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An approach to the problem of mass transfer in a solidifying binary melt is considered
based on the principle of the least energy dissipation. A simple example has been presented
demonstrating the good prospects of that approach to the solidification problems.

Paccmorpen momgxon K mpobsieMe MaccollepeHoca B 3aTBEPAeBaloleM OMHAPHOM pacILiase,
OCHOBAHHBLIM HA HPUHIIUIIE HAMMEHBIIIEro paccesHus: sHepruu. Ha mpocTrom mpumepe mokasa-
Ha IIePCIIEKTUBHOCTh TAKOr'0 IOAXO0Aa K IIpobyeMaM 3aTBEePAeBAHU.

It is obvious that the development of any
technology of crystal growing from melt de-
pends to a great extent on the successful
solution of the mass transfer problems asso-
ciated with that technology. The problem of
substance transfer in a solidifying melt (re-
ferred to also as the Stephan problem or the
solidification problem) possess a specific
place among those problems. It is sufficient
to mention that its partial solution as long
as five decades before [1] made it possible
to substantiate the hypothesis on the con-
centration overcooling of melt and thus to
make a break-through in the development of
the melt crystallization methods. It is just
investigation results in the field of the so-
lidification problem that would allow antici-
pate similar break-throughs in the technol-
ogy of crystal growing from melt. The
rather complicated calculation of thermal
and concentration fields in problems involv-
ing mobile boundary (being the crystal-
lization front) requires non-traditional ap-
proaches and stimulates the improvement of
known methods and search for new ones [2].
So the differential problem on the impurity
diffusion in a solidifying melt can be re-
duced to a variational one by selecting an
appropriate integral functional with an un-
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known integration range [3]. That approach
to the solidification problem can be consid-
ered as an application of the classical calcu-
lus of variations [4]. At the same time,
analysis of so obtained functional has shown
[3] that its value is in proportion to energy
being dissipated at the impurity diffusion
in the melt that should take the minimum
value according to thermodynamics laws. In
this connection, it is of interest to state the
problem basing ab initio not on the diffu-
sion equation but on the integral thermody-
namic principle that is the minimum energy
dissipation one. This work is aimed at con-
sideration of that approach to the mass
transfer problem in a diluted binary melt
under solidification.

The principle of minimum energy dissi-
pation formulated first by Onsager for a
special case of heat conduction [5] and re-
ferred to as the Onsager principle was de-
veloped further and generalized for the
whole nonequilibrium thermodynamics by
Gyarmati and co-workers. Those works re-
sulted in a book [6] containing the state-
ments forming the base for our approach.
To provide an entirety to our considera-
tions, let us start from one of general On-
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sager principle formulations and finish by a
specific example of its use.

For the transfer of a substance within
the volume V of a medium (isotropic and
homogeneous), that principle can be pre-
sented as

I[JX— ¥];dV = max, )]
v

8J =0, 86X =0, 2)
where X is thermodynamic force; J, the
substance flow across a unit area caused by
that force; W, so-called nonequilibrium scat-
tering potential. (Although J is by defini-
tion the flow density, we will refer it to as
flow, for short). The variation conditions
(2) mean that the functional (1) is varied
with respect to forces, the flows being
fixed. It is just that presentation of the
principle (in terms of forces) that is used to
consider the transfer problems.

Let us assume further that the medium
is a melt and the substance being trans-
ferred consists of impurity particles of one
and the same kind having the diffusion co-
efficient D and concentration C expressed
as the mole fraction and depending on coor-
dinates and on time #. The impurity concen-
tration in the melt is assumed to be low,
the resulting solution, to be diluted, and
the melt density p, to be constant over the
whole volume. If the diffusion is considered
within a relatively small region of the melt
(the diffusion zone), the temperature T
therein can be assumed to be constant and
the diffusion process itself, to be isothermal.
In this case, along with the principle presen-
tation in terms of forces, it is expedient to
use its energetic expression. Then the flow J
will be conjugated to a corresponding force
X =—-Vu where p is chemical potential of
the diluted solution. The quantity JX equal
to To (where o is entropy formation) will
present the energy being dissipated as the
impurity diffuses in the melt.

The specific form of the potential W (that
is of a specific importance in Onsager theory)
depends on the functional relation between J
and X. In linear thermodynamics of irre-
versible processes being the frame of our
studies, the following relations hips are valid:

J=LX=-LVy, 3)
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and W = LX2/2 = L(Vn)2/2, where L is the
Onsager coefficient.
Substituting the above expressions for X

and ¥ into (1) and changing the sign, we
obtain

[ {JVM + % L(VM)Z}dV ~ min. (4)
v

Using the identity known from the vector
analysis and the Gauss-Ostrogradsky theo-

rem on divergence, we transform the ex-
treme condition (4) into

IEL(VW _ pVJ}dV +[ nIdQ = min, )
14 Q
where Q is the surface confining the diffu-

sion zone. Now let the impurity balance
equation be used:

pC + VI =0 (6)
and present the expression (5) in the form:
[ {%L(wﬁ + puC}dV + [ uda@ = min, (9

4 Q

where, along with J, the quantity C is not
varied, according to (6). The diluted solu-
tion can be assumed to be ideal, and there-
for, the following formula [7] is valid:

uw(€) = u(C,) + RTInC/C,, (8)

where R is gas constant and C,, a certain
characteristic impurity concentration in the
melt. For the concentration range near C,,
the expression (8) can be linearized:

RT 9
WO =uC) + gc-¢c). P
a
In this case, the coefficients L and D will
be in the following correlation:
pC, (10)
" RT D.

Finally, making use of (3), (7), (9), and
(10), we obtain a functional

L

1) = | ED(V(»2 ¥ C'C}dV - [ voycaa. D
14 Q

Our extreme problem is reduced to its mini-
mization.

Note that in the first integral of Eq.(11),
the quantity VC is varied while it is not in
the second one. In this situation, it is im-
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possible to restrict ourselves by the defini-
tions of the variation conditions adopted in
[6] as in the case, e.g., of the functional (7)
where those conditions have the form &C,

8J = 0, du # 0. From here on, the quantities
remaining fixed under variations will be in-
dicated by an upper bracket.

In connection with the above situation,
the local potential method [8] developed by
Glensdorf and Prigogine should be men-
tioned. The method is based just on the de-
pendence of a functional on two variables
that are different only in that one of those
is varied and the other in not. Since the
division of quantities into variable and in-
variable is postulated in the minimum en-
ergy dissipation principle itself, it is not
surprising that the Onsager theory shows cer-
tain common features with the Glensdorf and
Prigogine one. The relationship between those
two theories requires a special consideration
and is beyond the frame of this work.

So far, nothing was said on the melt
crystallization itself. To apply the func-
tional (11) to the solidification problem, the
boundary Q is to be mobile. Under account
for the fact that the approach to that prob-
lem based on the Onsager theory is consid-
ered here for the first time, the use of a
specific example will be the best way. The
example should be well studied to provide
comparison of the result that will be drawn
with those obtained using other methods.

Let us restrict ourselves by a simple pla-
nar case where the melt is crystallized at a
constant speed w along the z axis; the diffu-
sion zone is the melt layer confined by two
planes z = wt and z = A + wt; the crystal-
lization front (CF) coinsides with the first
one and its position on the z axis is set by
function ¢(t) = wt; D = const; the impurity
concentration in the z=h + wt is main-
tained constant: C(h + wt) = Cy. Another
boundary condition follows from the impu-
rity balance condition at the CF:

DC(9) = «(1 - RwWC(o). (12)

In those conditions, the functional of our
extreme problem takes the form

h+wt R R (13)
1ic@,) = | (%ch + Cthdz + D[C,CL,_,
p=wt

Here we use the indices for partial deriva-
tives with respect to z and ¢, upper bracket
to denote the invariable quantities and take
into account that [6C],_;,,,=0. It is
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known [9] that the case is reduced to sta-
tionary problem by changing z — z — wt.
After that change and taking into account
Eqg.(12), we obtain

1iC(2)) = (14)

h
- I (%DCE - wCZC}de — (1 = BW[CC] -
0

Let us pass to dimensionless variables
using the changes:

2—)22, C—>CC, I wCl. (15)
w

Then the functional (14) and boundary
conditions for C(z) take the form:

h . . (16)
1lc@) = [ (Y2C2 - €,00dz - (1 - BICCL,,,
0
C,(0) + (1 - k)C(0) =0, v
C(h) = 1. (18)

Thus, the problem of impurity distribution
within the diffusion zone adjacent to the
crystallization front is reduced to minimiza-
tion of functional (16) from the function
C(z) meeting the boundary conditions (17)
and (18) af two additional conditions: (i)
quantities Ct, and C remain fixed during
the minimization procedure, and (ii) after
that procedyre is finished, the equalities
C,=C, and C = C come into effect.

The problem formulated was solved in
two ways. In the first one, the variation
problem was reduced to the Euler differen-
tial equation and the exact problem solution
was obtained by solving the equation. Then,
using the calculus of wvariations direct
method, approximated solution was obtained
and compared to the exact one.

By varying the functional (16) taking
into account the first additional condition,
we obtain

h . (19)
oI = - (C,, + C,)5Cdz -
0 ~
=[C0) + (1 = KOO [[C1, -

By virtue of the necessary extreme condi-
tion as well as due to arbitrarity of 8C vari-
ation, both items in (20) should be zero.
Thus, taking into account the second addi-
tional condition, we obtain
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Table. Dependence of impurity concentration C on the distance z to the crystallization front as
calculated under two approximations and using the exact formula. I{C} is the corresponding

functional value.

z 0.0 0.2 0.4 0.6 0.8 1.0 1{C)
C approx | 1.4615 1.3262 1.2123 1.1200 1.0492 1.0000 | —0.38141
1% approw | 14622 1.3293 1.2205 1.1320 | 1.0598 | 1.0000 | -0.38434
Coraet 1.4622 1.3296 1.2211 1.1323 1.0595 | 1.0000 | —-0.38447
= 23
C,,+C,=0. (20) (23)

It can be noted that, although the factor at
[6Cl,—p in (19) does not provide any addi-
tional information (its zeroing results in the
condition (17)), the out-of-integral item in
(16) that forms the factor is a necessary
additive to the integral; without it, the
variation and differential problems would
be non-equivalent to one another. Solving
the Eq.(20) under account for (17) and (18),
we obtain the exact solution of our problem

[9]:

-z
Covant = k+ (1 - ke (21)
E+ (1 - ke

It is to note that the book [6] does not
contain any practical instructions on the
use of numerical methods in the problems
formulated basing on the principle of mini-
mum energy dissipation, although it men-
tions that such methods could be used and
this possibility is among the advantages of
the calculus of variations. Perhaps the
author [6] took for unnecessary to describe
the use of the Ritz method in problems of
that kind due to its simplicity. That sim-
plicity is seen clearly from the calculation
described lower.

The calculations were done for the case
when 2 =1 and k£ = 0.5. The solution in the
N-th approximation was presented as a se-
ries [10]:

N+1

CN = Z OLnZn Py
n=0

(22)

where o are coefficients determined from
the boundary conditions and the functional
stationarity condition (16) taking into ac-
count the above-mentioned additional condi-
tions. According to the first of the latter, a
series
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N+1
Cy= ZOan”,
n=0

was substituted into (16) along with (22).
According to the second condition, in ex-
pressions obtained after calculation of par-
tial derivatives of (16) with respect to inde-
pendent parameters o, the coefficients o
wereAchanged by o according to the equali-
ties o, _o, Then the coefficients o were de-
termined using the usual scheme. The calcu-
lation results are given in the Table. The
sequence of approximate solutions is seen to
tend to the exact one. As it should be ex-
pected in the case of minimum, the func-
tional values in the approximate solutions
exceed its value for extreme. Thus, this
work formulates for the first time the prob-
lem of impurity distribution in solidifying
melt using the principle of minimum energy
dissipation. The problem has been solved
using variation methods, including a nu-
merical one. The solution obtained coincides
with that of the solution formulated in dif-
ferential form. In this connection, to apply
the minimum energy dissipation principle to
the solidification problems seems to be very
promising.
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IIpo TepMoguHAMIUYHME MiAXix M0 MPoOJIEeMH TBEpPIiHHA
po30aBJIeHOTO OIHAPHOTO PO3IMJIaBY

B.M .Kaniwes

Posraaryro miaxixm mo npobieMu MacollepeHocy y OimapHOMY posmiaaBi mpu iioro
TBepJAiHHi, OCHOBaHUI Ha MPUHIIWIII HaliMeHIIOoro poacigsuHa eHeprii. Ha mpocromy npukaani
MOKAa3aHO MEPCHEeKTUBHICTL TAKOTO HMigXony Ao mpobJjieM TBEPAiHHA.
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