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The influence of impurity on energy breadth of an optical gap for quantum dot is
studied within the framework of deformation potential model. It is established that with
size increase of a quantum dot with an ionization donor dopant an optical gap diminishes.
For smaller radiuses (R, ~ 40 A+ 57 A) energy breadth of the basic optical transition E in
quantum dots with donor dopants is greater, than in unblended ones. For the major sizes
of quantum dots Rj > 58 A the converse effect is observed.

B pamkax mogmenm nedopMalMOHHOTO IIOTEHIIMAJA WCCIEeLOBAHO BJIUAHUE MIPUMECH Ha
9HEPreTUYECKYI0 IIUPUHY ONTUYECKOU INeJV KBAHTOBOII TOUKU. YCTAHOBJIEHO, UTO C YBeJU-
YeHUEeM pPasMepOB KBAHTOBOII TOUKHW C HMOHUBWPOBAHHOI MOHOPHOU IPUMECHI0O OINTHUECKAasd
menb cyxuBaeTcda. [[na MeHbIIMX pagumycos (R, ~ 40 A+ 57 fo\) 9HepreTuyecKas ITHUPUHA
OCHOBHOTO OIITUYECKOTO Ilepexoja K B KBAaHTOBBIX TOUKAX C JOHOPHBIMU IPUMECAMU O00Jb-
me, ueM Ges mpuMeceii. IIpu GoJapmUX pasMepax KBAaHTOBHIX ToueK R, > 58 A HabJ0faeTcs
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Optical properties of heterostructures
with InAs small-sized quantum dots (about
several nanometers) are actively studied in
order to create solid-state emitters in the
range A ~ 1.4 um.

One of the promising ways to control the
emission range is introduction of unit impu-
rity atom into the quantum dot (QD) [1, 2].
The technology of impurity atom introduc-
ing into the QD is based on the union of
heterosystem growth process with quantum
dots (by molecular-radiation epitaxy) and
selective doping [3]. This problem is of sci-
entific as well as of practical interest for
modern optoelectronics, in particular, for
optoelectronic devices applicable in quan-
tum computers [4]. In this light, the esti-
mates of the basic optical transition energy
in strained nanoheterosystems with QD in
the presence of impurities and the analysis
of this energy (or frequency) dependence on
quantum dot size as well as on the impurity
type are helpful.
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The experimental study of optic phenom-
ena in the InAs/GaAs heterosystems with
doped QD was carried out in the work [2].
The spectra of a quasiparticle moving in the
superposition of fields with Coulomb and
radial rectangular potential, the forces of
the fields having shared centres, was theo-
retically studied in the framework of dielec-
tric formalism [5, 6].

In this paper, we are going to calculate
the size of optical gap for InAs coherent-
strained spherical QD doped with silicon
and to analyze the dependence of this en-
ergy shift on the QD size, taking into ac-
count the deformation potential.

Let us consider spherical InAs QD with
radius R, and inductivity €, placed into a
semiconductor GaAs matrix with radius R;
and inductivity €,. There is ionized donor Si
impurity with charge +e in InAs QD centre.

In order to reduce the problem with a
number of QD to a problem with one QD, we
take the following approximation: we sub-
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stitute the pair-wise elastic interaction en-
ergy of the quantum dots by the interaction
energy of every QD with averaged elastic
deformation field 6 ,{N — 1) of the rest of
QD’s.

Unlike [7, 8], our InAs/GaAs (with InAs
QD) heterostructure model takes into ac-
count the influence of internal elastic
stresses, caused by the disagreement in
the QD lattice material parameters and the
matrix f= alnAs _ aGaAS/ alnAs o 7 %,
Laplacian pressure on the boundary between
QD and the matrix (considering self-consis-
tent deformation of QD material and sur-
rounding finite-sized matrix), the difference
in physical characteristics of nanoobjects
and massive crystals (baric coefficient,
modulus of elasticity, Poisson’s ratio), as
well as electron deformation interaction.

As the lattice constant of InAs material
is more than that of GaAs matrix, then in
case of heteroepitaxial growth within
pseudomorphous InAs growth on GaAs
layer, InAs material can be deformed by
compression and GaAs — by stretching. So,
we introduce the spherical quantum dot
with radius R, charged by donor impurity,
as an elastic dilatation microinclusion in the
form of an elastic ball placed into a spheri-
cal empty space with the volume AV smaller
than the volume of the microinclusion, in
the GaAs matrix. To insert such a spherical
microinelusion, one should squeeze it and
stretch the GaAs matrix in the radial direc-
tions. The simultaneous deformation result
for the contacting nanomaterials is de-
scribed by AV volume change with the pa-
rameter f(Ry, R;):

AV(Ry,Ry) = F(Ry,Ry) - 4nR3. (1)

Unlike [8, 9], in our paper the disagree-
ment parameter f(Ry,R;) is the function of
sizes QD (Ry) and the radius if the sur-
rounding matrix (R,):

f(RoaRl) = fl(Ro,Rl) + fz(Ro,Rl), 2)

where f{(Rg,R1), fo(Rg,R) are materials of
QD and the surrounding matrix lattice pa-
rameters relative changes, caused respec-
tively by the difference of radial ar(i) and

angle constituents ae(i), a(P(i) of lattice pa-

rameter in QD material as well as in the

surrounding matrix, relative to their values
a; in bulk materials InAs and GaAs,

1 ; 3

fARoRy) = 3—%(2% + ag)) ~1, (3)
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® " GyRy + Go(Ry — Ry)

a®) = a{1 - D), - [2—? - 1D;

g _oClh
Df)?)l - 2cgq’
Cﬂ, C% are elastic constants of InAs (i = 1)
and GaAs (i = 2) materials; Gy; G5 are
modulus of rigidity for the materials InAs
and GaAs.
As R{/Rg >> 1, then fy/f; << 1.
The strain of) in the materials InAs and
GaAs is [10]:

ae:

b

; E; 4)
G(l) =X
@+ v - 2vy
x [(1 +v)eld) + vi(sg?p + sgg)}

where v;, E; are Poisson’s ratio and modulus
of elasticity for the materials of QD and the
surrounding matrix, expressed in the
known way [10] by the elastic constants of
these materials.

To clear out the components of deforma-
tion tensor, we need to find the explicit
form of atoms shift u (1), u (2 in InAs and
GaAs materials, respectively. To do it, let
us write down the equilibrium equation
[11]:

Vdivu = 0 (6]

with the following edge conditions for
spherical QD:

4HR%[U$2),R - ”(r”r=Rj =4V, ©
0 0
2a(e®)
(1) = o2 ===
Ol _ c5rr|r:RO + Pr, 15 R,
G(r%)|r:Rl = —G, AN - 1);

(The left part of the first equation in the
set (6) is obtained as a geometric difference
AV of microinclusion volume and the empty
space volume in GaAs matrix). Here R; is
GaAs matrix radius, P; is Laplacian pres-
sure, a(eV) is QD (InAs) surface energy,
which is the function of surface stress and
QD deformation tensors [12]:
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ae®) = a(0) + Y oPeD +
i,j
1
+ g Z eg})(l) : 3%}%1' e + ...,
ikl
(7) where sij(l), Gij(l) are respectively de-
formation tensor and surface stress tensor
of QD; s;;,(1) is second-order stress tensor.

The solution of equation (5) is the fol-
lowing in case of spherical QD’s:

(8)

C
ugl):Clr+r—2, 0<r<R,,

9)

C

As in the dot r =0 the displacement
must be finite, then in the solution (8) let
us assume C, = 0.

The field of displacements defines the fol-
lowing components of deformation tensor:

e = Cy, (10
sl = eff) = Cy, (11)

2C, (12)
e = Cg ~ 3

C 13
o= eff) = Cg+ . (13

We can find coefficients Cy, C3, C4 from
the solution of the set (6), taking into ac-
count (1)—(4), (7)—(13).

The quasiparticle movement is consid-
ered in the superposition of Coulomb and
deformation potential (Fig. 1). As one can
see from Fig. 1, quantizing potential char-
acter is defined by the bottom of conduction
band and QD heterostructure valence zone
peak profiles. The energetic displacements of
permitted bands edges influenced by elastic de-
formations are respectively the following [13]:

AEE}) = ag)ﬁ(i)(RO’Rl);
AE® = a®e)(Ry,R,);

where e(Ry,R;) = Spe®; a, @), a (i) are the
constants of hydrostatic deformation poten-
tial of conduction band and valence band,
_ |1 =InAs
- ]2 =GaAs’

The potential energy of the electron and
hole in the strained InAs QD in the

respectively; i
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Fig. 1. The potential energy of electron and
hole in coherent-strained InAs QD with ionized
donor impurity. The potential energy is calcu-
lated from the top of the potential barrier of
the quasiparticle in QD without impurities.

InNAs/GaAs heterosystem is determined as
follows:

_ytedy € (14)
dmegeqr’ 0 <r<Ry
Uenlr) = e? Ry<r<R
 Amegear

where:

+a@ - eA(Ry,R)),

VI = (o + EP -3y - ED)+  (16)
+ad) - (R, Ry) — a@ - e@(Ry,Ry).

Here %1, %2, Eg), Eg) are electron affini-
ties and permitted band width of InAs and
GaAs materials, respectively.

Energy transition into the fundamental
state in a strained quantum dot is deter-
mined in the following way:
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E@) = B - \0(2) DRy, 1)\ 1
~ |a@ - 8(2)(30 Rl)‘ ‘ EQ| - ‘ EP],

where Eyle), Ey(h) are the fundamental state
energies of electron and hole in the strained
QD, counted off the level of potential bar-
rier peak, as shown in Fig. 1.

To determine charge carriers spectrum in
the heterosystem under consideration, we
need to solve Schrodinger equation

2
- 712 v *1
e,h(r)

= E@RY, ,(r).

V + U, (r,Ro) W, () = (1®)

The Schrodinger equation (18) in the
spherical coordinates system is solved in the
form:

\Pnlm(r’®7q)) = Rnl(r) . Ylm(®’(p)' (19)

Here Y, (0®,p) are spherical Legendre
functions [14].

The analytic form of equation (18) solu-
tions depends on the energy sections and
heterosystem regions.

We shall find radial wave function R(r)

by changing to p(r) function:
R(r) = P(” (20)

Let us find the wave function of the elec-
tron in each of the energy sections I-III
(Fig. 1) in different QD heterosystem re-
gions.

1). Let us consider the case 0 <r <R,
(QD InAs medium).

The differential equation (18) for radial
wave function with respect to (14), (15) will
have the form:

dRY(r)
Rﬁe() 24 Ri l(l:zl)Rge)(r) L(21)
27, 0 4 )
t 2 (E + Ve + 47‘[8081r')R(| = 0.

Then we consider the solution of the
equation (21) in cases |E©@)|> [V and
[E@)] < [y,

a). |[E@)] > [V(0)] (energy section I (E©) < W),
W, = V1) — e2/4mgpe Ry in Fig. 1).

After the following variables are intro-
duced:
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é() = Bor’
1
(8m} (V1O + E©))2
BO = lK ﬁz )| H
1
62 mie 2

.
0 l4n8081hk2(v(€)+E(e))

the equation (21) will be written as Whit-
taker equation:

’ 22
Eszli()(r) + (22)
1 ko 1/4-(@+1/2)2) 10
+_Z+§0+ = pi =0

The solution of the equation (22) with
respect to the finiteness of the wave func-
tion in the point r =0 is expressed with
hypergeometric function F(a,b,x) [15].
Taking (20) into account, we obtain the fol-
lowing for the fundamental electron state

R0 - @3)

b). |[E®| <|V)] (energy sections II
(W; < E@® <W,), energy sections III
Wy < E) < 0), Wy = — e2/4ngge,R, in Fig. 1).

In this case, the equation (21) will take
the form of Coulomb equation:

A2 e o (24)
de? —2aP1 (r)
+ (1 _ 2_1 + @)p?’jﬂ(@(ﬂ =0
€1 &7
where
E_yl = B]_r7
1
|( 2m} (V© + E©))2
Bl = k ' hz 5
1
% 2

Y o2 ( my
1= 4n8081hk2(V(9) + E@©)

e

The solution of Coulomb equation (24) is
Coulomb function [15]. Taking (20) into ac-
count, the solution for the fundamental
electron state is as follows:
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exp(—m - ky/2) - T(1 + iky)
' r2) -
x By - exp(=ipyr) - {F1(1 - iky,2,2iByr). (28)

©
RILIIO(r) =

2). Let us consider the case Ry <r <R,
(GaAs matrix).

Equation (18), with respect to (14), (16),
will take the form:

i R& ") 1(151)1,%%)(’“)+
(26)

R%()

*

+ (E(e) + )Rgf) =0

47‘[80827‘

As in all the energy region (sections I-III
in Fig. 1) |[E®)| > 0, equation (26) can be
written as Whittaker equation:

d (e (27)
y pI ILITO ) 4
£3

k _ 2
n _l n _2 " 1/4 (l2+ 1/2) pé’ﬂ"ﬂ'[(e)(r) =0
4 ¢& &3

where

€ = Bar,
1
(8m3 E@)2
By = ILT) ;
1

kg = :
2 4n80827z\2 E(e) )

In this case, radial wave function for the
electron in its fundamental state for energy
sections I, II, IIT (Fig. 1) is a linear combi-
nation of hypergeometric functions {F(aq,
by, x) and U(a,, by, x) [15]:

R12',II,III(“)(,~) = (28)
+Cy - By - exp(—Bor/2) - U - ky,2,B97).

The conditions of wave functions conti-
nuity and probability flow density on QD-
matrix boundary

|Rﬁe M), - g, = REPO, ~ g » (29)
11 Ri’h(r) 1 dR§M()
|Lm>ieh dr - Ry mzeh dr - Ry’

define E(®h) spectre and wave functions of
electron and hole in InAs/GaAs heterosys-
tem with InAs quantum dots, together with
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regularity condition of R(e:A)(r) function at
r— 0 and r - R, and normalization con-
sideration.

So, for energy section I: E() < Wy, in
which wave functions of the electron in
INAs QD and GaAs matrix are determined
respectively by the expressions (23) and
(28), we obtain the following dispersion
equation for calculating the energy of elec-
tron fundamental state:

a13091033 + A11092033 — (30)

— @11093a39 — A19031a33 = 0.
In energy section II W; < E(© <W,
(wave functions of the electron are deter-
mined by the expressions (25) and (28)) dis-

persion equation for the energy of electron
fundamental state has the form:

a13b21agz + by1a92033 — (81)
= by1a93a39 — ay9b91033 = 0,

where:

ay1 = Bg - exp(-BoRy/ 2) - 1F1(1 — kg,2,BoRp);

ay9 =Py - exp(-PaRy/2) - 1F1(1 - k2,2,5230)§

ay3 = —Pg - exp(—BsRy/2) - U1 - k9,2,B5R);

B - exp(—BoRy/ 2) y

a9y =

2m’ie
x ((1 = ko) - 1F1(2 = ky,3,B0Ry) — 1 F1(1 - k0,2’BOR0));
d22 = — x

2m}
X (= ky) - 1 Fy(2 = ByB,ByRo) = 1Fy(1 = kg, 2,B5R0));

[3% - exp(—ByRy/2) y

g3 = —
23 «
2mze

X ((1 — ky) - U2 — ky,3,B4Ry) — %U(l - k2,2,[32R0)j;

exp(-n - k1/2) - T(1 + iky)
X

b =
1 r@)
x By - exp(-ifyRy) - 1F1(1 — iky,2,2iB1 Ry);
exp(_»n k1/2) r(l + lkl)
by =1
re)
2 _iB. R
« BleL:Blo)((l —iky) - 1 F1(2 - iky,3,2iBR) -
my,
— 1F1(1 - ik1,292iB1R0) °

In energy section III W, < E©) <0 the
dispersion equation will be written in the
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Fig. 2. The dependence of basic optical tran-
sition energy E in coherent-strained QD on
its size R,: 1 — the dependence E(R;) in QD
without impurities; 2 — the dependence
E(Ry) in QD with ionized donor impurity.

form (32), as RII“(r) = RI“(r), RHIO(r) =
RO,

Analogically we determine the spectre of
E®) and hole wave functions in InAs/GaAs
heterosystem with InAs quantum dots, using
continuity conditions (30) as well as func-
tion RM(r) regularity condition at r — 0
and r - Ry, and taking into account the
normalization.

Fig. 2 shows numerical computation of E
basic optical transition energy, in coherent-
strained quantum dot InAs/GaAs (001) depend-
ing on its size Ry with and without ionized Si
donor impurity (curves 1 and 2, respectively,
in Fig. 38). The calculation was made for
InAs/GaAs nanoheterosystem with InAs QD at
the following parameter values [16, 17]:

a; =6.08 A, ag =5.65 A,

C{) = 0.833 Mbar, C{¥ = 1.223 Mbar,

C{Y) = 0.453 Mbar, C{3 = 0.571 Mbar,

all) = -5.08 eV, al® = -7.17 eV,

all) =1 eV, al® =1.16 eV,

X]. =49 eV, X2 =4.07 eV,

Eg) = 0.36 eV, Eg) =1.452 eV,

m*l‘e = 0.057m,, m*26 = 0.065m,,

m’ih = 0.41m,, m§h = 0.45m,,

o = 41 meV/A2.

As one can see in Fig. 2, in case of quan-
tum dot R, increase, the basic optical tran-
sition energy decreases monotonously, both
with and without impurities, that is, optical
transition shifts to long wavelength region.
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Fig. 3. The dependence of the basic optical
transition energy shift on QD radius, caused
by the presence of ionized donor impurity.

For smaller radiuses (Ry ~ 40 A=+ 57 A) the
energetic width of E basic optical transition
in quantum dots is larger with donor impu-
rities than without them. In particular, at
Ry =40 A the main transition energy in co-
herent-strained QD without impurities is
E = 785.5 meVB, while with an impurity it
is 1005.2 meV. At large QD sizes Ry > 58 A
the effect is the opposite.

The equality in Ry > 58 A corresponds to
QD size, at which ionized donor centre of
coherent-strained QD does not change the
basic optical transition energy.

So the change of energetic width of the
basic optical transition (E = E9 + AE, +

AE4,p) in coherent-strained QD with ionized
donor impurity with its size Ry can be ex-
plained by different behaviour of the com-
peting components AE(p and AE;,, with R,

increase (E is the component, correspond-
ing to the basic optical transition energy in
undeformed QD without donor impurities;
AE(p is the component of transition energy,

induced by the presence of ionized donor
impurity; AE,,, is the component of transi-
tion energy, induced by impurity-free QD
deformation potential).

The analysis of dependencies (14)—(16)
shows that the potential energy of charge
carriers in QD depends on its size in a non-
monotonic way. Impurity implantation into
QD leads to a substantial increase of poten-
tial well for electron as well as for hole in
QD (for ~156 meV) compared to their values
in QD without impurities (Fig. 1). At the
same time, the potential well of both carri-
ers reduces with the increase of radius QD
Ry, and starting with Ry = 58 A increases
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under the influence of deformation effects
in smaller-sized QD’s (40 A< R,y <58 A).
So, in a quantum dot with ionized donor
centre on QD sizes range 40 A< Ry <58 A
the electrostatic component of QD potential
well deepens it for AU, which is smaller
than the value of its reducing of depth
caused only by deformation potential. The
depth reducing of the well in QD size
changing range R, ~ 40 A+ 58 A leads to
the increase of electron and hole energy lev-
els in QD compared with their state in QD
without impurities, which is accompanied
by optical gap widening for QD with an
impurity. Beyond this QD sizes range the
opposite effect is observed: the wells deep-
ening for both types of charge carriers.
This is connected with the surface influence
(Laplace pressure) decrease and complete
deformation of QD lattice material. So, in
large-sized QD’s electron and hole levels de-
crease as to their levels without charged
impurity. Fig. 8 shows the dependence of
the basic optical transition energy shift on
QD radius, defined by the presence of ion-
ized donor impurity. The energy shift is
calculated from the level of energy transi-
tion into the fundamental state in QD with-
out impurities. Thus the region of negative
energies corresponds to the range of QD ra-
diuses (R, ~ 58 A = 100 A), at which the op-
tical gap of QD without the impurity is
wider than with it. As we can see from Fig. 3,
the energy transition shift into the funda-
mental state reduces monotonously with the
increase of QD size. Here the shift value is
more than in the case of smaller radius
QD’s (40 A< R,y <58 A). In particular, the
value of the shift under consideration at QD
radius Ry = 40 A is 219.6 meV, and if QD
radius Ry = 100 A, it is —44.1 meV.

Thus, the pre-calculated fundamental op-
tical transition energy in coherent-strained

QD with the ionized centre can be used,
depending on its size, in the growing of
quantum dots with electrically active cen-
tres. In particular, the problem solved lets
us indicate the quantum dots sizes by pho-
toluminescence spectres (Ry = R, Fig. 2), at
which the effect of these centres is compen-
sated by deformation potential: as a result,
these centres do not influence the basic op-
tical transition energy.
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BniuB nomMimKu Ha eJEeKTPOHHMI Iepexisn
Y KOTepeHTHO-HANPYKEHIiM KBAHTOBIN TOUYIIi

0.0.Janvrie, P.M.Ilenewar

YV pamkax momeni medopmMaliifHOrO MOTEHIiaJy MOCJIiIMKEHO BILIMB JOMIIIIKKM Ha eHepre-
TUYHY IAPUHY ONTHYHOI IMiJIMHK KBAHTOBOI TOuKu. BcraHoBieHo, 1o 3i 30iJbIIeHHSM
po3mipiB KBaHTOBOI TOYKM 3 i0OHI30BAHOIO [JOHOPHOIO [JOMINIKOIO ONTHYHA II[iJIMHA
3BysyeThca. s menmmx pagiycis (Ry ~ 40 A+ 57 A) eHepreTUYHa IIUPUHA OCHOBHOIO
onTUYHOro mepexoxny E y KBAaHTOBUX TOYKAX 3 JOHOPHUMMK IoMimkamu Oisbira, HiK 6es
momimrok. ¥V pasi Gimpmmx posmipiB KBaHTOBHX TOUYOK Ry > 58 A cIIoCcTepiraeThCsAa IIPOTH-

JeKHUN e(eKT.
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