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Novel molecular complexity measures are designed based on the quantum molecular
kinematics. The Hamiltonian matrix constructed in a quasi-topological approximation
describes the temporal evolution of the modelled electronic system and determines the time
derivatives for the dynamic quantities. This allows to define the average quantum kine-
matic characteristics closely related to the curvatures of the electron paths, particularly,
the torsion reflecting the chirality of the dynamic system. A special attention has been
given to the computational scheme for this chirality measure. The calculations on realistic
molecular systems demonstrate reasonable behaviour of the proposed molecular complexity
indices.

IIpennosxeHbl HOBBIE HHAEKCHI CJIOMKHOCTH MOJIEKYJ, OCHOBAHHBIE HA HUAEIX MOJEKYJISAP-
HOI KBAaHTOBOU KMHeMaTHKHU. Marpuia raMuJIbTOHHAHA, [IOCTPOEHHAA B HEKOTOPOM KBa3UTO-
HOJIOTUYECKOM HPUOJIMIKEHNN, OIPEeIe/iseT BPEMEeHHYI0 DBOJIOINUIO0 MOLEJIBHON 3JeKTPOHHON
CHUCTEMBI W COOTBETCTBYIOI[ME IIPOM3BOJHBLIC AHMHAMUYECKHX BeauuuH. [logxon MmosBoiser
33/IaTh CPeJHNE KBAHTOBble KMHEMATHUYECKHE XAPAKTEPUCTHUKU, TECHO CBA3AHHBIE C KPUBU-
3HAMH 9JIEKTPOHHBIX TPAE€KTOPHI, B YACTHOCTH, ¢ KPYYEHHEM, OTPAKAIOIINM XHPAJIbHOCTD
IuHaAMHU4ecKoil cucreMbl. Ocofoe BHMMAaHMNE yheasercd paspaboTKe aJropuTMa BbIYMCICHUN
WHIEKCA MOJIEKYJIAPHON XHPAJbHOCTU. PacueTbl KOHKPETHBIX CHCTEM IEeMOHCTPHPYIOT Da-
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3yMHO€ II0BeleHHe IPEAJOKEHHBIX HHIEKCOB MOJEKYJIAPHON CJIOKHOCTH.

Introduction

It is commonly accepted that a consistent
approach for treating molecular structures
should rest on the quantum-mechanical
foundation. In reality, however, molecules
function under complicated conditions
caused by the environment that has its own
complex structure (even if temperature ef-
fects, etc. are neglected). Molecular sys-
tems, especially the ones involved in bio-
processes, are tremendously large and en-
tangled. Even a simplified description of
them is a very difficult problem and the use
of crude models of the chemical structure is
inevitable in their applications to the mo-
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lecular informatics problems related to the
new materials design. Among these models
the geometrical and topological approaches
are very popular and practically fruitful
[1-8] (see also excellent reviews on develop-
ments of the molecular chirality problems
in [9-13]). The fundamental results re-
ported in [12, 18] are worth noting. There
the existence of the chirality is proved for
the molecular graphs in the form of rigor-
ous mathematical theorems (the topological
chirality theory). Nevertheless, pure topo-
logical models give too simplified quantita-
tive descriptions that may result in the so-
called isomer degeneracy of the numerical
characteristics calculated [1].
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It is interesting to note that the first
topological description appeared as a result
of an extension of the m-electron Hueckel
MO method to general molecular structures.
Since then the internal connection of the
topological approach to the quantum-chemi-
cal foundation has been lost and numerous
new discrimination indices emerge (see, for
example [4]).

However, more sophisticated approaches
for the large-scale molecular systems are
required. In molecular informatics the new
schemes of such intermediate level of treat-
ment are worth to be developed in order to
include subtle structural chemical effects.
The same is true for the so-called molecular
complexity problem, which is inherently
even more difficult.

Our (as many other researchers’) interest
in quantifying chemical complexity was
stimulated by the works of Bertz [14, 15]
(see also his recent paper [16]). Even
though there were many discussions of the
complexity measures in cybernetics [17],
mathematical biology [18], and dynamic
chaos theory [19] before, Bertz was the first
who considered specifically the complexity
of the chemical structures and chemical re-
actions. He correctly used the conventional
Shannon entropy for the relevant molecular
graphs in his study. However, such an ap-
proach oversimplifies the whole problem as
all topological approaches do. For example,
the conventional approach does not take
into account the molecular chirality and there
were attempts to eliminate this drawback
using the graph theory methods [4, 20].

Correct quantification of the molecular
chirality is too difficult problem that can-
not be solved within the schemes that ig-
nore the conformational (real geometry) and
electronic levels of treatment. That is why we
started ab ovo treating the problem at the
electron level of description from the start.

Quantum mechanics permits an intuitive
visualisation within the so-called Feynman
formulation dealing with a set of electronic
paths (trajectories). This is also a feature
of the Bohmian approach to quantum me-
chanics (see [21] for a numerical implemen-
tation and an illustrative example). Thus,
with our problem in mind we should first
describe the electron path complexity. For
this we have to choose the characteristics
that can be considered as usual dynamic
quantities because the latter can be easily
converted into the quantum-mechanical op-
erators. As we have shown [22] the differ-
ential geometry description of the curves,
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i.e. the electron kinematics, can be effi-
ciently used for this purpose.

In [22, 23] the Hueckel-like Hamiltonian
was used for generating the electron dy-
namics and in practice it did not give very
reliable description. In this paper we im-
prove our computational scheme using the
refined quantum dynamics and introducing
new molecular complexity measures. It al-
lows us to present a more general treatment
of the geometrical and electronic complexity
of the molecular systems. Computations
using specific structural classes of mole-
cules demonstrate a reasonable behaviour of
the complexity measures proposed in this
study.

1. Differential-geometry description of
the electron movement

Main differential invariants of a space
curve. Any spatial curve can be locally char-
acterized by its arc length s (the so-called
natural parameter of the curve) and two
differential quantities termed the curvature

(the first curvature) k; and the torsion (the
second curvature) k,. Let us introduce the
moving trihedron {t,v,f} as a local basis set
at a given point r=r(s) (see [24]). Here

T=r (D)

is a unit tangent vector at point r, and the
unit vector v is the corresponding normal
vector defined as

//|

v=1v/W=r"/|r

With this the binormal vector is deter-
mined by
B=TAvV,
where A symbolizes the vector (cross) prod-
uct. It is shown in differential geometry
that the moving trihedron satisfies the
Frenet differential equations:

T =KV,

’

V= =T + Kof,
B = —xyv.

It is more convenient to assign an arbi-
trary parameter ¢ to a curve r=r(¢) that
determines the curve. In the mechanical (ki-
nematical) interpretation of the curve the
parameter ¢ can be considered as usual
time. Then the explicit expressions for the
curvatures are of the form

Ky = A ]/, )
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Ko= @ AF) P /[E T3 3)

where dots denote differentiation with re-
spect to time.

The following properties of the curva-
tures are important. The curvature x; de-
termines the deviation of the curve from a
tangential straight line at the point r, and
the curvature k, characterises the deviation
of the curve from the plane. In other words,
K; is a measure of the two-dimensionality
whereas K, is a measure of the three-dimen-
sionality of the trajectory. Lastly, a total
length L of the trajectory confined between
two points rg=r(f,) (a starting point) and
r = r(t) is given by the integral

¢ (4)
L = [le)dt.

to

This quantity can be thought of as a
measure of "out-of pointness”. Thus, we can
consider the standard quantities (2)—(4) as
differential-geometrical measures of the
trajectory complexity at three levels of
treatment.

Quantum counterparts of the differential
invariants. Let us now turn to the quantum
mechanical treatment of the differential ge-
ometry invariants considered above. Evi-
dently, the momentum p as the dynamic
quantity for one electron is equivalent to r
if atomic units are used (the electron mass
is equal to one). Thus, we have the relations

A S (5)
For example, Eq.(4) takes the form

f ©)
L = [lplat

to

and the analogous reformulation is obvious
for the other quantities (2), (3). Note that
up to a factor the integral (6) is a time-av-
eraged value of the absolute momentum
<|p/>ime- Similar time-averaged quantities
can be defined for (2), (3) [23]. It is essen-
tial that only the time-averaged quantities
<A>, .. are counterparts of the quantum
mechanical average values <A>y where A is
a hermitian operator corresponding to a
given dynamic quantity A.

Unfortunately, the direct use of the dy-
namic quantities (2), (3) in quantum me-
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chanics involves difficulties due to the pos-
sible singularities caused by the denomina-
tors in (2), (8). For this reason, following
the approach taken in [22, 23] we use the
numerators reflecting the principal differ-
ential properties of the electronic paths.
Taking into account Eqs.(5) and (2), (3) we
can thus define three main hermitian opera-
tors relevant to three complexity levels

Ok = |P|, (7

1K=%|PAP—P/\P|, ®)

2K=i(P/\I.’—l-)/\P)-l-).+h.c., ©)

where P is a momentum operator for one
electron and h.c. denotes the hermitian con-
jugation terms. In (7), (8) the symbol | |
signifies a modulus in the vector sense,
same as in the operator sense. In particular,
0K as the operator modulus of the vector-
operator P = (Px,Py,PZ) is computed as

0K = (P2 + P2+ P31/2, (10)

where nonnegative squared root of the op-
erator expression is conventionally defined
in linear algebra (see e.g. [25]). Operators
iK presented in (7)—(9) are termed the cur-
vature operators of the order i.

Let us now define the average values for
the curvature operators, that is the quanti-
ties

<K>, i=0,1,2. (11)

Here the symbol of the form <O> denotes
the quantum mechanical averaging with re-
spect to a many-electron stationary state of
the molecule, specifically

<6> = Trép (12)

with p being the usual spinless one-electron
density matrix of the considered many-elec-
tron state.

What is left for a complete formal treat-
ment is to provide the rules that determine
the quantum counterparts of the time de-
rivatives (5). Because all the operators used
correspond to the one-electron dynamical
quantities, one can apply the Erenfest quan-
tum equations, such as

P = -i[#,R], P=-i[h,P], P =-i[h,P].(13)

Here R is the position operator associ-
ated with r, 2 is the molecular one-electron

57



AV.Luzanov, D.Nerukh /| Complexity and chirality ...

Hamiltonian as a generator for the time
evolution.

Interpretation of the indices. It is essen-
tial that the average (12) possesses the so-
called additive separability. That is for a
system AB composed of two isclated parts A
and B the quantity (12) is additive:

<0>, p=<0>4 + <O>p. (14)

In quantum chemistry this property is
only realized for the size-consistent elec-
tronic models. Therefore, within the differ-
ential geometry description of the molecular
complexity the correct molecular indices are

<K> = TriKp, i=0,1,2. (15)

Here along with the quantities (15) an
additional complexity index is introduced:

<2K}> = Trl2K]p. (16)

In order to understand the difference be-
tween <2K> and <|2K[|> the known properties
of the triple scalar product should be taken
into account. The absolute value of the lat-
ter is equal to the volume of the parallele-
piped formed by the vectors in the product.
Thus, the index (16) can be considered as a
measure of the spatial movement of the
electrons in the molecule (the deviation of
the moving electrons, from a plane). Unlike
<2K> the indices <CK>, <1K> and (16) are
nonnegative scalar quantities, invariant
under the transformation of the 3-dimen-
tional physical space. As for <2K>, we can
identify this index with a pseudoscalar,
which remains invariant only under proper
transformations (pure rotations). Due to the
change of the sign with respect to improper
rotations and inversion, the index <2K> is
indeed a molecular chirality measure and
this fact was used in [22, 23] to design the
electron chirality indices. Clearly, this
index is nonzero for dissymmetrical molegu-
lar systems only, while the nonzero <|2K[>
values in general exist for all molecular
systems, even for atoms since in reality
electrons move in the 3-dimentional space.
However, for the topological (that is
Hueckel-like) and related models this index
naturally vanishes for the planar molecules
(see the following sections).

A general issue is worth to be raised in
connection with the chirality quantification.
When dealing with the extensive molecular
characteristics only, a proper extensive chi-
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rality measure should be devised. This in-
evitably leads to the important restriction:
such chirality index has to be a pseudosca-
lar. Indeed, let k¥ be such quantity satisfy-
ing additivity relation (14) for two non-in-
teracting subsystems A and B:

KAB= KA + KB.

If the subsystem B is taken to be a mir-
ror replica, A#, of the subsystem A then
Kaa™ = 0 for this "molecular racemate”, and
Ks# = —x, that determines x as a pseudosca-
lar. Most of the known geometrical chirality
indices (see [4]) being nonnegative do not
satisfy the extensitivity property that has
to do with somewhat artificial way of con-
structing them from the pure mathematical
considerations. Few of the existing chirality
measures are pseudoscalar quantities [26—
28] and even they are designed in a way
that prevents the additivity property.

Our other indices also allow a clear inter-
pretation. The index <!K> is nonvanishing
if the electron trajectories are not straight
lines on average. This index provides a
measure of the geometrical nonlinearity of
the electron shell in the molecule. It is ob-
vious that <OK> describes an effective
length of the electron shell. Indeed, in topo-
logical approximation this index, up to a
prefactor, coincides with the usual geomet-
rical length of the one-dimentional system
obtained by arranging its atoms equally
spaced on a chosen curve [22]. Thus, we
have obtained a description of the electron
shell complexity at three levels of the geo-
metrical description, namely as a linear,
plane and spatial object.

2. Computation schemes

In order to work out the method outlined
above in detail we must specify the matrix
representation for the main operators in-
volved in the scheme. Further we will not
distinguish operators from the associated
matrices. After [22, 28] a very simple ap-
proach will be used in this study. We take
into consideration only valence atomic orbi-
tals of s type thereby applying M-dimen-
sional basis set of AOs (M is a number of
atoms in the molecule under study).

By using the zero differential overlap ap-
proximation the coordinate matrix R can be
conveniently computed as a diagonal matrix
of the form [22]

R = 3], (17)

Functional materials, 12, 1, 2005
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where the set
{ru}]_SMSM (18)

is the atomic coordinates of the molecule.

The key point is an approximation of the
Hamiltonian matrix h. In [22, 23] we
treated the molecular electron shell as a
Hueckel-like dynamic system for which 2 is
identified with the adjacency matrix BP of
the relevant molecular graphs:

pgtop— | 1ifu and v are connected (19)
uv 0 otherwise )

However, this approximation neglects
the long-distance effects important for the
molecular chirality and this is a reason why
the computational scheme previously sug-
gested was not further developed.

In this work we use a different choice of
h by including long-distance as well as
short-distance effects described almost in
the same manner as in (19). This modified
scheme is named here as a quasi-topological
approximation. The idea for it is borrowed
from the semiempirical theory where many
ways exist for computing the resonance in-
tegrals matrix, i.e. the matrix B. For our
purposes the exponential approximation
used in [29] is most appropriate. The
adopted method is finally presented by the
formula

BHV =(CMV/|I.}L - rv|)4a (20)

Cuv = (CM + Cv)/z'

Parameters Cu depend on the atom types

only and have dimension of length, so the
whole expression (20) is dimensionless, as
well as (19). The diagonal elements BW are
defined to be zero. This scheme

h=B (21)

works well only for usual organic molecules
involving "light” hetercatoms B, N and O.
In the case of a system containing heavy
heteroatoms (S, P etc) the scheme should be
modified in order to produce reasonable val-
ues of the resonance integral matrix. In the
modified expression a damping factor is in-
roduced for every pair {u,v} containing the
heavy heteroatom:

By, — (Min[G,,{,]/ Max{(,,.{,)2B,,,. (20°)

The atomic parameters {, are the only
auxiliary quantities introduced in the com-
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putational scheme. At the same time the
results of the calculations critically depend
on the geometry. Therefore, the method for
obtaining the molecular geometry should
also be fixed and parameters CM must be
consistent with the molecular geometry
used.

Under the homogeneous dilation
(ru—> Qru) the complexity indices (13)
sharply decrease as

DK> 00 {78, <lK>00 (10, <2K> 00 (21,

This sensitivity of the indices can be ac-
cepted as reasonable since this automat-
ically leads to vanishing all the indices for
the complete dissociation (atomisation).
Note that in the proposed quasi-topological
approach atoms are naturally (in the struc-
tural chemistry context) endowed with the
zero values for all the complexity measures.

It is worth to note that while the matrix
h (21) is dimensionless the index <CK> has
the dimension of length. Analogously
<lK> hag the dimension of area, and
<|2K]>, <2K>, have the dimension of volume.
This suggests that along with the primary
complexity measures (15), (16) suitable
measures all having the dimension of length
can be defined:

il = TriLp, i = 0,1,2 (22)
with
07, = OK, 17, = (lK)1/2, 27, = (|2K|)1/3. (28)

This definition allows the indices to be
compared on the same grounds.

The "complexity lengths™ (22) are exten-
sive quantities as well as the indices (15),
(16), so the total complexity length

tofp =07 + 17 4+ 27 (24)

possesses the same additive separability. It
is essential that (23) has a nonzero value
for all real molecular system starting with
diatomics. As for the pseudoscalar <2K>
having the volume dimension it is not sensi-
ble to make a length quantity from it,
therefore, it will be calculated as a "pseudo-
volume"” quantity without any modifica-
tions.

An important part of the computational
scheme is a choice of the density matrix p,
which realises the averaging procedure.
Previously, [22, 28], a very simple approxi-
mation was used:
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Table 1. Differential geometry complexity measures K> (A2), <K (A3) and complexity lengths
07, 11, 21 and '] (A) for some saturated hydrocarbons

No. Molecule AR <|2f(|> 0; 1 2y tot]
1 CH,(T,) 1.3 0.0 6.3 1.9 0.0 8.2
2 CoHq(Ds) 7.7 0.5 11.9 6.0 3.0 20.9
3 C3Hg(C3,) 17.7 11.1 16.8 13.4 7.8 38.0
4 C4H1o(Cp) 30.1 26.0 22.2 20.1 13.2 55.6
5 CoHyo(C ) 37.6 32.0 27.6 24.7 13.5 65.9
6 CeHy4(C3p) 45.2 40.9 33.1 29.4 17.5 78.9
7 2-M-Pentane (C,) 47.9 55.6 33.1 30.1 25.5 88.7
8 3-M-Pentane (C,) 48.6 50.5 33.1 30.3 22.3 85.8
9 2,2-MM-Butane (C,) 50.2 36.3 33.3 30.7 18.7 82.7
10 2,2-MM-Butane (C,;) 49.1 48.2 33.2 30.4 21.1 84.7

p=1.
Here we apply the approximation

p=I+B (25)
that roughly models the bond orders and
takes into account the long-range effects.

Summarising, we propose the following
working algorithm. Given a molecular ge-
ometry in explicit form of the atomic coor-
dinates (18), we calculate the Hamiltonian
matrix (20) or (20’) and the coordinate ma-
trix (17). Then the momentum and its time
derivatives matrices (13) are computed to
evaluate the curvature operator matrices
(7)—(9).along with the operator modulus ma-
trix |2K|. An iterative scheme for obtaining
the operator modulus bypassing a complete
solution of the eigenvalue problem is easily
formulated by using the standard iterative
computation for the squared root. By apply-
ing Eq.(24) the main complexity measures
<1K>, <2K|>, <2K>, and complexity lengths
0, 11, 21 and %! are computed using
Egs.(15), (16) and (22)—(25).

3. Numerical results and discussion

All computations for the specific mole-
cules were carried out using AM1 molecular
geometry obtained using the package
GAMESS [30]. The atomic parameters CM for
typical atoms were chosen as follows. It is
naturally suggested that the parameter (y
should be such that in the case of H, the
molecule calculated within AM1 scheme the
corresponding nondiagonal element (19) has
to be B, = 1. A similar requirement is im-
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posed on (. with ethane as a reference
molecule. It leads to the values

{y=0.68 A, {c=1.50A.

For the heteroatoms nitrogen and oxygen
we adopted the values

{y=1.40 A, {5 =1.50 A

Table 1 presents the results of computing
the complexity measures and complexity
lengths for the first members of saturated
hydrocarbons. Even for these simplest or-
ganic molecules some interesting effects can
be observed. As can be seen from this table,
for the first six molecules 01 and, to some-
what lesser extent, indices I, <lK> are
practically linear with increasing number of
the carbon atoms. The other complexity
measures reflecting spatial characterisation
of the electron shell also increase following,
however, a nonlinear law. The last four
systems in Table 1 are hexane isomers stud-
ied previously in [5, 31] as an interesting
example of ranging related systems by the
molecular complexity indices. Unlike most
of the existing complexity measures the
"simplest” iso-hexane (molecule 7, Table 1)
is more complex if our total complexity
length is used. If one takes into consideration
the chirality of this system it seems reason-
able to consider it as the most complex one
(among the isomeric hexaneg). For the mole-
cule 7 the chirality index <2K> = 11.0 A3 can
be compared with that of ethane conforma-
tion with Dy symmetry: <2K> = 0.1 A3

Our numerical experience shows that
usually the behaviour of the complexity
measures <!K>, <]2K|> are similar to those
of the corresponding complexity lengths 1i,
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Table 2. Complexity lengths 01, 11, 2[ and ! (in A) and chirality index <2K> (in Ag) for some

aromatic hydrocarbons

No. Molecule 0; L 2y tot] <2IA{>
1 Benzene (Dg),) 28.6 18.5 0.0 47.0

2 Naphthalene (D)) 46.4 34.1 0.0 80.5

3 Azulene (C,) 46.6 38.1 1.2 84.0

4 Biphenyl (D,) 57.1 41.9 28.2 127.1 32.4
5 Anthracene (D,,) 66.1 48.0 1.73 115.9

6 Phenantrene (Cy,,) 66.2 49.4 0.0 115.6

7 o-Terphenyl (C,) 85.7 66.5 53.3 205.5 23.3
8 m-Terphenyl (C,,) 85.4 59.0 0.0 144.3

9 p-Terphenyl (D) 85.4 56.8 0.0 142.1

10 1,4’-Binaphthyl (Cy) 94.8 74.6 47.3 216.7 16.1
11 1,2’-Binaphthyl (C,) 94.7 73.2 43.1 211.0 32.2
12 2,8’-Binaphthyl (C,) 94.6 70.9 36.9 202.4 39.5
13 [4]-Helicene (Cy) 85.0 65.3 48.0 198.2 119.7
14 [5]-Helicene (Cy) 104.0 80.2 62.2 256.3 146.8
15 [6]-Helicene (Cs) 123.1 94.3 74.7 292.1 162.2
16 [7]-Helicene (Cy) 142.2 108.8 87.9 338.9 212.7
17 [8]-Helicene (C,) 161.3 123.6 102.5 387.4 269.9
18 [9]-Helicene (Cs) 180.5 139.1 114.3 432.8 323.4
19 [10]-Helicene (C,) 199.6 152.4 127.8 479.8 381.1
20 [11]-Helicene (C,) 218.7 167.0 143.3 528.0 439.8
21 [12]-Helicene (C,) 237.9 181.3 155.0 574.2 496.2

2] while the discriminative ability of the
former is somewhat,_ higher. Perhaps, con-
structed from %K, 1K "complexity volumes”
would lead to more suitable indices, useful
for QSAR and related problems but gener-
ally these entities have no clear physical
meaning, for e.g. the pure linear systems,
and they are not considered in this work. In
all the following tables only the complexity
lengths and nonzero chirality measure will
be presented.

The next structural class investigated is
the aromatics. Typical results for this class
are given in Table 2. Naturally, azulene is
more complex system comparing to its iso-
mer naphthalene. For the terphenyl isomers
the highest total complexity length is for
chiral o-terphenyl. At the same time this is
not true for all chiral binaphthyles, that is
the total complexity length is highest for
the least chiral isomer. A remarkable class
of [n]-helicenes as chiral aromatic systems
resembling the winding stairs [82] is worth
to discuss. In [n]-helicenes complexity
lengths %7 depends almost linearly on n. The
other indices are almost linear for large n.
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The mere fact that the <2K> index gives a
systematic increase in the chirality measure
is an evidence of the reliability of the pro-
posed computational scheme that improves our
previous topological approximation [22, 23].

As an example of the high symmetry chi-
ral systems consider the molecular structures
with the C,, and D, symmetry (n = 2,3) de-
scribed in [9, 33, 34]. The results presented
in Table 38 are not self-evident; some, how-
ever, seem to be natural (for example, a low
chirality in the hydrogenated fullerenes due
to a large distance between the HCCH frag-
ments).

Examining the applicability of the pro-
posed indices to the QSAR problems is out
of scope of this paper. Nevertheless, we pre-
sent an example of the qualitative corre-
spondence of the chirality index and the
observed twisting power, P, for the dopants
E- and Z-isomers of 2-(4-phenyl-ben-
zylidene)-p-menthane-3-one in MBBA [35].
For these isomers we obtained the chirality
indices of 333 A3 and 252 A3 respectively
that follow the same trend as the observed

IB| values of 41.9 um and 8.8 um do.
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Table 3. The spatial extension measure <2K|> and the chirality index <2K> (both in AS) for some
high symmetry chiral systems

Molecule Symmetry <|2IA{|> <2IA(>
Cyclohexane (twist) D, 64.5 14.5
Twistane D, 121.1 30.0
Ditwistane C, 213.4 71.1
Tritwistane Dy 299.3 125.8
Decaline-cis C, 129.1 28.0
Perhydroquinacene Cq 130.9 23.0
Perhydrotriphenylene Dy 238.6 36.7
3-Layered naphthalenophane C, 966.9 31.5
3-Layered antracenophane D, 1208.1 113.4
CeoHa C, 2456.1 0.6
CeoHe Dy 2539.7 1.6
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4. Concluding remarks

In this paper we have introduced several
novel complexity measures for discriminat-
ing realistic molecular systems. This study
demonstrates that using the complexity
measures derived from the molecular quan-
tum kinematies [23] it is possible to develop
a correct computational technique for a de-
tailed analysis taking into account such
nontrivial structural properties as the chi-
rality. In the proposed approach the long-
range effects play a fundamental role.
Moreover, paying particular attention to
these effects allowed us to develop the
scheme more efficient than that suggested
previously in [22, 28].

In the majority of the publications pur-
suing the topological and pure geometrical
methods the positive semi-definite scalars
are considered as acceptable measures of the
molecular chirality. Our viewpoint, how-
ever, is different. The molecular chirality
cannot be studied using the pure mathe-
matical techniques and the important physi-
cal restrictions such as the additivity
should be imposed on any index quantifying
the chemical chirality and this is what re-
quires these measures to be pseudoscalars.
Specific calculations confirm that our new
computational scheme leads to reasonable
results that agree with the expectations in
simple cases and, at the same time, provide
a useful insight in unclear situations.
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Inmexcu cKJIAgHOCTI Ta XipaJbHOCTI
IJI MOJIEKYJAPHOI iHGopMaATHKM:
nu(epeHIiHHO-TeOMEeTPUYHUN MiaXig

A.B.Jly3anoe, /].Hepyx

3ampoTOHOBAHO HOBi 1HIEKCH CKJIATHOCTI MOJEKYJ, 10 0as3yoThesa Ha ifgel ModeryaapHOi
KBaHTOBOI KimemaTuru. MaTpuilad ramMisbToHiana, KOTpy Mo0yAOBaHO Y AeAKOMY KBasiTomo-
JoriuHoMy HaOJWIKeHHi, 3aJa€ YacOBY €BOJIOII0 MOJAENbLHOI eJleKTPOoHHOI cuereMm i
BimmoBigmi moximmi ammamiunwmx BesmumH. Iligxix mosBosse 3asHauUTU cepegHi KBAaHTOBIL
KimeMaTHyHi XapaKTepUCTHUKU, TOB A3aHI 3 KPUBUHAMM €JEKTPOHHUX TPAEKTODPiil, 30KpemMa
iz ckpyTom, 1o Bigobpaskae xipanbHicTs guHamiumoi cuctemu. OcobauBy yBary HamaHO
pPo3pobIli aaropuTMy OGUMCIIeHb IHAEKCY MOJIEKYAApHOI XipasbHocTi. PospaxyHKM KOHKpeT-
HUX CHCTEM JeMOHCTPYIOTH PO3YMHY IIOBEJiHKY BaIllPOIIOHOBAHMX IHIEKCIB MOJIEKYJAAPHOI
CKJIATHOCTI.
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