

Recall that BX,α,q has equal deficiency indices and n+(BX,α,q) =
n−(BX,α,q) ≤ 1.

In addition, note that BX,α,q admits a representation

BX,α,q = R−1
X (B̃α −QX)R−1

X ,
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where B̃α :=




0 0 0 0 0 . . .
0 0 1 0 0 . . .
0 1 α1 0 0 . . .
0 0 0 0 1 . . .
0 0 0 1 α2 . . .
. . . . . . . . . . . . . . . . . .



, (6.5)

and RX = ⊕∞
n=1Rn, QX = ⊕∞

n=1Qn are given by (4.8).

Proposition 6.1. Let Π1 = {H,Γ1
0,Γ

1
1} be the boundary triplet for H∗

min

constructed in Proposition 4.2 and let BX,α,q be the minimal Jacobi op-
erator defined by (6.3)–(6.4). Then Θ1 = BX,α,q, i.e.,

HX,α,q = HBX,α,q
= H∗

min⌈dom(HBX,α,q
),

dom(HBX,α,q
) = {f ∈ dom(H∗

min) : Γ
1
1f = BX,α,qΓ

1
0f}.

Proof. Let f ∈ W 2,2
comp(R+ \ X). Then f ∈ dom(HX,α,q) if and only if

Γ̃1
1f = B̃αΓ̃

1
0f. Here Γ̃1

j := ⊕n∈NΓ̃
(n)
j where Γ̃

(n)
j , j ∈ {0, 1}, are defined

by (4.5), and B̃α is defined by (6.5). Combining (5.7) and (5.8) with
(6.5), we rewrite the equality Γ̃1

1f = B̃αΓ̃
1
0f as Γ1

1f = BX,αΓ
1
0f .

Taking the closures one completes the proof.

Remark 6.2. Note that the matrix (6.3) has negative off-diagonal en-
tries, although in the classical theory of Jacobi operators, off-diagonal en-
tries are assumed to be positive. But it is known (see, for instance, [35])
that the (minimal) operator BX,α,q is unitarily equivalent to the minimal
Jacobi operator associated with the matrix

B′
X,α,q :=




b1 a1 0 0 0 . . .
a1 b2 a2 0 0 . . .
0 a2 b3 a3 0 . . .
0 0 a3 b4 a4
...

...
. . .

. . .
. . .



, (6.6)

where

b2k−1 = d−1
k (αk−1 +

√
qk tanh(dk

√
qk)), b2k = −tanh(dk

√
qk)

d3k
√
qk

,

a2k−1 =
1

d2k cosh(dk
√
qk)

, a2k = d
−3/2
k d

−1/2
k+1 .

In the sequel we will identify the operators BX,α,q and B′
X,α,q when in-

vestigating those spectral properties of the operator HX,α,q, which are
invariant under unitary transformations.
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2. The second parametrization. Let us consider the bound-
ary triplet Π2 = {H,Γ2

0,Γ
2
1} constructed in Proposition 5.2. Now the

operators HX,α,q and H
(2)
0 := H∗

min⌈ker(Γ2
0) are not disjoint, hence by

Proposition 2.2(ii), the corresponding linear relation Θ2 in (6.2) is not an
operator, i.e., it has a nontrivial multivalued part, mulΘ2 := {f ∈ H :
{0, f} ∈ Θ2} 6= {0}.

Let f ∈W 2,2
comp(R+ \X). Then Γ2

0f,Γ
2
1f ∈ l20 and f ∈ dom(HX,α,q) if

and only if CX,α,qΓ1f = DX,α,qΓ0f , where

CX,α,q := CRX , DX,α,q := (Dα − CQX)R−1
X , (6.7)

C :=




0 0 0 0 0 . . .
0 0 0 0 0 . . .
0 −1 1 0 0 . . .
0 0 0 0 0 . . .
0 0 0 −1 1 . . .
. . . . . . . . . . . . . . . . . .



,

Dα :=




1 0 0 0 0 . . .
0 1 1 0 0 . . .
0 0 α1 0 0 . . .
0 0 0 1 1 . . .
0 0 0 0 α2 . . .
. . . . . . . . . . . . . . . . . .



, (6.8)

and RX = ⊕∞
n=1Rn, QX = ⊕∞

n=1Qn are defined by (5.8);

CX,α,q :=




0 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .

0 −d1/21 d
1/2
2 0 0 0 . . .

0 0 0 0 0 0 . . .

0 0 0 −d1/22 d
1/2
3 0 . . .

0 0 0 0 0 0 . . .
. . . . . . . . . . . . . . . . . . . . .




(6.9)

DX,α,q := (ai,j)
∞
i,j=1 , (6.10)

where
a1,1 = d

−1/2
1 ,

a2k,2k = d
−1/2
k , a2k,2k+1 = d

−1/2
k+1 ,

a2k+1,2k−1 = − d
−1/2
k

√
qk

sinh(dk
√
qk)

, a2k+1,2k = −d−1/2
k

√
qk coth(dk

√
qk),
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a2k+1,2k+1 = d
−1/2
k+1 (αk +

√
qk+1 coth(dk

√
qk)),

a2k+1,2k+2 = −
d
−1/2
k+1

√
qk+1

sinh(dk+1
√
qk+1)

,

ai,j = 0 otherwise.

Define a linear relation Θ0
2 by

Θ0
2 = {{f, g} ∈ l20 ⊕ l20 : DX,α,qf = CX,α,qg}. (6.11)

Hence we obviously get

H0
X,α,q = H∗

min⌈dom(H0
X,α,q),

dom(H0
X,α,q) = {f ∈W 2,2

comp(R+ \X) : {Γ2
0f,Γ

2
1f} ∈ Θ0

2}. (6.12)

Direct calculations show that Θ0
2 is symmetric. Moreover, (6.12) implies

that the closure of Θ0
2 is Θ2. Hence Θ2 is a closed symmetric linear

relation. Therefore (see Subsection 2.1), Θ2 admits the representation

Θ2 = Θop
2 ⊕Θ∞

2 , H = Hop ⊕H∞,

Hop = dom(Θ2) = dom(Θop
2 ), H∞ := mulΘ2, (6.13)

where Θop
2 (∈ C(Hop)) is the operator part of Θ2. Moreover, it follows

from (6.7) that

mulΘ2 = ker(CX,α) = R−1
X (kerC), Θ∞

2 = {{0, f} : f ∈ mulΘ2}.
(6.14)

Since Hop = ran(RXC∗), the system {fn}∞n=1, fn :=
√
dne2n−

√
dn+1e2n+1√

dn+dn+1
,

forms the orthonormal basis in Hop. Next we show that the operator part
Θop

2 of Θ2 is unitarily equivalent to the minimal Jacobi operator

BX,α,q =




b1 a1 0 . . .
a1 b2 a2 . . .
0 a2 b3 . . .
. . . . . . . . . . . .


 , (6.15)

where

bn = r−2
n (αn +

√
qn coth(dn

√
qn) +

√
qn+1 coth(dn+1

√
qn+1)),

an = −
√
qn+1

rnrn+1 sinh(dn+1
√
qn+1)

,



54 1–D Schrödinger operators with local interactions...

and rn :=
√
dn + dn+1, n ∈ N. We show that {fn}∞n=1 ⊂ dom(Θop

2 ).
Assume that there exists gn such that {fn,gn} ∈ Θop

2 , i.e., gn = Θop
2 fn.

The latter yields gn ∈ Hop and hence gn =
∑∞

k=1 gn,kfk. Moreover, after
direct calculations we obtain

DX,α,qf1 = r−1
1

(
−(α1 +

√
q1 coth(d1

√
q1) +

√
q2 coth(d2

√
q2))e3

+
√
q2 sinh

−1(d2
√
q2)e5

)
,

DX,α,qfn = r−1
n

( √
qn

sinh(dn
√
qn)

e2n−1 − (αn +
√
qn coth(dn

√
qn)

+
√
qn+1 coth(dn+1

√
qn+1)e2n+1

+

√
qn+1

sinh(dn+1
√
qn+1)

e2n+3

)
, n ≥ 2,

CX,α,qgn = −
∞∑

k=1

gn,krke2k+1, n ≥ 1.

Hence {fn,gn} ∈ Θ, i.e., equality DX,α,qfn = CX,α,qgn holds if and only
if

gn,n−1 = −
√
qn

sinh(dn
√
qn)rn−1rn

,

gn,n =
1

r2n

(
αn +

√
qn coth(dn

√
qn) +

√
qn+1 coth(dn+1

√
qn+1

)
,

gn,n+1 = −
√
qn+1

sinh(dn+1
√
qn+1)rnrn+1

, n ≥ 2,

and gn,k = 0 for all k /∈ {n − 1, n, n + 1}. Hence fn ∈ dom(Θop
2 ), and in

the basis {fn}∞n=1 the matrix representation of the operator Θop
2 coincides

with the matrix BX,α,q defined by (6.15).
Since the operator BX,α,q of the form (6.3) and (6.15) is closed, we

conclude that Θop
1 and BX,α,q are unitarily equivalent.

Proposition 6.3. Let Π2 = {H,Γ2
0,Γ

2
1} be the boundary triplet con-

structed in Proposition 5.2, and let the linear relation Θ2 be defined by
(6.2). Then Θ2 admits representation (6.13), where the ”pure” relation
Θ∞

2 is determined by (6.14) and (6.8), and the operator part Θop
2 is uni-

tarily equivalent to the minimal Jacobi operator BX,α,q of the form (6.4)
and (6.15).

6.2. Self–adjontness

Theorem 6.4. The operator HX,α,q has equal deficiency indices
n+(HX,α,q) = n−(HX,α,q) ≤ 1. Moreover, n±(HX,α,q) = n±(BX,α,q),
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where BX,α,q is the minimal operator associated with the Jacobi matrix
either (6.3) or (6.15). In particular, HX,α,q is self-adjoint if and only if
BX,α,q is.

Proof. Combining Theorem 5.5 (i) with Propositions 6.1 and 6.3, we
arrive at the equality n±(HX,α,q) = n±(BX,α,q). It remans to note that
for Jacobi matrices n±(BX,α,q) ≤ 1 (see [1, 6]).

Corollary 6.5. Let B
(1)
X,α,q and B

(2)
X,α,q be the minimal Jacobi opera-

tors associated with (6.3) and (6.15), respectively. Then n±(B
(1)
X,α,q) =

n±(B
(2)
X,α,q). In particular, B

(1)
X,α,q is self-adjoint if and only if so is B

(2)
X,α,q.

Proof. It immediately follows from Theorem 6.4.

Proposition 6.6. Assume Hypothesis 1. Then the Hamiltonian HX,α,q

is self-adjoint for any α = {αn}∞n=1 ⊂ R provided that

∞∑

n=1

d2n = ∞. (6.16)

Proof. Consider the Jacobi matrix BX,α,q (6.6). By Carleman’s theorem
[1], [6, Chapter VII.1.2], BX,α,q is self-adjoint whenever

∞∑

n=1

(d2n cosh(dn
√
qn) + d3/2n d

1/2
n+1) = ∞. (6.17)

Obviously,

d2n cosh(dn
√
qn) ∼ d2n, and d

2
n < d2n+d

3/2
n d

1/2
n+1 ≤

7

4
d2n+

1

4
d2n+1 as n→ ∞,

and hence relations (6.16) and (6.17) are equivalent.
Now, the result is implied by Theorem 6.4.

Corollary 6.7 ([16]). If lim supn dn > 0 (in particular, d∗ = lim infn dn >
0), then HX,α is self-adjoint.

Let us present sufficient conditions for self-adjointness in the case
when (6.16) does not hold.

Proposition 6.8. Let {dn}∞n=1 ∈ l2,

c1 ≤ dn
√
qn ≤ c2, c1, c2 > 0, (6.18)

and let
dn−1 · dn+1 ≥ d2n, n ∈ N. (6.19)
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If, in addition, the strengths αn of δ-interactions satisfy

∞∑

n=1

dn+1 |αn +
√
qn coth(dn

√
qn) +

√
qn+1 coth(dn+1

√
qn+1| <∞,

(6.20)
then the operator HX,α,q is symmetric with n±(HX,α,q) = 1.

Proof. Consider the Jacobi matrix (6.15). To apply [25, Theorem 1], we
denote an := r−2

n |αn +
√
qn coth(dn

√
qn) +

√
qn+1 coth(dn+1

√
qn+1| and

bn :=
√
qn

sinh(dn
√
qn)rn−1rn

, n ∈ N, and define a sequence {cn}∞n=1 as follows:

c1 := b1, c2 := 1, cn+1 := −bn−1

bn
cn−1, n ∈ N.

It is easily seen that

cn+1 = (−1)n+1rn+1

√
qn−2

sinh(dn−2
√
qn−2)

·
√
qn

sinh(dn
√
qn)

· sinh(dn−1
√
qn−1)√

qn−1

×sinh(dn+1
√
qn+1)√

qn+1
· . . . · c̃, n ∈ N;

c̃ :=

{
c1r

−1
1 , n = 2k,

c2r
−1
2 , n = 2k + 1.

Using both the conditions (6.24)–(6.19) and the obvious inequality
sinh(x) > x, x > 0, we obtain

√
qn−2

sinh(dn−2
√
qn−2)

·
√
qn

sinh(dn
√
qn)

×sinh(dn−1
√
qn−1)√

qn−1
· sinh(dn+1

√
qn+1)√

qn+1
· . . .

=
sinh(dn+1

√
qn+1)√

qn+1
· sinh(dn−1

√
qn−1)√

qn−1

×
√
qn

sinh(dn
√
qn)

·
√
qn−2

sinh(dn−2
√
qn−2)

· . . .

=

√
sinh(dn+2

√
qn+2)√

qn+2
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×
(
sinh(dn+1

√
qn+1)√

qn+1
·
√ √

qn+2

sinh(dn+2
√
qn+2)

·
√
qn

sinh(dn
√
qn)

)

×
(
sinh(dn−1

√
qn−1)√

qn−1
·
√ √

qn

sinh(dn
√
qn)

·
√
qn−2

sinh(dn−2
√
qn−2)

)

≤ C
√
dn+2, n ∈ N. (6.21)

Therefore,

|cn+1| ≤ Cc̃rn+1

√
dn+2 =

√
2Cc̃(dn+2 +

√
dn+1dn+2)

≤
√
2Cc̃

(
3

2
dn+2 +

1

2
dn+1

)
,

and hence {cn}∞n=1 ∈ l2. On the other hand, it follows from (6.20) and
(6.21) that

∑∞
n=1 |an|c2n <∞, i.e.,

∞∑

n=1

sinh(dn+1
√
qn+1)√

qn+1

× |αn +
√
qn coth(dn

√
qn) +

√
qn+1 coth(dn+1

√
qn+1| <∞.

Since sinh(x) > x, x > 0, we easily get conditions (6.20). By [25,
Theorem 1], this inequality together with the inclusion {cn}∞n=1 ∈ l2

yields n±(BX,α,q) = 1. It remains to apply Theorem 6.4.

Corollary 6.9. Let the assumptions of Proposition 6.8 be satisfied. If

dn(qn)
3
2 ≤ c, c > 0, (6.22)

then condition (6.20) is equivalent to

∞∑

n=1

dn+1

∣∣∣∣αn +
1

dn
+

1

dn+1
+

1

3
(dn

√
qn + dn+1

√
qn+1)

∣∣∣∣ <∞. (6.23)

Proof. Using

coth(x) =
1

x
+
x

3
−O(x3),

{dn}∞n=1 ∈ l2 and (6.22) we prove the claim.
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Remark 6.10. Let the assumptions of Proposition 6.8 be satisfied. Note
that condition (6.20) is automatically satisfied whenever

αn = −(
√
qn +

√
qn+1).

Proposition 6.11. Assume Hypothesis 1 , and assume that (6.16) does
not hold. Let also α = {αn}∞n=1 and X = {xn}∞n=1 satisfy one of the
following conditions:

(i)
c1 ≤ dn

√
qn ≤ c2, c1, c2 > 0, (6.24)

and also ∞∑

n=1

|αn|dndn+1rn−1rn+1 = ∞, (6.25)

where rn =
√
dn + dn+1

(ii) There exists a positive constant C1 > 0 such that

αn +
√
qn

(
M1 +

rn
Mrn−1

)
+
√
qn+1

(
M1 +

rn
Mrn+1

)

≤ C1(dn + dn+1), n ∈ N, (6.26)

where

M = lim inf
n→∞

sinh(dn
√
qn), M1 = lim sup

n→∞
coth(dn

√
qn). (6.27)

(iii) There exists a positive constant C2 > 0 such that

αn +
√
qn

(
M2 −

rn
Mrn−1

)
+
√
qn+1

(
M2 −

rn
Mrn+1

)

≥ −C2(dn + dn+1), n ∈ N, (6.28)

where

M = lim inf
n→∞

sinh(dn
√
qn), M2 = lim inf

n→∞
coth(dn

√
qn). (6.29)

Then the operator HX,α,q is self-adjoint in L2(R+).

Proof. (i) Applying the Dennis–Wall test ( [1, p. 25, Problem 2]) to
matrix (6.15), we obtain that the condition

∞∑

n=1

|αn +
√
qn coth(dn

√
qn) +

√
qn+1 coth(dn+1

√
qn+1|
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×sinh(dn
√
qn) sinh(dn+1

√
qn+1)√

qn
√
qn+1

rn−1rn+1 = ∞ (6.30)

yields self-adjointness of the minimal operator BX,α,q associated with
(6.15).

Obviously,

|αn +
√
qn coth(dn

√
qn) +

√
qn+1 coth(dn+1

√
qn+1)|

×sinh(dn
√
qn) sinh(dn+1

√
qn+1)√

qn
√
qn+1

≥ (|αn| − |√qn coth(dn
√
qn) +

√
qn+1 coth(dn+1

√
qn+1)|)

×sinh(dn
√
qn) sinh(dn+1

√
qn+1)√

qn
√
qn+1

.

(6.31)

Since sinh(x) > x, x > 0, we get

|αn|
sinh(dn

√
qn) sinh(dn+1

√
qn+1)√

qn
√
qn+1

≥ |αn|dndn+1. (6.32)

Condition (6.24) implies that

|√qn coth(dn
√
qn) +

√
qn+1 coth(dn+1

√
qn+1)|

×sinh(dn
√
qn) sinh(dn+1

√
qn+1)√

qn
√
qn+1

≤ sinh(2c2)

2c1
(dn + dn+1) . (6.33)

Since {dn}∞n=1 ∈ l2, from the latter we get

∞∑

n=1

|√qn coth(dn
√
qn) +

√
qn+1 coth(dn+1

√
qn+1)|

×sinh(dn
√
qn) sinh(dn+1

√
qn+1)√

qn
√
qn+1

<∞. (6.34)

Combining (6.31)–(6.32) with (6.34) we get, that relations (6.25) and
(6.30) are equivalent. By Theorem 6.4, HX,α,q = H∗

X,α,q.

(ii) − (iii) Applying [6, Theorem VII.1.4] (see also [1, Problem 3,
p. 37]) to the Jacobi matrix (6.15), we obtain that conditions

−
√
qn

sinh(dn
√
qn)rn−1rn

+
1

r2n

(
αn +

√
qn coth(dn

√
qn)

+
√
qn+1 coth(dn+1

√
qn+1)

)
−

√
qn+1

sinh(dn+1
√
qn+1)rnrn+1

≤ C1

(6.35)
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and

−
√
qn

sinh(dn
√
qn)rn−1rn

− 1

r2n

(
αn +

√
qn coth(dn

√
qn)

+
√
qn+1 coth(dn+1

√
qn+1)

)
−

√
qn+1

sinh(dn+1
√
qn+1)rnrn+1

≤ C2

(6.36)

guarantee self-adjointness of BX,α,q. Since dn
√
qn is bounded , then,

using conditions (6.27) and (6.29), we easily get conditions (6.26) and
(6.38). Theorem 6.4 completes the proof.

Corollary 6.12. Let the assumptions of Proposition 6.11 be satisfied. If,
in addition, lim

n→∞
dn

√
qn = 0, then conditions (6.26)–(6.38) are equivalent

to

αn +
1

dn

(
1 +

rn
rn−1

)
+

1

dn+1

(
1 +

rn
rn+1

)
≤ C1(dn + dn+1), n ∈ N

(6.37)
and

αn+
1

dn

(
1− rn

rn−1

)
+

1

dn+1

(
1− rn

rn+1

)
≥ −C2(dn+ dn+1), n ∈ N,

(6.38)
respectively.

Example 6.13. Let dn := 1
n , n ∈ N. Consider the operator

HA := − d2

dx2
+ q(x) +

∞∑

n=1

αnδ(x− xn). (6.39)

Clearly, {dn}∞n=1 ∈ l2, i.e., condition (6.16) is violated. Applying Propo-
sitions 6.8 and 6.11, after direct calculations we obtain:

(i) If
∑∞

n=1
|αn|
n3 = ∞, then the operator HA is self-adjoint (cf. Propo-

sition 6.11 (i)).

(ii) If αn ≤ −2(c2M1 + c2
M )n − (c2M1 + c2

M ) + O(n−1), then HA is
self-adjoint (cf. Proposition 6.11 (ii)).

(iii) If αn ≥ −K
n , n ∈ N, K ≡ const > 0, then HA is self-adjoint (cf.

Proposition 6.11 (iii)).

(iv) If αn = −(
√
qn+

√
qn+1)+O(n−ε), then n±(HA) = 1 (cf. Proposition

6.8).
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6.3. Operators with discrete spectrum

Theorem 6.14. Assume Hypothesis 1. Let BX,α,q be the minimal Jacobi
operator defined either by (6.3) or (6.15).

(i) If n±(BX,α,q) = 1, then any self-adjoint extension of HX,α,q has dis-
crete spectrum.

(ii) If BX,α,q = B∗
X,α,q, then the Hamiltonian HX,α,q(= H∗

X,α,q) has dis-
crete spectrum if and only if

• limn→∞ dn = 0 and

• BX,α,q has discrete spectrum.

Proof. 1) To be precise, letBX,α,q be defined by (6.3). Since n±(BX,α,q) =
1, any self-adjoint extension of BX,α,q has discrete spectrum (see [1, 6]).
Moreover, by Corollary 6.7, limn→∞ dn = 0. Hence the operator H0 de-
fined by (5.35) has discrete spectrum too. The Krein resolvent formula
(2.9) implies that any self-adjoint extension of HX,α,q is discrete.

2) It follows from Theorem 5.5 (iv) and Remark 5.6.

Proposition 6.15. Assume Hypothesis 1. Let the operator BX,α,q de-
fined by (6.15) be self-adjoint, and let limn→∞ dn = 0. Assume also that
αn < 0 and exist

lim inf
n→∞

sinh(dn
√
qn) = C, lim sup

n→∞
coth(dn

√
qn) = C2 > 0, (6.40)

and also

lim
n→∞

∣∣αn + C2(
√
qn +

√
qn+1)

∣∣
(
dn + dn+1

) = ∞,

lim
n→∞

qn+1C
−2 (αn + C2(

√
qn + c

√
qn+1))

−1

× (αn+1 + C2(
√
qn+1 + c

√
qn+2))

−1 <
1

4
.

(6.41)

Then the operator HX,α,q has purely discrete spectrum.

Proof. Applying [10, Theorem 8] to the Jacobi matrix BX,α,q of the form
(6.15) we get sufficient conditions for the discreteness of spectrum:

lim
n→∞

1

r2n

(
αn +

√
qn coth(dn

√
qn) +

√
qn+1 coth(dn+1

√
qn+1

)
= ∞ (6.42)
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and

lim
n→∞

qn+1 sinh
−2(dn+1

√
qn+1)

× (αn +
√
qn coth(dn

√
qn) +

√
qn+1 coth(dn+1

√
qn+1))

−1×

(αn+1 +
√
qn+1 coth(dn+1

√
qn+1) +

√
qn+2 coth(dn+2

√
qn+2))

−1 <
1

4
.

(6.43)
Since αn < 0, then, taking into account that dn

√
qn is bounded, we

get that conditions (6.42) and (6.43) are equivalent to (6.40) and (6.41),
respectively. And since limn→∞ dn = 0, by Theorem 6.14 so is HX,α,q.

Remark 6.16. If HX,α,q is semibounded operator, in particular, if αn >
0, then claim of the Proposition 6.15 follows immediately from analogous
classical A. M. Molchanov discreteness criterion (see [4]).

Proposition 6.17. Assume Hypothesis 1, and assume that limn→∞ dn =
0 and dn

√
qn → 0 as n → ∞. Let also the operator BX,α,q defined by

(6.3)–(6.4) be self-adjoint. If the following conditions are satisfied:

lim
n→∞

∣∣∣∣
αn−1

dn
+ qn

∣∣∣∣ = ∞, lim
n→∞

1

dn(αn + qn+1dn+1)
> −1

4

and lim
n→∞

1

dnαn−1
> −1

4
, (6.44)

then the operator HX,α,q has discrete spectrum.

Proof. Apply [10, Theorem 8] to the operator B′
X,α,q of the form (6.6).

We prove the statement in at least two steps.

At first, we consider the case bn = b2k−1 and an = a2k−1. We obtain
the following sufficient conditions for the discreteness of spectrum of
B′

X,α:

lim
k→∞

∣∣∣∣
αk−1

dk
+ qk

∣∣∣∣ = ∞ and lim
k→∞

1

dkαk−1
> −1

4
. (6.45)

Similarly, if bn = b2k and an = a2k, we obtain

lim
k→∞

∣∣∣∣
1

d2k

∣∣∣∣ = ∞ and lim
k→∞

1

dk(αk + qk+1dk+1)
> −1

4
. (6.46)

Since limn→∞ dn = 0 and qn is unbounded, then the conditions (6.45)–
(6.46) are equivalent to (6.44). Theorem 6.14 completes the proof.
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Remark 6.18. In the case of q ∈ L∞(R+), Proposition 6.17 was ob-
tained in [21].

Corollary 6.19. Let the assumptions of Proposition 6.17 be satisfied.
Assume that αn + qn+1dn+1 < 0 and the following conditions are met:

lim
n→∞

1

dn(αn + qn+1dn+1)
> −1

4
and lim

n→∞
1

dnαn−1
> −1

4
.

(6.47)
Then the operator HX,α,q has discrete spectrum.

Proof. If αn + qn+1dn+1 < 0, then the condition

lim
n→∞

1

dn(αn + qn+1dn+1)
> −1

4

implies the relation

|αn + qn+1dn+1| >
4

dn
.

Combining the latter with the condition limn→∞ dn = 0, one gets

lim
n→∞

∣∣∣∣
αn−1

dn
+ qn

∣∣∣∣ = ∞.

In this case conditions (6.44) are reduced to (6.47).

Remark 6.20. Note that if αn + qn+1dn+1 > 0, then the condition
limn→∞ 1

dn(αn+qn+1dn+1)
> −1

4 in (6.44) is automatically satisfied and
can be omitted.

6.4. Resolvent comparability

Proposition 6.21. Assume Hypothesis 1. Suppose also that HX,α,q and
HX,α̃,q are self-adjoint, and BX,α,q and BX,α̃,q are the corresponding (self-
adjoint) Jacobi operators defined either by (6.3) or (6.6). Then for any
p ∈ (0,∞] the inclusion

(HX,α,q − z)−1 − (HX,α̃,q − z)−1 ∈ Sp (6.48)

is equivalent to the inclusion

(BX,α,q − i)−1 − (BX,α̃,q − i)−1 ∈ Sp. (6.49)

Proof. From Theorem 2.5 we get the result with BX,α,q and defined by
(6.6). The result with the matrices defined by (6.3) is implied by Propo-
sition 6.1.
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Corollary 6.22. Assume Hypothesis 1. If
{

αn−α̃n
dn+1

}∞

n=1
∈ lp, p ∈ (0,∞)

(∈ c0, p = ∞), then inclusion (6.48) holds.

Proof. Note that the condition BX,α̃,q −BX,α,q ∈ Sp is sufficient for the
inclusion (6.48) to hold. Clearly, l20 ⊂ dom(BX,α,q)∩dom(BX,α̃,q). On the
other hand, for any f ∈ l2,0, (6.5) yields the inclusion (BX,α̃,q−BX,α,q) ∈
Sp , i.e.,

BX,α̃,qf −BX,α,qf = R−1
X

(
B̃α̃ − B̃α

)
R−1

X f = ⊕∞
n=1

(
αn−α̃n
dn+1

0

0 0

)
f

for all finite sequences f ∈ l2(N). Hence due to the assumption, Corollary
6.22, we getBX,α̃,q −BX,α,q ∈ Sp ⊂ [H] and dom(BX,α,q) = dom(BX,α̃,q).
It remains to apply Proposition 2.5. Finally, Proposition 6.21 completes
the proof.

Proposition 6.23. Assume Hypothesis 1. Let also d∗ <∞. If

∞∑

n=1

|αn|
dn+1

<∞, (6.50)

then

σac(HX,α,q) = σac(HX,0,q). (6.51)

If, in addition q(·) ∈ L1(R+), then σac(HX,α,q) = R+.

Proof. Applying Corollary 6.22 for p = 1 to the Hamiltonians HX,α,q

and HX,0,q and using (6.50), we get that inclusion (6.48) holds. Now the
result is implied by the Kato-Rozenblum theorem (cf. [32, Theorem XI.9])
we prove the claim.

If q(·) ∈ L1(R+), then σac(HX,0,q) = R+. Hence,

σac(HX,α,q) = σac(HX,0,q) = R+.

Remark 6.24. In the case of q ∈ L∞(R+), Proposition 6.23 was estab-
lished in [4].

Example 6.25. Let x0 = 0,

xn :=

{
k, n = 2k − 1,

k + 1
k3
, n = 2k,

k ∈ N, (6.52)
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and let

dn :=

{
1− 1

(k−1)3
, n = 2k − 1,

1
k3
, n = 2k,

k ∈ N. (6.53)

Set

q(x) :=

{
k, x ∈ [x2k−1, x2k],
0, otherwise,

k ∈ N. (6.54)

Consider the minimal symmetric operator HX,α,q associated with (1.1)
in L2(R+).

Define

qn(x) :=

{
k, n = 2k,
0, n = 2k − 1.

k ∈ N. (6.55)

In addition, suppose that

∞∑

k=1

(
k3α2k−1 + α2k

)
<∞.

Since dn and qn(·) satisfy Hypothesis 1 and q(·) ∈ L1(R+), Proposition
6.23 immediately yields

σac(HX,α,q) = R+. (6.56)
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