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The microscopic theory of current-carrying states in the ballistic superconducting microchannel is
presented. The effects of the contact length L on the Josephson current are investigated. For the
temperatures T close to the critical temperature 7' the problem is treated self-consistently, with
allowance for the distribution of the order parameter A(r) inside the contact. The closed integral equation
for A in strongly inhomogeneous microcontact geometry (L < &, where & is the coherence length at
T =0) replaces the differential Ginzburg— Landau equation. The critical current I (L) is expressed in
terms of the solution of this integral equation. The limiting cases of L << & and L >> & are considered.
With increasing length L, the critical current decreases, although the ballistic Sharvin resistance of the
contact remains the same as at L = 0. For ultrashort channels with L 574, (aD DUF /0, where w, is
the Debye frequency) the corrections for the value of the critical current 7 (L = 0) are sensitive to the

strong-coupling effects.
PACS: 73.23.—b, 74.50.+r

1. Introduction

Weak superconducting links [1] include the tun-
nel structures SIS (superconductor —insulator —su-
perconductor) and the contacts with direct conduc-
tivity, SNS (N is the normal layer) and ScS (¢ is a
geometrical constriction). Superconducting con-
strictions can be modeled as an orifice with diame-
ter d in an impenetrable sheet for electrons between
two superconducting half spaces (point contact) or
as a narrow channel with length L in contact with
superconducting banks (microbridge). Aslamazov
and Larkin [2] have shown on the basis of a solu-
tion of the Ginzburg-Landau (GL) equations that in
the dirty limit and for small sizes of the constriction
L, d << &) [&T) is the GL coherence length] the
SCS contact can be described by a Josephson model
with the current-phase relation

I=Ising, I =m)(T)/(4eRT) . (1)

where [ . 18 the Josephson critical current; A, is the
absolute value of the order parameter in the bulk
banks; T, is the critical temperature and R, is the
normal-state resistance of the dirty microbridge.

The critical current of the microbridge (1) depends
on the bridge length as I, [11,/L. The expression
(1) is valid within the domain of applicability of
the GL approach, i.e., for temperatures T close to
T, and L,d>>¢, (§ =v, /T, is the coherence
length at T =0, and v, is the Fermi velocity).

The present level of technology has made it
possible to study the ultrasmall Josephson weak
links with the dimensions up to interatomic size.
For example, they can be nanosize microchannels
produced by means of a scanning tunneling micro-
scope [3] or point contacts and microchannels ob-
tained by using the mechanical controllable break
technique [4—6]. The microchannels between two
superconductors can also arise spontaneously as mi-
croshorts in tunnel junctions [7], with the length L
determined by the thickness of an insulator layer.
The value of the critical current I, of such mi-
croshorts is of special interest in the case of tunnel
structures based on high-T, metal-oxide compounds.
Small microconstrictions with dimensions of the
order or smaller than the coherence length &,
when the expression (1) for the critical current
I, 01/L is not valid, require the microscopic con-
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sideration even for T near T, . Such microscopic
theory of stationary Josephson effect in microcon-
strictions was developed in Ref. 8 for the ballistic
channel of zero length L =0 in the model of the
orifice with diameter d << & - The Josephson cur-
rent in this case is given by

W)y BT cos 0/2)
I= eRO smjtanh? ,
(2)
-n<¢ <T,
R = % Se’v, N(0) (3)

where S =1d?/4 is the contact cross-sectional
area, and N(0) = mpy /(2m) is electron density of
states at the Fermi surface. At temperatures
T,-T <<T, expression (2) coincides with the
Aslamazov-Larkin result [Eq. (1)], in which in-
stead of the normal resistance R, for dirty metal,
the ballistic Sharvin resistance [9] R, (3) is substi-
tuted.

In this article we present a microscopic theory of
current-carrying states in the ballistic microbridges
of arbitrary length L in the scale of the coherence
length &, . We have investigated the dependence of
the Josephson critical current on the ratio L/ & and
analyzed the transition from the case of
I (L =0)[Eq. (2)] toI, 1/L [Eq. (1)] with in-
creasing length L.

In Sec. 2 we formulate the model of a micro-
bridge and the microscopic equations for Green’s
functions with boundary conditions at the bridge
edges. In studying the effects on the critical current
of the lenght of the microconstriction, the crucial
point, as always, in the inhomogeneous supercon-
ducting state is the self-consistent treatment of the
order parameter distribution A(r) inside the weak
link. In Sec. 3 the closed integral equation for the
order parameter A in the microchannel is derived for
temperatures near 7', , which in a strongly inhomo-
geneous (L [J&;) microcontact geometry replaces
the differential GL equation. The critical current
I (L) is expressed in terms of the solution of this
integral equation. The limiting cases of L <<§
and L >> &, are considered. We will show that in
addition to the characteristic scale §, , there is the
length a,, = v /W, (wy, is the Debye frequency)
in the case of an ultrasmall channel. The length
L Oay, is the length at which the frequency of the
ballistic flight of an electron from one bank to
another becomes comparable with the frequency
Wy which characterizes the retardation of the
electron-phonon interaction. In conventional super-
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Fig. 1. Model of ScS contact as narrow superconducting channel
is in contact with bulk superconductors S, and S, .

conductors the value of the coherence lengtho &
about 10™* c¢m, is much larger than ap, 1100 A. In
high-T, metal-oxide compounds, howerer, we have
a situation in which &, is comparable with a .
Thus, in high-T, compounds the critical current of
the contact with dimensions Ua,, [Jg; is sensitive
to the effects of strong coupling.

2. Model and basic equations

We consider the model of a contact in the form
of a filament (narrow channel) that joins two
superconducting half-spaces (massive banks)
(Fig. 1). The length L and the diameter d of the
channel are assumed to be large as compared with
the Fermi wavelength A, , so we can apply the
quasi-classical approximation. In the ballistic case,
we proceed from the quasi-classical Eilenberger
equation for the energy-integrated Green’s func-
tion [10]:

a A N N
vFa—+[wr3+A,G]=o, (4)
r
where
f O
G(w, v ,r)=%7w _‘*’ @

is the matrix Green’s function which depends on the
Matsubara frequency w, the electron velocity on the
Fermi surface v , and the spatial variable r;

N p Al
A =0, O
0g
is the superconducting pair potential, {i
(i =1, 2, 3) are Pauli matrices. Equation for the
matrix Green’s function (4) is supplemented by the
normalization condition [11]

A~

G*=1. (5)
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The off-diagonal potential A(r) must be deter-
mined from the self-consistency equation

Ar) =N2rd S OF O, (6)

w>0

in which [..Ostands for averaging over directions of
vy on the Fermi surface, and A is the electron-pho-
non coupling constant. In the BCS model the sum-
mation over w contains the cutoff on the frequency
Wy, , which is of the order of the Debye frequency.
The equations (4) and (6) are supplemented by
the values of the Green’s functions and A in the
bulk superconductors S, and S, far from the chan-
nel ends:
o (01'3 + A1,2
G, = — (7)

B, =By (cos /2T, £ sin (9/2)1,) |

Thus the phase ¢ is the total phase difference at the
contact. We also must determine the boundary
conditions concerning the reflection of the electrons
from the surface of the superconductors ry . For
simplicity we assume that at r¢ electrons undergo
the specular reflection. Then for quasiclassical
Green’s function we have the boundary condition

(Ref. 8)

G(vy, , rg) = G(vy, , 1), (8)

in which v and v}, are the velocities of the inci-
dent and specular reflected electron. These veloci-
ties are related by the conditions, which conserve
the component of v parallel to the reflecting sur-
face rg and changes the sign of the normal compo-
nent.

The solutions of Egs. (4) and (6) allow us to
calculate the current density j:

j() = — 4imeN(0)T z 5. g,0 9)

w>0

In the case of the microconstriction shown in
Fig. 1, under the conditions d << &, and L >>d
(d is the contact diameter) inside the filament we
can solve the one-dimensional Eilenberger equations
with A = A(z). The banks of the bridge are equiva-
lent here to certain boundary conditions for the
Green’s function G(v, , 2) at the points 2z =+ L /2.
Following the procedure which was described in
Ref. 8, we find the Green’s functions at the end
points (z =+ L/2) from the general solutions of
Eq. (4) in superconducting half-spaces S, and S,
with conditions (5). They are given by
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~

Ge=5 L/2) = Gy
+ Al T, - [wcos (9,/2) +inQ sin(0,/2)] T, 7

5 [wsin (0/2) - inQ cos (02117,  (10)

where Q =V 1_5(2) and n =sign (v,). The arbi-
trary constants A; , must be determined by match-
ing these boundary conditions with the solution for
G(v, , 2) inside the channel.

Taking the off-diagonal components in Eq. (4),
we have the following first-order differential equa-
tions for the anomalous Green’s functions:

d

f
0, gy 200, =20,

(11)
d
-, ;ZZ’ + 20, = 202)g, -

The normal Green’s function g , as follows from
condition (5), is expressed in terms of f,, and f(t):

9o,= V-1 1, - (12)
From Egs. (6), (9), (11), and (12) we obtain the

symmetry relations

fi(v,, 2) = [f (-0, , 15 b)) =0(=2) (13)

and the current conservation inside the channel

dj/dz = 0.

3. Josephson current and order parameter
distribution in superconducting microchannel

In present paper we consider the case of tempera-
tures T close to the critical temperature 7, . Near
the phase transition curve the order parameter
A (T) in the banks is small. In order to find the
Josephson current in the lowest order in A, we
linearize Egs. (11) for A and obtain f, LA(T),
g, = 1= f, fi01-0(@2, jOA2. The equa-
tion for £ near T, takes the form

df,
0, gy T 20f = 20() , (14)

with linearized boundary conditions (10)

A
ffo,>0,2=2=L/2)= ",
w
(15)

AV
[0, <0,z=+L/2)=— 2
W
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Its solution for arbitrary function A(z) is given by

A,
70 ming/2,~(200/0 )L /2) 4

ffo,,2)= o
z
+e2w/v [ gy @ p202 /v, (16)
-nL,/2 ’

The Green’s function fi(v,,2) is obtained from
expression (14) with the help of relations (15).

Substituting the function f, (v, , 2) (16) in the
self-consistency equation (6), we obtain the integ-
ral equation for the space-dependent order parame-
ter inside the contact

L2

M@=A¢9+Ide@vK@—zb, (17)
-L/2

where

A(2) -)\21'[TZ % [t /o, coshmz— +i %ED
O

w0 P 0z i
(18)
INOERY. iy I%L e2e/o ] (19)
w>0 * :
denotes

The averaging U.0 <o
1

(F(v, =0, cos O)0 _ =Id(cos 6) F(cos 6) .

In the case of strongly inhomogeneous microcon-
tact problem the integral equation for the order
parameter A replaces the differential Ginzburg-Lan-
dau equation. It contains the needed boundary con-
ditions at the points of contact between the fila-
ment and the bulk superconductors. Some general
properties of the solution A(2) of Eq. (17) follow
from the form of the functions (18) and (19). Let
us write A(2) in the form

A@z) = A\(T) %05% +1iqg(2) sin %E (20)
0 O

and substitute it in Eq. (17). For the function ¢(z)
we obtain the equation

L/2

ﬂd=da+IdfﬂﬂK@-fD, (21)

-L/2
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with K(2) defined by (19) and the new out-integral
function b(z),

LORRY 1y L[t/ ginn T DU
W

O
K 0% o
@7 (22)
In obtaining Eq. (21) we have used the relation
w
Py (23)
)\2T[TZ—=1 , for T - T .

C

w>0

It follows from (19), (21), and (22) that the
function ¢(z) has such properties:

i) the function ¢(2) is real,

ii) g(z) does not depend on the phase ¢,

iit) ¢(=2) = - q(2), 9(0) = 0

Thus, the value of the order parameter A at the
center of the contact always is equal to
A\ (T) cos (¢,2). Also, the universal phase depend-
ence of A(z, ¢), which is determined by (20) and
i)—iii), leads (see below) to the sinusoidal current-
phase dependence j = j, sin ¢. It is emphasized that
these general properties of the ballistic microchan-
nel [within the considered case of “rigid” boundary
conditions (10) and temperatures close to TC] does
not depend on the contact length L, in particular,
on the ratio of L/€ .

Now we are going to obtain the Josephson cur-
rent in the system. To calculate the total current
I = Sy that flows through the channel at the given
phase difference ¢, we use the equation for the
current density (9) and the anomalous Green’s
function f,~(16) obtained above. The normal
Green’s function g, (12) in the second order in
BT) i g0, )= 1= Lo, f -0, I
It is convenient to calculate the current density at
the point z = 0. Using the expression for A(z) (20),
we obtain the general formula for the Josephson
current /() in terms of the function ¢(2):

I(¢) =1 sin¢ , (24)
16T>
IC = IO X
OF
L2

ol - 2 - O

xz @, e ‘*’L/UZDU ot 6J-a'z q(2) @ QW/UZDU >0l
w0 U
(25)

Here I, = TrA%(T)/(4eR0TC) is the critical current
at L = 0. Tt coincides with the result of Ref. 8 for
the orifice (2) at T near T, . Expression (25) jointly
with Eq. (21) for g(2) describes the dependence
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of the critical current on the contact length I (L).
It is valid for arbitrary value of the ratio L/§, .
Note that in our case T — T,, we have the relation

& L << E().

In reduced units (26), after taking the average
.0 - o, the equations for g(x) and J, take the
form”

1,2
Let us introduce the dimensionless quantities /
= 27
"L . I q(x) (27)
x=z/L, |= , —=2n+1, J =" 1/
/ Y nT’, o 1 i
(26)
Z [exp [=I2n + DI[1 - 12n +1)] PEi-IQ2n + 1)] +
bt 2n +1)
g
g
- g
v a1 [dx g P2 DA o i 210 + 11D, (28)
2n +1) 0
g
where
b)) =AY L < 2 expl-I(n + )] sinh [212n + 1)x] +12n + 1) = 20E{~I2n + 1)(1 - 22)]
0 2n +1)
n=0
+1Q2n + 1)1 + 20)Ei[-I(2n + (1 + 223, (29)
O
N stituting this ¢g(x) in Eq. (27), we find a =2 +
K(x) = -2\ z Ei[-212n + 1)x] . (30) + O(1/1). Calculating J, (28) with g(x) = 2x, we
=0 find that the order parameter and the critical cur-

X
The function Ei (x) = [ [(exp t)/t] dt is the integral

exponent. The upper limit N in the sums over 7 is
related to the cutoff frequency )y, in the BCS

model, N=w, /T, .

constant A is related to N by Eq. (23) or, in
reduced units,

The value of the coupling

A Z @2n+1)
n=0
In the weak-coupling limit of A << 1, we have
N >> 1.

In the general case of the arbitrary value of the
parameter [ (I =L/¢,) Eq. (27) is a convenient
starting point for the numerical calculation of the
function J (/). We consider here two limiting cases,
[>>1and [ << 1.

For a long microbridge with [ >>1 we seek
a solution of Eq. (27) in the form ¢(x) = ax. Sub-
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rent are

Nz) = 0@05%+1f51 gé L>>¢&, , (31)
14 Rop
I(L)= 22 B3, 77 T L L>>¢& . (32)

Expressions (31) and (32) coincide with the solu-
tion of GL equations (with effective boundary con-
ditions for the order parameter A) for the clean
superconducting microbridge [12]. Thus, our micro-
scopic approach with the boundary conditions (10)
for the Green’s functions (not for A) gives the
results of the phenomenological theory at L >> € .

For a short microbridge with [ << 1, in zero
approximation on [ we find that g(x) = 0 [A(2) =
=N, cos (9/2)], J,=1 or, in dimension units,
I,(0)=1,, in agreement with formula (2). The
corrections for the zero approximation depend on
the value of the product IN. For very small
<< T, /w, (e, L<<ap=uv; /0, the pro-
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duct IN is small, although N >> 1. As a result,
when g(x, ) and J (/) are calculated in the region
L<a,, the cutoff in the sums over n must be
taken into account. Apparently, when the cutoff
frequency appears explicitly but not through the
value of T, the applicability of the BCS theory
becomes questionable. More rigorous consideration,
based on the Eliashberg theory of superconducti-
vity [13], is needed in this case. Nevertheless, by
using the BCS model with cutoff frequency we
assume qualitatively to take into account the retar-
dation effects of electron-phonon coupling in our
problem. In the domain, defined by the following
inequalities: IN << 1, N >>1, [ << 1, the func-
tions b(x) (29) and K(x) (30) have the asymptotic
behavior:

O

b(x) = 4NINFx In (IN) + 2(C + 1n 2) +
O
O

ﬁn ﬁm 2 In (1 - 42 )DD, (33)
- 2xQ I

K(x}) = - 2AN[ In QINlx) = 11.  (34)

Where C = 0.577 is the Euler constant. As follows
from Egs. (33) and (34), in this case the integral
term in Eq. (27) is small, and calculating the criti-
cal current in the first approximation on the small
parameter [N, we can set g(x) = b(x). As a result,
we have

Az) = ,(T) |‘_¢os O 4 ibe /L) sin ‘g@, L<<a,,
(35)
with b(x) is defined by expression (33),

I(L)=1 S 8 folo L << (36)
= - O ary, .
0 D
‘ o ™ Y

In the region {{ << 1 and IN < 1} the integral
term in Eq. (27) is numerically small as compared
with the out-integral term b(x). Using in Eq. (27)
the g(x) = b(x) as a rough approximation, we calcu-
late the function J (/) shown in Fig. 2.

For the case I << 1 and IN >> 1, we set N = »
in the equation for g(x) and J (I). The corrections
for the critical current in this region of length L can
be estimated as

I =1

=1 —const—ln E a, << L <<§,

. (37)

O
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Fig. 2. Dependence of the critical current I on the contact
length L for the microbridge (solid line). The coupling con-
stant A = 0.2. For comparison, the dependence I (L) for SNS
contact (A = 0 inside the channel) is shown (dashed line).

The expressions (32), (36), and (37) describe
the dependence of the critical current on the contact
length in the limiting cases of short and long
channels. With increasing length L, the critical
current decreases. For ultrasmall L < a;, the value
of &I, /I, (1/N\(L/€,) directly depends on the
BCS coupling constant A, and consequently it is
sensitive to the effects of the strong electron-pho-
non coupling.

4. Conclusion

We have studied the size dependence of the
Josephson critical current in ballistic supercon-
ducting microbridges. Near the critical temperature
T , the Eilenberger equations have been solved self-
consistently. The closed integral equation for the
order parameter A (17) and the formula for the
critical current I, (25) are derived. Equations (17)
and (25) are valid for the arbitrary microbridge
length L in the scale of the coherence length,
& Lo /T, . In strongly inhomogeneous microcon-
tact geometry they replace the differential Gin-
zburg—Landau equations and can be solved numeri-
cally. In the limiting cases L >> &, and L <<§g,,
we obtained the analytical expressions for A inside
the weak link and for the I (L). The dependence of
I, on L is shown schematically in Fig. 3. For a long
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Fig. 3. Dependence of the critical current on the length of the

bridge. The asymptotic behavior for short and long bridges is

shown. The hatched region corresponds to the ultrashort micro-
bridge, L < v, /Wy, .

microbridge, L >> & > the critical current 1 /L is
in correspondence with the phenomenological analy-
sis. The main interest lies in the region L < ¢,
where a microscopic theory is needed. We have
calculated the corrections for the KO theory [8],
which are connected with the finite value of the
contact size. The expression (2) for the Josephson
current was obtained in Ref. 8 in zeroth approxima-
tion on the contact size. For the L << &  we find
that oI, /I, L(-L/&y) In (§,/L), where I is the
value of the critical current in KO theory. Thus, the
corrections for the value I ;) are small when L << ¢,
, but the derivative dI, /dL has a singularity at
L = 0. This singularity is smeared if we take into
account the finite value of the ratio T, /w0, . For an
ultrashort microchannel, L <a, Uov, /0w, (the
hatched region in Fig. 3), the length dependence of
the critical current is &I, /T, LJ-L/(Ag,;) (A is the
constant of electron-phonon coupling). In the very
small microcontacts we have a unique situation in
which the disturbance of the superconducting order
parameter can be localized on the length @, , making
essential the effects of retardation of electron-phonon
interaction. The ballistic flight of electrons through
the channel is a dynamic process with charac-
teristic frequency w, o, /L. For L smaller than
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ay, this frequency is comparable with the Debye
frequency @y, .

In summary, the critical current I, for the finite
contact’s size is smaller than I, . At the same time,
the normal-state resistance R, of the ballistic mi-
crochannel does not depend of the length L and
remains equal to the Sharvin resistance R (3). As
a result, the value of the product I, Ry, is not equal
T(A(%/ 4eT, and depends on the contact size. We have
considered here the quasi-classical case L >> t/py; .
In the quantum regime, L [17/, P the Sharvin
resistance R in Eq. (2) is substituted by the quan-
tized resistance of the contact, as was first shown by
Beenakker and Houten [14]. It follows from our
analysis that for such small microcontacts with
L < a;, the rigorous calculation of the Josephson
current requires taking into account the retardation
effects.
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