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Long-range components of coefficients of SO(3)-invariant expansions of intermolecular
forces (U-coefficients) have been studied for Lennard-Jones interactions between force
centers (atoms). In a simple geometrical model, a new effect has been discovered, consist-
ing in inversion of the U-coefficient dependences upon intermolecular distances as func-
tion of molecular anisometry. Possible manifestations of this effect in experimentally
observed properties of complex liquid and liquid crystalline systems are discussed, as well
as its role in formation of microheterostructures.

IIpoBeneHo wucciemoBaHue OAJBHOAEHCTBYIOIEH cocraBiasiomnieir kKoadhdumuento SO(3)-
WHBapUAHTHBIX Pa3JOKEHUI aHUBOTPONHBIX MEXXMOJIEKYJAPHBIX B3auMmopeictTBuil (U-Koad-
(ureHTOB) AJA JeHHAP]-JKOHCOBCKUX B3aMMOJEHCTBUMN MEKAy CUJIOBBHIME IleHTpaMu (aTo-
mamu). Hasa mpocrToit reomerpuyecKoil Mozenau oOHapy:keH d3h(eKT MHBEPCUM 3aBUCUMOCTEH
U-K03GUIIEHTOB OT MEXKMOJIEKYJIAPHBIX PACCTOSHUN KaK (PYHKINU MOJIEKYJSIPHOU aHU30-
merpuu. OGCy:KIal0TCd BO3MOMKHBIE MPOSABJIEHUA 5TOro sd@deKTa B 9KCIePUMEHTAJIbHO Ha-
0I0aeMbIX CBOMCTBAX CJIOMKHBIX KUIKUX U KUIKOKPUCTAINUYECKUX CHCTEM M €ro POJb B
00pas3oBaHUY MUKPOTETEPOCTPYKTYP.

This paper is a continuation of a series
of works that was initiated in our previous
publication [1]. The sense and meaning of
specific terms and notation introduced there
has been preserved.

In microscopic models, substantial inter-
est is aroused by analytical properties of
intermolecular interactions (IMI) and pecu-
liar features of their asymptotics. The lat-
ter are determined by the long-range compo-
nent of IMI and largely determine physical
properties of a substance in the vicinity of
critical points and at the phase boundaries,
solvatation phenomena on colloid systems,
and many others [2]. The existence of a
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relationship between molecular shape and
mesomorphic properties in liquid crystals
has been intuitively clear since long ago
(see [3] and literature therein). Possibly
this was the reason why the first successful
model of mesomorphism was the theory of
Onsager [4] based on the concept of ex-
cluded volume. Later, Maier and Saupe pro-
posed a simple mean field model in spheri-
cal approximation [5], based on anisotropy
of molecular polarizability. This model was
further developed by Luckhurst e.a. [6] (the
use of cylindrical approximation, account
for molecular biaxiality, etc.). The “lan-
guage barrier” that had emerged was
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largely overcome in numerous approaches
combining the mean field and the excluded
volume concept (see, e.g., [7, 8]). Among
important theoretical results, one should
note power dependences of the Frank elas-
ticity moduli on molecular length (an-
isometry) [9, 10], which is in qualitative
agreement with experimental data (in par-
ticular, for one-component system). How-
ever, in practical applications the most com-
monly used are multi-component liquid
crystals (LC). Numerous experiments and
numerical calculations involving LC mix-
tures show more complex dependences of
their properties upon the shapes of con-
stituent molecules [11, 12]. In particular, as
it seems from analysis of a number of ex-
perimental data [12, 13], the difference in
length between the constituent molecules of
a LC mixture is a factor not less important
than anisometry. Onsager-type theories
were successfully applied to lyotropic and
polymer LC [14, 15]. In colloids, mesomor-
phic transitions I-N, I-N-N were reported
[16]. Theoretical description of broadening
of the phase separation region, as well as of
other effects, was proposed in [17-20],
using a generalized Onsager theory and a
model of polydisperse systems with parti-
tioning over molecular lengths. It should be
noted here that construction of such models
is generally based on the choice of distribu-
tion statistics over molecular lengths in the
system, with peculiar features of the in-
volved IMI being largely neglected. In other
words, an assumption is made that packing
factors play a decisive role in formation of
structural properties of the systems consid-
ered.

Recent developments in computer tech-
nologies have opened new possibilities for
modeling of anisotropic media [21]. In this
relationship, new advanced models of IMI
accounting for real molecular structure
would be welcome. In this paper, we propose
a simple model of anisotropic IMI, consider-
ing first of all their long-range components.

The symmetry properties of coefficients
of SO(3)-invariant expansions of anisotropic
intermolecular interactions (IMI) were dis-
cussed in [25—-31]. Here we pay our main
attention to those properties that result
from using additive (scalar) potentials (in
particular, atom-atom potentials) in their
general form for arbitrary distances.

Anisotropic IMI can be presented in the
following form [1]:
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Here: Rij — radius-vector connecting the
centers of molecular system, of coordinates
(MSC) of molecules i and j; Rij = /RU,

=[R;[; Q) is a set of Euler angles para-
metr1z1ng the orientation of the coordinate
system of the i-th (j-th) molecule, the rota-
tional invariants Ok ” 2 (Q;,Q;R;j) have been
defined in [32].

For a specified distribution density of
the force centers p(r, i) over the volume of
molecule i and potential of their interaction
u(r; ) (e.g., atom-atom interaction), the ex-

press1on for U-coefficients has the form
[29, 1]:
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where
_ ( 2;
Pim(ksi) = drrej(Rnpy,(r3i),
im I l lm (2a)
Pym(rsi) = Ier O(r)p(r i),
ji(z) —  spherical Bessel function,

u(k) = (2T[)‘3_[u(r)e‘i(km)dr
Coefficients Ul Qn.g,(Rl]) of the expansion

(1) possess the following general properties
that follow from (2):

I. Translational invariance — IMI energy
depends only on the difference R;; = [R; -R/,
which is reflected in (2);

II. IMI energy is a scalar with respect to
rotation of the laboratory system of coordi-
nates. This corresponds to the existence of
expansion (1) and the property of 3j —
symbols under rotation of the coordinate
system [33]:

z 3
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III. Real character of IMI, i.e., the
imaginary part is equal to zero. Accounting
for the fact that the 3j — symbol in (2) is

Functional materials, 11, 4, 2004



P.P.Shtifanyuk et al. / Peculiar features and ...

not equal to zero only if I +1;+13=0
(mod 2), we obtain:

s (B = ey, ().

It should be noted that this relationship

implies that U-coefficients are Hermitian

when used as operators in quantum-me-

chanical problems, e.g., in calculation of
Coulomb forces.

IV. Permutation symmetry. Transposing

Q 2Q,, R;; - R;), permutations (I =ly)
should also be made in (2). Then, accounting

for the condition I; + Iy + I3 = 0 (mod 2), we
obtain:

lzl1

()
o (i) =

= (—1)l1+lef,1jlz,§§2(Rij).

There is a peculiar feature in application
of this relationship — it expresses invari-
ance of the interaction energy with respect
to permutation of the particles and has
sense only together with the said permuta-
tions, i.e., they should be also made in the
expansion (1):

65711112;7?2(Qi’ ) - @l1l213 Q Q RI)

It is not quite correct to consider (5) as
an identity relationship for the array of
U-coefficients — first of all, it is a descrip-
tion of the result of permutation of the
arguments in E;;. The meaning of this prop-
erty would be evident in macroscopic mod-
els of anisotropic solutions, where a sym-
metrized Hamiltonian should be con-
structed.

V. If (and only if) the molecules are iden-
tical, i.e., when p;, (ki) = p,,(k;j), then
(again using the condition I; + I3 +1I3=10
(mod 2) ), we find:

%]211;131 ij)E: (-1)4 +12Ul1l2l3 (RL]) (6)

VI. The molecular symmetry also leads to
constraints upon indexes of U-coefficients,
i.e., reduces the number of independent U-
coefficients. But more important is the pos-
sibility of direct determination of the rela-
tionship between molecular properties and
macroscopic parameters of the medium (in
the mean field approximation). Among the
possible molecular symmetry groups, the
best studied are point groups (finite sub-
groups of the rotation and reflection group
0(3)). Using methods of group repre-
sentation theory, conditions can be obtained
for indexes required for non-zero U-coeffi-
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cients [25-30]. E.g., if both interacting
molecules are of D, symmetry, it is easy to
obtain from (2a)

1,1,1 Lyl
U %8 (Bij) = 3y 080U 28 (By))- (7)

This assumption on the mesogen symme-
try is used in nearly all molecular models of
nematics and smectics A. Other cases of
point symmetry were discussed in this rela-
tionship in [25, 28, 30].

In calculations of different properties
(electric, magnetic, etc.) represented by the
respective molecular tensors, it is often nec-
essary to use different reference systems
[45]. But molecular symmetry can be differ-
ent with respect to different properties.
This is important to keep in mind for cor-
rect interpretation of experimental results
(see., e.g., Chapter 7 in [33]). In other
words, for calculations of different struc-
tural, physical and chemical molecular
properties several different reference sys-
tems may be required. The corresponding
transformation rules are given by the rela-
tionships (15) in [1].

VII. Effects of chirality are not appar-
ent in additive anisotropic IMI (at least
for rigid molecules). I.e., pseudoinvariants
due to Ell a l3D
00 0 OD
the U-coefficients. This also follows from
their construction, since the initial system
of atom-atom potentials is scalar. Psevdoin-
variants in pair IMI cannot be also obtained
by any partition of the molecules into frag-
ments. To show this, it is sufficient to con-
sider the long-range part of IMI. Really, in
this case the use of the expression (3.10)
from [29] gives the total molecular tensor
of a molecule r#)/(1) defined by the sum

factor are absent among

over fragment tensors r%ﬁ; centered at

points with radius-vectors d; with orienta-
tion w; with respect to the relative molecu-
lar coordinate system.
r LM(I ) = (8)
2 2 2 %wi, 2, +ny, oner B dia X
i (n1n2)>OEl,ld,m’E
o

om,m E
o 4o
xr %nnil(l)czoz oClint m Dt 0(d) Dl (@)

Here the index i numbers the fragments.
It is clear that the wuse of (8) in
Uﬁ;lllz,ng(Rij) for power potentials [1] allows us

to expand our method to tensor interactions
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and more complex molecular structures.
However, the presence of the above-noted
factor (the 3j-symbol with zero moment pro-
jections) excludes the presence of pseudoin-
variants. This also applies, in particular, to
electrostatic forces (regardless of the mo-
lecular shape and/or charge distribution
over the molecule). Still, chiral interactions
can be (and probably should be) purposely
introduced into the additive models by
many ways, when three- or many-particle
distribution functions are used in one or
another form as a result of recomputation
of pair IMI in the field of a third molecule
[34], or when restrictions are imposed (e.g.,
steric) upon molecular degrees of freedom
[35], etc. Our assertion that pseudoinvari-
ants are excluded in anisotropic IMI is also
in agreement with considerations of Luben-
sky e.a. [36]: molecular chirality does not
always imply chirality of the corresponding
interactions, and the presence of chiral in-
teractions is not unambiguously related to
observed properties, e.g., helical twisting
(cholesteric pitch).

Constraints upon indexes (I, mq, Iy, my)
in the U-coefficients are due to symmetry
properties of the interacting molecules.
These indexes correspond to orientational
ordering in liquid and molecular crystals.
E.g., l; =I5 = 0 correspond to molecular or-
dering models in isotropic liquids, and /; =
lg =2 — in nematics. The index [3 in the
expansion (1) characterizes the symmetry
(if present) of distribution of MCS centers.
E.g., the value I3 = 0 corresponds to models
describing ordering of these centers in iso-
tropic liquids and nematics. For description
of smectics, coefficients with I3 > 0 are re-
quired. In this relation, one should remem-
ber that multipole expansions of electro-
static forces can be directly related to the
orientational ordering in molecular field
models only in systems with violations of
translational symmetry (see references in
[87]), e.g., in smectics, colloids, in the vi-
cinity of interfaces and phase boundaries,
and, naturally, in molecular crystals. E.g.,
l3 = 2 corresponds to the quadrupole-type
ordering of molecular centers.

In this work, we limit ourselves to study-
ing the role of molecular shape in meso-
genic systems. For our problem, the most
appropriate seem to be “"standard” models
of molecules used in computer modeling
(see, e.g., [21] ) with real geometry, real
values of atomic mass (hence, calculated
moments of inertia), but with one differ-
ence. Namely: we assume that similar atoms
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of all molecules create similar force fields,
i.e., the energy parameters characterizing
atom-atom (non-valence) interactions are
the same. As MCS, we chose the systems of
principal moments of inertia. Such a model
was also used in [22-25], reflecting the
ideas and perceptions of interaction of uni-
form ("homogeneous”) molecules [38, 39].
The atom coordinates for each molecule
were taken from AM-1 molecular dynamics
calculations. As initial atom- atom poten-
tials, we have chosen Lennard-Jones poten-
tials (for non-valence interactions) with the en-
ergy constants Cg = 2.987(102 (kcal mol™1 A~6),
Cyy = 1.715107 (kcal mol™! A712) for ali-
phatic carbon atoms [40]). From the expres-
sions (13) and (18) of [1], using the gamma-
function property [(z+1) =2l (z), for U-co-
efficients of +the long-range part of
anisotropic IMI we obtain:

281 | oy L 1300, 9
?n‘f’(RIZ)_( 1)337 CG 0 0 0
11+12+l3

2

Prax r(3+ p +
X R—(12+l1+l2)
2B
p=0
L+ly-lg~
x I_(3+p+T)Fl1l2ls(p Rpy) x
x S Bt (7%, (D075 (2.

81+82—p

Here Flilsls(p,R) functions have the form:

3 D29 (9a)

6 _
Flill(p,R) = R (10)'

3 3

X |_|[4+p+—(ll+lz+13)+s] Dl_l
s=1 =1

[4+p+1

(l1+l2_l3_l)+t].

As a result of multiple trial calculations,
we have found that for our molecules the
value p, .. =185 gives the accuracy of
about 0.5 %.

For model calculations, we chose typical
mesogenic molecules - cholesteryl acetate
and MBBA, as well as molecules of O, n
H,O. Three possible conformational states
of the MBBA molecule were considered, dif-
fering in their anisometry. Such choice of
molecular structures, alongside with appro-
bation of our method, was aimed at under-
standing anisotropic IMI as function of the
molecular shape (first of all, of anisometry)
and, in this sense, of conformations. The
three conformations of MBBA are schemati-
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Fig. 1. Three conformational states of the
MBBA molecule: a) the most stable (basic)
state; b) an excited state [41]. ¢) another pos-
sible excited state, which differs from the
case (b) by the alkyl chain conformation, re-
sulting in lower molecular anisometry.

cally shown in Fig. 1l in their respective
MSC (directions of axes shown by dotted
lines). The stable state of MBBA molecule
in the liquid crystalline phase is shown in
Fig. 1a. The excited states are shown in
Figs. 1b and 1lc (we denote these states as
MBBA-2 and MBBA-3). Peculiar properties
and physical effects that are related to dif-
ferent conformations of MBBA molecules
were studied in B [41-43]. It should be
noted that MBBA-3 differs from MBBA-2
only by conformation of its alkyl tail. This
conformation can exist in the same conditions
as MBBA-2, since the energy of conforma-
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Fig. 2. Calculated U220 = U(z)(z)O(R) plots for
two pairs of molecules: a) cholesteryl acetate

+ MBBA (in the basic state), b) cholesteryl
acetate + MBBA-2 (in the excited state).

tional transitions in alkyl chains is small as
compared with thermal energy [44].

Our calculated plots for U-coefficients as
function of the distance R between the
molecule centers are of a characteristic
form with a local maximum (or minimum).
At large R, they are approaching zero, re-
maining positive or negative, respectively.
At small intermolecular distances, the U-co-
efficients tend, respectively, to plus or
minus infinity at R = Rg= 0.5(L; + Ly),
where L; u Ly are maximum dimensions of
the interacting molecules [1]. In our follow-
ing discussions, we will consider a sphere of

Table. Values of U-coefficients at the local extremum points

l1l5l3 | Chol-Chol Chol-MBBA| Chol- Chol-  |Chol-2atom| Chol-H,O | MBBA- MBBA-
MBBA-2 | MBBA-3 MBBA MBBA-3
000 -0.08 -0.08 -0.07 -0.08 -0.11 -0.22 -0.044 -0.2
220 -0.0032 | -0.0032 0.0048 0.009 0.0007 0.0005 -0.012 0.008
202 -0.05 -0.050 -0.044 -0.06 -0.15 -0.23 0.085 0.31
022 -0.05 -0.052 0.068 0.14 0.006 0.012 0.085 -0.09
440 -0.0024 | -0.0028 | —0.0004 0.002 3M10-6 2M10-6 -0.0009 | 0.00051
4014 0.08 0.076 0.12 0.4 0.44 -0.04 -0.11
044 0.08 0.012 -0.052 | —-0.00004 | —0.00012 0.04 0.06
Functional materials, 11, 4, 2004 665
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radius R, centered at the MSC origin; we
will call it a "singular sphere”. As an exam-
ple, U33O(R) dependences are shown in Fig.

2 for two pairs of molecules: cholesteryl
acetate — MBBA (Fig. 2a) and cholesteryl
acetate — MBBA-2 (Fig. 2b).

We have limited ourselves to calculations
of U-coefficients with lower indexes equal
to zero; for brevity, we omit them in ex-
pressions below. For different indexes and
molecular pairs, these plots are different in
scale. Knowing qualitatively the general
form of the plots, we can relate to each of
them just one number — the U-coefficient
value at the local extremum. Results of our
calculations are presented in Table 1. The
three figures in the first column denote a
U-coefficient with these indexes, and the
first line indicates the pair of interacting
molecules.

At first, we carried out calculations for
pairs cholesteryl acetate — MBBA (in dif-
ferent conformation states). We noticed an
unusual behavior — inversion of the de-
pendences for U220 y U440, These depend-
ences are of primary importance for molecu-
lar models of mesophases. E.g., U220 deter-
mines the transition remperature from
isotropic liquid to nematic ([5—8]). Our data
indicate that properties of mixtures can be
qualitatively changed upon variations in an-
isometry of one of the constituent mole-
cules. To check up the validity of this ob-
servation, we complemented the table by the
results of similar calculations for interac-
tions of cholesteryl acetate with water and
a two-atom molecule (meaning, e.g., O)).
The results obtained can be expressed by
the following relationship:

UMNUR) (L - Ly)hre, (10)

t — O1(mod 2), if molecules1 and 2 are different,A\#0
12 EO(mod 2), if molecules1 and 2 areidentical

where L%" is the length of the second mole-
cule at which UMR) =0, or by a similar
relationship with lengths replaced by the
corresponding anisometries: & = L{/aq,
and €. Here a; is the smallest molecular

dimension (i.e., diameter, if the molecular
shape is approximated by a cylinder).

The relationship (10) is also illustrated
by Fig. 2. We shall call this behavior "in-
version of the U-coefficient dependences” or
just "U-inversion”.

As we already noted in the previous part
of this paper, IMI depend on the choice of
the molecular system of coordinates (MSC).
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Fig. 3. Graphic representation of the F220(p,R)
surface.

In our case, there are three obvious MSC
choices: the first one is obtained by di-
agonalization of the inertia moment tensor,
and the others are obtained from the distri-
bution of Cg and C;5 force constants over
the molecule. Let us check up an assump-
tion that the U-inversion is a certain conse-
quence of a relative shift and/or rotation of
these MSC. Putting all masses equal (as
well as force constants), we superpose all
three MCS. Then we carry out all the calcu-
lations again and obtain a similar table. The
figures obtained are slightly different, but
the qualitative picture remains the same.
I.e., the phenomenon of U-inversion is in-
variant with respect to MSC choice.

The force constants of atom-atom poten-
tials for different atoms are determined em-
pirically. So, the values obtained have, in
fact, absorbed effects of non-additivity and
other physico-chemical properties of the me-
dium formed by these atoms, as well as of
the used measurement methods and as-
sumed theoretical notions on IMI. For each
class of substances, its own set of these
parameters is developed [46]. Maybe our
choice corresponds somehow to hydrophobic
interactions as a specific type of IMI, thus
making the U-inversion a predetermined
fact? We again carried out similar calcula-
tions using atom-atom potentials for five
more types of carbon atom, as well as for
oxygen (which is obviously not hydrophobic)
given in [40]. The obtained six more tables
are also different in numerical values, but
qualitatively are fully similar to Table 1.
I.e., the U-inversion is determined by mo-
lecular geometry, and not by specific prop-
erties of the constituent atoms.

Let us determine is such behavior is pos-
sible for U-coefficient series. From analyti-
cal structure of the series (9) one can con-
clude that their qualitative features are es-

Functional materials, 11, 4, 2004
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sentially determined by the properties of
Flilsl3(p,R) functions. These are polynomials,
if we consider the first (indexing) variable
as continuous. In Fig. 3, one of these func-
tions is plotted at (I;l5l3) = (220). For other
indexes, the corresponding surfaces are
similar.

Let us denote the internal sum in (9) as

My, =3 BilyrE, (s 2. (D

1
Sl+82=p

The expression (11) can be presented as
function defined on the surface of Fig. 3,
and the result of summation in (9) — as
passing along a certain trajectory (with in-
teger p). For the given set of indexes, this
trajectory will be defined by properties of
Mﬁhllzmz(p,l,2), i.e. finally, by the molecular

structure. As one can see from Fig. 3, there
can be a trajectory that corresponds to the
U-coefficient inversion, i.e., when several
first terms of a series (positive and large in
magnitude) are not compensated for by sub-
sequent negative terms; according to a theo-
rem proven in [1], the series is convergent, so,
the total sum of the series will be positive.

In addition to differences in molecular
shape, another important factor is that a
sufficiently large number of terms in the
U-coefficient series should be accounted for.
Most of the authors considering IMI limit
themselves to the first (i.e., multipole) ap-
proximation, which can lead not to just
quantitative, but also to qualitative errors.

One should note several peculiar features
that characterize our plots obtained for U-
coefficients. Since we consider the long-
range IMI component, the local extremum
points are located farther, and their values
can be much lower (by several orders —
depending upon anisometries of both inter-
acting molecules) than those of the corre-
sponding atoms. In fact, they already char-
acterize ordering tendencies outside the
first coordination sphere. According to (1),
each U-coefficient describes a contribution
to the total energy, which depends upon
mutual orientation of the molecules:

AEbloy (i) = Ulylly (R )Ohlal (©,0,Rij).(12)

In approaching the singular sphere, U-coef-
ficients are tending to + i according to [1],
which means, provided the orientation is
mutually parallel, contributions to repul-
sion or attraction (respectively) at distances
close to the radius of the singular sphere.
Only the isotropic component always tends
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to +oo irrespective of the orientation. This
singularity has a very simple physical sense
— this is the largest distance between the
molecular centers at which a direct contact
between the molecules is possible under ar-
bitrary rotations of molecules around their
centers. We have proven a theorem under
which asymptotics of the U-coefficients
have the same signs when the intermolecu-
lar distance tends to the radius of the sin-
gular sphere from inside or from outside
(this proof will be described elsewhere). In
an obvious manner, from IMI properties one
can get some information on the distribu-
tion functions (without calculating them).
Thus, the internal energy of a system can
be calculated by averaging pair interactions
with a two-particle distribution function
and has a finite wvalue. Therefore, the
above-discussed features of anisotropic IMI
should be reflected in the pair distribution
functions. Plots of their SO(3)-invariant ex-
pansions used in the theory of anisotropic
liquids will show not only those features
that are due to the phase microstrucrure,
but also some peculiar features that are due
to specific behavior of the corresponding U-
coefficients (see, e.g., [47]); the features of
both origins can partially coincide.

As noted above, IMI behavior is different
for systems formed by molecules that are
similar in their length (anisotropy) and
molecules that are different in this respect.
Thus, in the first case (as in Fig. 2a) U-co-
efficients responsible for purely orienta-
tional interactions — U%O(R) — are nega-
tive and tending to zero at large intermo-
lecular distances, i.e., they contribute to
attraction provided their mutual position is
parallel. When the molecules are approach-
ing each other, in the same configuration
these terms correspond to repulsion. Such
behavior of anisotropic IMI is, in fact, as-
sumed in various molecular models of meso-
phases that account for repulsion forces
(see., e.g., [3, 7, 8, 24, 49]). Theoretical re-
sults obtained in the molecular field ap-
proximation are in good agreement with ex-
periment in the case when the molecules are
similar in dimensions. In the other case,
discrepancies between calculated and meas-
ured data may be quite substantial. For
molecules of different anisometry, as it is
clear from Table, relationship (10) and Fig.

2b, the behavior of UM)(R) is the opposite:

for large intermolecular distances and par-
allel mutual orientation these coefficients
are positive and are tending to zero, i.e.,
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contribute to repulsion, while when the
molecules are approaching each other in the
same configuration, they correspond to at-
traction.

The sign of AE%O(i,j) contribution to the

total energy depends upon mutual orienta-
tion of the molecules. At A = 2, the sign is
inversed if the angle between their long
axes is 1/2; for A = 4, this angle is equal to
1/4. This can be verified by substituting the
values of these angles into (12).

The results obtained provide us with bet-
ter understanding of microscopic nature of
some phenomena in anisotropic liquids re-
lated to violations of spatial uniformity,
i.e., formation of clusters. In the approach
proposed by Lev, Belotsky e.a. [60-53], this
was shown to be possible in systems with
short-range attraction and long-range repul-
sion. In anisotropic liquids (including clas-
sic LC) the situation with repulsion domi-
nating over attraction is realized in the case
of inversion of U-coefficients and can be-
come apparent already at rather low concen-
tration of dopant molecules. We turn our
attention just to anisotropic IMI, since the
isotropic component can change only in
magnitude, remaining negative with in-
creasing intermolecular distances (i.e., at-
traction is predominant).

The above considerations form a new
standpoint from which some theoretical
problems and interpretations of experimental
results in the field of liquid crystals and com-
plex liquids can be treated in a different way,
supplementing the existing concepts.

Thus, in the Landau-de Gennes pheno-
menological theory of nematics a question
arises on the nature of the cubic term in
the free energy expansion over orientational
order parameter. It has been generally ac-
cepted [3] that there should be no cubic
term in this expansion, since the phases dif-
fering by the order parameter sign would
correspond to different types of molecular
arrangement (parallel and perpendicular),
which are not related by symmetry opera-
tions, and their free energies are not equal.
However, this is just the situation resulting
from our calculations (e.g., the last column
in Table), if we account for the presence of
different conformers in the LC phase and
pretransitional region of MBBA [41-43]. In-
version of the IMI dependences can be the
main microscopical reason for cluster for-
mation in such systems. In [54], it was as-
sumed that a non-zero cubic term could re-
sult from fluctuations — either of alkyl
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chain conformations or short-range smectic
order. This should probably lead to phase
transitions from the isotropic liquid to the
nematic phase (I-N) becoming closer to the
second order, but experimental data are
either contradictory or indicate a weakly
first-order transition. Our results suggest
that smectic fluctuations could be an impor-
tant factor in nematics, which is demon-
strated by the third and fourth lines of
Table 1: the extremums of U3J2 and UJ32,

which characterize the coupling between
translational and orientational ordering, are
sufficiently large as compared with the
"purely orientational” U3 for MBBA and

its excited state, with this energy being
much higher for the MBBA-MBBA-2 pair.

In [55], differences were noted in
"dopant-solvent” interaction parameters, pre-
dicted in the uniform mixing model [56, 57],
and it was assumed that a possible reason
for this could be violations of translational
order. In [58], numerous anomalies were
found in binary mixtures (in order parame-
ter, density, etc.) When the concentration
of the nematogen with shorter molecular
length is increased, irregular temperature
dependences are observed, which cannot be
described in terms of existing molecular
field theories of LC. The authors of [58]
explain this by the effects of alkyl tail fluc-
tuations. Basing on our calculations, we
think that violations of spatial uniformity
can be a consequence of the inversion of
U-coefficient dependences, and fluctuations
of the alkyl chains can contribute to this by
changing the molecular anisometry, thus in-
ducing the U-coefficient inversion.

In experiments on light scattering [59],
anomalous concentration dependences were
observed in mixtures of water with glycerol
and tert-butanol at relatively low alcohol
concentrations (known also for other sys-
tems) [60]. The authors of [59] related this
behavior with formation of clusters. Basing
on our calculations, within the context of
the models of [560—-53] the following qualita-
tive interpretation can be proposed. The
cluster formation itself can be also due to
the inversion of U-coefficient dependences.
I.e., in the vicinity of the dopant molecule,
at distances of the order of the singular
sphere radius and less, the molecules of
water show a tendency to orientational or-
dering (as an analogy, see Fig. 2b and the
"Chol-2atom”™ column in Table), forming the
first coordination sphere, outside which the
situation is quite different — either the
dopant tends to orient the water molecules
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orthogonal to their long axes (at weaker
ordering and/or higher temperature), or re-
pulsion forces emerge between the cluster
and water molecules (stronger ordering
and/or lower temperatures). These assump-
tions are also supported by the low dopant
concentration values and small (according
to authors’ estimates) number of molecules
in the cluster.

In [12, 13], basing on numerous experi-
mental data, a conclusion was made that
good miscibility and high thermal stability
of smectic mixtures required minimal dif-
ferences in molecular lengths of the compo-
nents. Our results fully agree with these
facts. Of course, as noted in [13], this crite-
rion is not the only one in composing the
optimum mixtures. Contributions from
other types of intermolecular forces, as well
as other molecular parameters, should also
be accounted for. In this relation, the most
interesting would be effects of polar-type in-
teractions. Another largely unsolved problem
is the role of molecular biaxiality. Further
studies are under way in these directions.
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Oco06JIMBOCTI Ta 3aCTOCOBHICTh ACMMIITOTMYHMX
PO3KJIAXIB AHI3OTPONMHUX AJUTHBHHUX MijKMOJIEKYJIIPHUX
B3a€EMO/JiM B aHI3OTPONMHHUX cCepegoOBHINAX.

II. Poasr ani3omeTpii B (popMyBaHHI HATMOJEKYJISIPHUX
CTPYKTYP B ME30T€HHHMX CHCTEeMaXxX

I1.11.IlTmuganrxk, O.B.Jvomin, O.I1.Dedopaxo,
J.M.JTuceywvruii, C.€.Axo6enko

IIpoBemeHo mociimKeHHS MaJIeKOAilouoi KoMmoHeHTu KoedimieutiB SO(3)-imBapiaHTHEUX
POBKJIaAiB aHIBOTPOMHUX MisKMOJeKyJaApHuUX B3aemoniit (U-roedimieHTiB) Ana JieHHapPH-
IKOHCIBCBKUX B3a€EMOIill MiK cuyoBuMHU IeHTpamu (atromamu). g mpocToi reoMeTpuuHOI
Mojmesni BusiBieHO edeKT iHBepcii sasmexkHocTeir U-KoedillieHTiB Big MiKMOJIEKYIAPHUX
Bifcrameili AK (pyHKIil MoJIeKyJasapHOI aHizomeTrpii. OOGTOBOPIOIOTHCS MOJYKJIWBI MPOSBU I[HOT'O
eeKTy B eKCIePpUMEHTATbHO CIOCTEPEKYBAHUX BJIACTUBOCTAX CKJAJHUX DigKux Ta pimko-
KPHUCTAJNIUHUX CHCTEM Ta HOro POJIb B YTBOPEHHI MiKpOTeTepoCTPYKTYP.
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