- 10. ДСТУ БВ.2.7–37–95. Строительные материалы. Плиты и изделия из природного камня. Технические условия. Введ. 01.01.96.
- 11. Кудрявцев Е. М. Mathcad 2000 Pro. М.: AMK, 2001. 572 с.
- 12. Кирьянов Д. В. Mathcad 13. СПб.: БВХ-Петербург, 2006. 590 с.

Поступила 29.05.12

УДК 679.8; 621.923

В. В. Пегловский, канд. техн. наук, В. И. Сидорко, д-р техн. наук, В. Н Ляхов

ГП ИПЦ «Алкон» НАН Украины, г. Киев

ЗАВИСИМОСТЬ ПРОИЗВОДИТЕЛЬНОСТИ АЛМАЗНОЙ ОБРАБОТКИ ГОРНЫХ ПОРОД ОТ ПРОЧНОСТИ СИНТЕТИЧЕСКИХ АЛМАЗОВ АЛМАЗОНОСНОГО СЛОЯ ИНСТРУМЕНТА

В результате проведенных экспериментальных исследований влияния прочности синтетических алмазов в рабочем слое камнеобрабатывающего инструмента на производительность шлифования различных горных пород, определены значения поправочных коэффициентов, позволяющих учитывать это влияние.

Ключевые слова: обработка, горные породы, алмазный инструмент, производительность шлифования, алмазоносный слой, марка синтетических алмазов.

Введение

При алмазной обработке природных камней (горных пород и минералов), изготовлении строительных, производственно-технических и декоративно-художественных изделий из них, определении технико-экономических показателей (например, трудоемкости) изготовления этих изделий [1-3] необходимо знать, как соотносятся основные параметры алмазоносного слоя инструмента (марка синтетических алмазов, вид связки, размер зерна алмазного порошка и концентрация алмазов в алмазоносном слое) с производительностью обработки камня.

Цель настоящего исследования — определить взаимосвязь прочностных свойств синтетических алмазов алмазоносного слоя камнеобрабатывающего инструмента и производительностью шлифования горных пород и минералов.

Методика исследований

Известно, что в камнеобработке, как правило, используют высокопрочные синтетические алмазы. Марки применяемых алмазов, для технологических операций резания (распиловки), чернового шлифования и формообразования находятся в диапазоне AC15-AC100. Это связано с высокими прочностными свойствами (твердостью) природного камня и вследствие этого высокой трудоемкостью его обработки. Марки алмазов ниже AC15 в камнеобработке для резки (распиловки), формообразования и шлифования в инструменте с металлическими связками, как правило, не используют.

Синтетические алмазы этих марок делятся на 4 группы в зависимости от прочностных свойств зерен алмазного порошка и геометрической формы (габитуса) алмазных зерен [4, 5].

Известно, что номер марки алмазов приблизительно определяет значение предела прочности отдельных алмазных зерен синтетического алмазного порошка при их статическом сжатии. Эти значения для нескольких марок алмазных порошков зернистостей 200/160 и 160/125 приведены в табл. 1 [4], где также приведены некоторые геометрические характеристики алмазных зерен этих марок синтетических алмазов. Причем для зернистости алмазов 200/160 прочностные значения соответствуют их марке.

Таблица 1. **Прочность и характеристики зерен синтетических алмазов** различных марок

Марка алмазов	AC15-AC20	AC32-AC50	AC65-AC80	AC100
Прочность для порошков зернистостью 200/160, Н	15,0 – 20,0	36,0 – 50,0	65,0 – 79,0	99,0
Прочность для порошков зернистостью 160/125, Н	13,0 – 17,0	30,0 – 41,0	54,0 – 67,0	83,0
Характеристика	Зерна алмазов представлены агрегатами, сростками и удлиненными кристаллами с коэффициентом формы зерен от 1,3 до 3,0	Зерна алмазов представлены кристаллами, сростками и агрегатами с коэффициентом формы зерен не более 1,2	Зерна алмазов представлены кристаллами, сростками и агрегатами с коэффициентом формы зерен 1,1—1,2	Зерна алмазов представлены кристаллами, сростками с коэффициентом формы зерен не более 1,1

Таким образом, прочностные свойства алмазов выбранных марок существенно отличаются. Кроме того, режущие свойства синтетических алмазов, предположительно определяются и их геометрической формой (габитусом).

На рис. 1 представлены сканированные изображения навески синтетических алмазов (\approx 5 ct) марок AC20 и AC100 (a, δ) зернистостью 400/315, а также увеличенные изображения их отдельных зерен (s, ε).

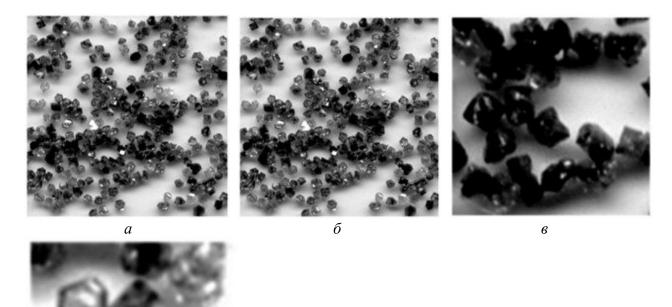


Рис. 1. Внешний вид синтетических алмазов размеров 400/315 марок: a, в – AC20; б, ε – AC100

Из рис. 1 видно, что с зерна алмазов марки AC20 (a, b) имеют более развитую пространственно форму, в то время, как зерна алмазов марки AC100 (b, c) имеют геометрическую форму, приближенную к наиболее часто встречающимся формам алмазов додекаэдру, октаэдру или кубу [b, b].

Кроме того в общей массе алмазных зерен в марке AC100 (б) число прозрачных алмазных зерен больше чем в алмазном порошке марки AC20 (а), а прозрачность и цвет являются важными диагностическими признаками камней.

Таким образом, в процессе шлифования природных камней возможно пересечение влияний двух противоположных эффектов. С одной стороны возрастание прочности синтетических алмазов (увеличение значения марки) предположительно должно приводить к возрастанию производительности шлифования. С другой стороны, геометрическая развитость формы алмазов меньшей прочности также может способствовать росту производительности обработки.

Проверить какое из влияний окажется превалирующим можно, прежде всего путем проведения экспериментальных исследований. Для проведения таких исследований были отобраны 15 видов природных камней, условно объединенных в группы в зависимости от особенностей их химического и минералогического состава (таб. 2).

Таблица 2. Виды исследуемых горных пород, особенности их химического и минералогического состава

Группа. Виды горных пород,	Основные породообразующие и прочие		
месторождение, происхождение или	минералы. Особенности химического		
торговая марка	состава горных пород		
Мраморный оникс медовый. Иран (1). Мраморный оникс зеленый. Пакистан (2). Мрамор белый. «Каррара». Италия (3)	Карбонаты (кальцит, доломит). Содержание SiO_2 до 20 %		
Мрамор бежевый Турция (4). Лазурит. Россия (5). Мрамор «Имперадор». Турция (6)	Карбонаты (кальцит, доломит), лазурит, кварц и др. Содержание SiO ₂ до 40 %		
Чароит. Россия (7). Родонит. Россия (8). Габбро. Украина (9)	Силикаты (анортит, родонит, чароит), кварц и др. Содержание SiO ₂ до 60 %		
Гранит Жежелевский. Украина (10). Гранит. Покостовский. Украина (11). Жадеит. Россия (12)	Силикаты (ортоклаз, микроклин, жадеит), кварц и др. Содержание SiO ₂ до 80 %		
Кварц морион (13). Кварцит (14). Кварц льдистый (15). Все – Украина.	Минералы группы кварца с примесями. Содержание SiO ₂ более 80 %		

Для проведения исследований были изготовлены несколько видов алмазного инструмента, характеристики которого представлены в табл. 3. Причем из каждой группы алмазов, используемых при обработке камня, было выбрано по одной их марке. Для экспериментальных исследований использовались синтетические алмазы зернистости 160/125 (примерно средний размер зерен из диапазона размеров, используемого при черновом шлифовании природного камня).

Таблица 3. Характеристики используемого инструмента

Наименование	Характеристика алмазоносного слоя	Твердость HRB	
1. A∋ Ø40×5	AC15 160/125-100 M 6-15	83 – 84	
2. Тоже	AC32 160/125-100 M 6-15	84 - 85	
3	AC65 160/125-100 M 6-15	90	
4	AC100 160/125-100 M 6-15	86 – 87	

Указанные виды инструмента отличались друг от друга только маркой синтетических алмазов алмазоносного слоя. В табл. 3 также приведены данные по твердости используемой связки, в качестве которой выбрали связку – M6-15 [8, 9].

Исследования проводили в соответствии со способом определения обрабатываемости природных камней [10] с применением шлифовально-полировального станка марки ЗШП-320.

Технологические параметры экспериментальных исследований приведены в табл. 4.

Таблица 4. Технологические параметры экспериментальных исследований

Технологический параметр	Единица измерения	Значение	
Частота вращения шпинделя	об./мин	97	
Частота двойных ходов поводка	дв. ходов/мин	48	
Усилие прижима	Н	330	
Параллельное смещение штриха	MM	0	
Перпендикулярное смещение штриха	MM	20	
Длина штриха	MM	30	

Результаты исследований обрабатывали известными методами [11, 12].

Результаты

На рис. 2 в качестве примеров показаны зависимости производительности шлифования некоторых из исследуемых видов горных пород (1–3 групп) от прочности алмазов алмазоносного слоя. Все зависимости аппроксимированы линейными функциями вида $Y = \kappa X + b$, где κ , b – коэффициенты регрессии.

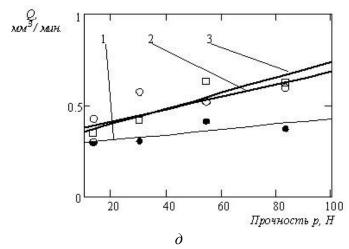


Рис. 2. Зависимости производительности шлифования горных пород от прочности алмазов: a – первой группы: 1, 2 – мраморные ониксы (1, 2), 3 – мрамор (3); 6 – второй группы: 1, 3 – мраморы (4, 6), 2 – лазурит (5); 6 – третьей группы: 1 – чароит (7), 2 – родонит (8), 3 – габбро (9)

Из рис. 2 видно, что для всех 9 исследованных видов природных камней, которые отличаются химическим и минералогическим составом, физико-механическими свойствами и производительностью обработки с возрастанием прочностных свойств синтетических алмазов производительность шлифования значительно увеличивается.

В табл. 5 представлены данные о коэффициентах регрессий зависимостей показанных на рис. 2 и в табл. 2, а также средних ошибках аппроксимации.

Таблица 5. Значения коэффициентов регрессий и средних ошибок аппроксимации

№	Haarawaayaayaayaa	Значения	Значения	Ошибка
Π/Π	Исследуемые материалы,	k	b	Δ , %
1	Мраморный оникс. Иран	3,68	250	9
2	Мраморный оникс. Пакистан	5,17	160	19
3	Мрамор белый. Италия	2,90	159	19
4	Мрамор бежевый. Турция	0,557	78,6	6
5	Лазурит. Россия	2,40	92,7	12
6	Мрамор «Имперадор». Турция	1,24	47,6	6
7	Чароит. Россия	0,011	0,87	8
8	Родонит. Россия	0,187	12,7	7
9	Габбро. Украина	0,106	5,56	15
10	Гранит Жежелевский. Украина (3.11)	0,010	0,859	24
11	Гранит Покостовский. Украина	0,013	0,638	18
12	Жадеит. Россия	0,019	2,38	15
13	Кварц морион. Украина	1,48×10 ⁻³	0,280	7
14	Кварцит. Украина	3,37×10 ⁻³	0,347	15
15	Кварц льдистый. Украина	4,26×10 ⁻³	-0,313	8

Из табл. 5 следует, что средняя ошибка аппроксимации по всем 15 видам камней составляет примерно 12 %, что объективно подтверждает сделанные выводы.

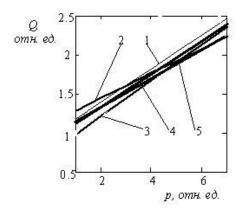


Рис. 3. Обобщенные зависимости производительности шлифования природных камней от прочности алмазов алмазоносного слоя в относительных величинах для камней 1–5 групп

Обобщенные зависимости производительности шлифования природных камней каждой из рассматриваемых групп в относительных величинах показаны на рис. 3.

Коэффициенты регрессий и средние ошибки аппроксимаций для обобщенных относительных зависимостей каждой из групп камней представлены в табл. 6.

Исходя из выражения связывающего производительность шлифования и прочностные свойства синтетических алмазов по исследованным видам камней, с учетом имеющихся данных по

другим видам камней, можно определить рекомендуемые (ориентировочные) поправочные коэффициенты (K_M), для оценки производительности шлифования природных камней при их обработке алмазным инструментом, в алмазоносном слое которого использованы различные марки алмазного порошка при прочих равных условиях.

Таблица 6. Значения коэффициентов регрессий и средних ошибок аппроксимаций для каждой группы камней в относительных величинах

Изананузми за прушну и камизй	Значения	Значения	Ошибка
Исследуемые группы камней	k	b	Δ , %
1 группа	0,226	0,857	22
2 группа	0,227	0,859	20
3 группа	0,186	0,925	14
4 группа	0,173	1,031	17
5 группа	0,160	1,017	19

В табл. 7 представлены значения этих коэффициентов для алмазов тех марок, которые наиболее часто используются в камнеобработке.

Таблица 7. Значения поправочных коэффициентов при расчете производительности шлифования ПК для синтетических алмазов разных марок

Грудура	Значения К _М						
Группа, марка алмазов	1		2		3		4
	AC15	AC20	AC32	AC50	AC65	AC80	AC100
Значения коэффициентов	1,0	1,05	1,22	1,37	1,54	1,88	1,92

Выводы

Таким образом, производительность шлифования природных декоративных и полудрагоценных камней (горных пород и минералов) существенно зависит от прочности

(марки) алмазов алмазоносного слоя камнеобрабатывающего инструмента. Например, с повышением прочности синтетических алмазов от 13 до 83 Н производительность обработки возрастает примерно вдвое.

Возрастание производительности шлифования с увеличением прочности синтетических алмазов характерно для всех видов природных камней, разных групп, различающихся своим химическим и минералогическим составом, а также физикомеханическими свойствами.

На основании исследований более 20 видов природных камней впервые получены расчетные поправочные коэффициенты, которые могут быть использованы при сопоставлении и расчете производительности шлифования природных полудрагоценных и декоративных камней инструментом с различной прочностью алмазов алмазоносного слоя при одинаковых условиях.

Результаты исследований могут быть использованы при определении производительности шлифования на различных технологических операциях, а также при определении основных технологических параметров изготовления изделий из камня.

В результаті проведених експериментальних досліджень впливу міцності синтетичних алмазів в робочому шарі каменеобробного інструменту на продуктивність шліфування різних гірських порід, визначені значення поправочних коефіцієнтів, що дозволяють враховувати цей вплив.

Ключові слова: обробка, гірські породи, алмазний інструмент, продуктивність шліфування, алмазоносний шар, марка синтетичних алмазів.

As a result of the conducted experimental researches of influence of durability of synthetic diamonds in the working layer of камнеобрабатывающего instrument on the productivity of polishing of different mountain breeds, the values of correction coefficients, allowing to take into account this influence are certain.

Keywords: treatment, mountain breeds, diamond instrument, polishing productivity, working layer, brand of synthetic diamonds.

Литература

- 1. ТУУ 26.7-23504418-001:2007. Изделия камнерезные. Введ. 01.05.07.
- 2. ДСТУ Б В.2.7-37-95. Строительные материалы. Плиты и изделия из природного камня. Технические условия. Введ. 01.01.96.
- 3. ДСТУ Б В.2.7-16-95. Строительные материалы. Материалы стеновые каменные. Номенклатура показателей качества. Введ. 01.07.95.
- 4. ДСТУ 3292-95 Порошки алмазные синтетические. Введ. 01.01.95 г.
- Шлифпорошки синтетических алмазов ТУ У 28.5–05417377–072.2003.
- 6. A. E. Ферсман. Кристаллография алмаза. Л.; Изд. AH СССР, 1955. 568 с.
- 7. Физические свойства алмаза / Под. ред. Новикова Н. В. К.; Наукова думка, 1987. 190 с.
- 8. Связки металлические СТП 90.502-85. Введ. 01.09.85.
- 9. Связки металлические СТП 90.877-83. Введ. 01.01.83.
- 10. Пат. 90330 Україна, МПК (2009). B28D 1/00, Спосіб визначення оброблюваності каменю / В. І. Сидорко, В. В. Пегловський, В. Н. Ляхов, О. М. Поталико. Заявл. 21.02.08; Опубл. 24.04.10, Бюл. № 8.
- 11. Кудрявцев Е. М. Mathcad 2000 Pro. М.: AMK, 2001. 572 с.
- 12. Кирьянов Д. В. Mathcad 13. СПб.: БВХ-Петербург, 2006. 590 с.

Поступила 29.05.12.