Activator centers in $Li_6Gd(BO_3)_3$:Ln (Ln = Ce, Eu) single crystals

M.F.Dubovik, O.V.Gayduk, B.V.Grynyov, T.I.Korshikova, A.V.Tolmachev, A.N.Shekhovtsov, R.P.Yavetskiy

STC "Institute for Single Crystals", National Academy of Sciences of Ukraine,
Institute for Single Crystals,
60 Lenin Ave., 61001 Kharkiv, Ukraine

Received September 10, 2003

The activator centers in $Li_6Gd(BO_3)_3$ single crystals doped by Ce and Eu have been investigated. Two types of activator centers in $Li_6Gd(BO_3)_3$:Ce single crystals and one activator center type in $Li_6Gd(BO_3)_3$:Eu ones have been established. The optical characteristics of activator centers have been determined.

Изучены активаторные центры в монокристаллах перспективного сцинтилляционного материала — литий-гадолиниевого бората $\text{Li}_6\text{Gd}(\text{BO}_3)_3$, активированного европием или церием. Методами оптического поглощения, фото- и рентгенолюминесценции установлено наличие двух типов центров в кристаллах $\text{Li}_6\text{Gd}(\text{BO}_3)_3$:Се и одного типа центров в кристаллах $\text{Li}_6\text{Gd}(\text{BO}_3)_3$:Еи. Определены характеристики активаторных центров.

Borate compounds are materials of good prospects to use in scintillation technique, quantum electronics and as phosphors. Their attractiveness is due to a number of physicochemical characteristics defined by the crystal structure peculiarities. The practical application of rare-earth borates is based on the spectroscopic properties of Ln activator ions [1-3]. In [1], the data have been reported on a promising compound Li₆Gd(BO₃)₃:Ce (LGBO:Ce) for neutron detection. However, there is no information in literature on optical centers formed by activator ion in this crystal. In this work, the activator centers are considered. The main activator centers and their characteristics are determined in LGBO single crystals activated by two rare-earth elements (Ce and Eu).

The questions associated with Ce and Eu valence in LGBO single crystals are to be considered in this connection. It is usually believed [4] that a rare-earth activator having bivalent stable states will have a highest state if its electronegativity χ is lower than that of host cation being replaced. For

example, in CaF2 crystals, europium has the Eu²⁺ charge state, while it has the Eu³⁺ one in CdF_2 , because $\chi_{Cd} = 1.4 \text{ eV} > \chi_{Eu} \cong \chi_{Ca}$ = 1.04 eV. Considering the χ values for cerium, europium, and gadolinium [5] we get that in LGBO:Ce, $\chi_{Ce} \leq \chi_{Gd}$ (1.08 and 1.11, respectively), thus, the Ce^4+ charge state is more preferable than Ce³⁺ one. LGBO:Eu, $\chi_{Eu} \leq \chi_{Gd}$ (1.01 and 1.11), i.e. most likely europium will have Eu³⁺ state in the host. Thus, there is the problem of expositive charge compensation in LGBO:Ce crystals. In the end, however, the charge state of rare-earth element in a host will be determined by the growth conditions and/or post-growth heat treatment [6].

An overlap of Gd^{3+} emission with 4f-5d absorption band of Ce^{3+} ($\lambda=320,350$ nm) is observed in LGBO:Ce crystal spectra. This results in the energy transfer from Gd^{3+} host ion to the activator and Ce^{3+} luminescence peaked at $\lambda=395$ nm. The excitation photoluminescence spectrum of LGBO:Ce crystals is shown in Fig. 1. Ce^{3+}

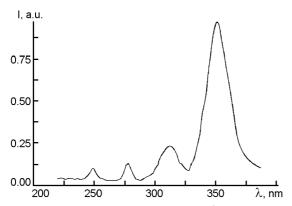


Fig. 1. Excitation spectrum of Ce^{3+} emission at $\lambda=395$ nm for $Li_6Gd_{0.955}Ce_{0.045}(BO_3)_3$ single crystal.

photoluminescence is excited in the bands at $\lambda = 245-250$, 270-280 nm corresponding to the $^8S_{7/2}$ $^{-6}D_j$ and $^8S_{7/2}$ $^{-6}I_j$ transitions of Gd³⁺ ion and at $\lambda=320,\ 350$ nm corresponding to the 4f-5d transitions of Ce³⁺ ion. Moreover, a peak at $\lambda = 300$ nm (Fig. 2, curve 1) appears in the LGBO:Ce crystal absorption spectrum. This peak is associated with the charge transfer $Ce^{4+} + O^{2-}$ \rightarrow Ce³⁺ + O⁻ (electron transfer from 2p orbital of oxygen to empty 4f shell of cerium) [7]. The intensity of the $\lambda=300~\text{nm}$ peak depends on Ce³⁺/Ce⁴⁺ ratio in the host crystal. According to the chemical analysis data, the Ce³⁺/Ce⁴⁺ ratio in the crystal is 1:4 and can vary depending on the growth conditions.

The absorption spectrum of LGBO:Eu³⁺ crystal (Fig. 2) comprises a broad band in the UV region and lines corresponding to f-f transitions of Gd^{3+} and Eu^{3+} ions. The band peaked at $\lambda = 250$ nm is a charge transfer one and corresponds to the electron transfer from 2p orbital of oxygen to empty 4f shell of europium ion: $Eu^{3+} + O^{2-}$ \rightarrow Eu²⁺ + O⁻ [8]. Under excitation in the Gd³⁺ absorption band ($\lambda = 245-250$, 270-280 nm), LGBO: Eu³⁺ crystals exhibit red luminescence. This evidences the transfer of excitation energy from Gd³⁺ to Eu³⁺. The emission spectrum of LGBO:Eu³⁺ consists of the peak at $\lambda = 313$ nm (Gd³⁺ emission) and the group of lines between 575 and 720 nm corresponding to transitions from the first excited state 5D_0 to the 7F_j (j=0-4) levels of Eu³⁺ ion (Fig. 3). As the europium concentration increases, the Gd3+ emission intensity at $\lambda = 313$ nm decreases. In the photoluminescence spectrum $Li_6Gd_{0.97}Eu_{0.03}(BO_3)_3$ crystal, the Gd^{3+} emis-

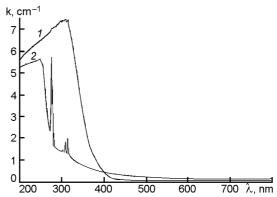


Fig. 2. Absorption spectra of single crystals: $Li_6Gd_{0.955}Ce_{0.045}(BO_3)_3$ (1); $Li_6Gd_{0.99}Eu_{0.01}(BO_3)_3$ (2).

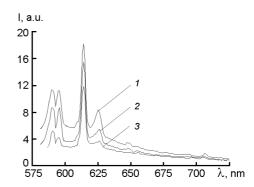


Fig. 3. $\text{Li}_6\text{Gd}_{1-x}\text{Eu}_x(\text{BO}_3)_3$ single crystals luminescence spectra of at excitation by $\lambda=276$ nm: x=0.03 (1); x=0.01 (2); x=0.003 (3).

sion is not observed, i.e. the full energy transfer from Gd^{3+} to Eu^{3+} occurs at europium concentration 3 at.%.

Let the peculiarities of LGBO crystal structure be considered. The regular LGBO structure consists of gadolinium and lithium polyhedrons. The distances between gadolinium cations and oxygen anions in gadolinium polyhedrons shaped as chain clusters extended along the b direction are within 0.2351 to 0.2556 nm. Lithium cations are coordinated with four and five oxygen anions, the Li-O distance being of 0.1875 to 0.2428 nm. Boron forms only boron-oxygen triangles unbound to each other but linking the gadolinium and lithium polyhedrons. The B-O distances range from 0.1369 to 0.1398 nm. The distances between gadolinium cations and the nearest lithium and boron ones are 0.265 to 0.322 nm and 0.274 to 0.286 nm, respectively. Comparison of Gd³⁺ (0.128 nm), Eu^{3+} (0.122 nm) and Ce^{3+} (0.102 nm) ionic radii for coordination number 8 allows the suggestion that the activator ions enter pre-

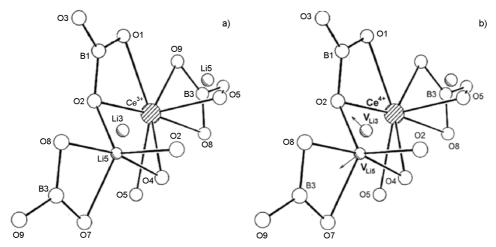


Fig. 4. Activator centers in LGBO:Ce single crystals: Ce_{Gd}^{3+} (1); Ce_{Gd}^{4+} , V_{Li} (2); the arrows show more probable position of lithium vacancies for charge compensation.

dominantly the gadolinium sites. The introduction of cerium as Ce⁴⁺ needs the excess positive charge compensation. The compensation may be realized due to formation of lithium or boron vacancies in the nearest coordination sphere of Ce⁴⁺ activator. But the lithium vacancy creation seems to be more probable [9]. A similar effect is observed in Li₂B₄O₇:Ln single crystals [3]. The analysis of absorption and luminescence spectra of LGBO:Ce and LGBO:Eu crystals and their structure allows to consider the existence of two types of activator centers in LGBO:Ce crystals and one activator center in LGBO:Eu crystals. Those are Ce_{Gd}^{3+} , i.e., Ce³⁺ being in the Gd³⁺ site of the crystal lattice (first type activator center, Fig. 4,a); Ce_{Gd}^{4+} , V_{Li} , i.e., Ce^{4+} being in the Gd^{3+} site of the crystal lattice, the excess positive charge being compensated by lithium vacancy V_{1i} (second type activator center, Fig. 4, 2); Eu_{Gd}^{3+} i.e., Eu^{3+} being in the Gd^{3+} site of the crystal lattice. The Ce_{Gd}^{3+} and Eu_{Gd}^{3+} activator centers are seen to be similar to one another and do not need any charge compensation. The positive charge compensation is necessary in $Ce_{Gd}^{4+} V_{Li}$ activator center. In this case, the electric neutrality equation can be written as $[\text{Li}_{6-x}\square_x][\text{Gd}_{1-x}\text{Ce}_x^{4+}]$ $[\text{B}_3][\text{O}_9]$, where [] is the crystal lattice site, \square is a vacancy. Two components, $\tau_1=5$ ns and $\tau_2 = 24$ ns, characterize the decay of Ce_{Gd}^{3+} activator center photoluminescence while the single component $\tau_1 = 1$ ms characterizes the decay of one.

In the frame of dipole-dipole approximation, the energy transfer probability P_{dd} from ${\rm Gd}^{3+}$ host ion to activators (${\rm Ce}^{3+}$ and

Eu³⁺) and critical transfer radius R_c were estimated according to [10]:

$$R_c = (K_c \tau_0)^{1/6}, (2)$$

where \hbar is the Plank constant; c, light speed; n, the reflection index; τ_0 , the decay time; R, distance between the donor and acceptor; E, energy; $\sigma(E)dE$, the integrated absorption cross section which we can get from the acceptor absorption spectrum; $F_d(E)$ and $F_a(E)$, spectra of donor luminescence and acceptor absorption, respectively. R_c is the critical transfer radius. The multiplier $(\epsilon_0/\epsilon_{eff}\sqrt{k})^4$ is assumed to be equal to 1 [10]. For $Gd^{3+} \rightarrow Ce^{3+}$ transfer, we get P_{dd} ~ $10^8 \ {\rm s}^{-1}$ and R_c ~ 5 E. Comparison of R_c and Gd-Gd distances in the chain (3.88 E) and that between the chains (6.68 E) allows us to conclude that the $Gd^{3+} \rightarrow Ce^{3+}$ energy transfer occurs most probably within the Gd-chain. In other words, the energy transfer from Gd^{3+} to Ce^{3+} can occur only from two nearest Gd³⁺ ions. This makes it possible to introduce rather high Ce³⁺ concentrations into LGBO crystals without concentration quenching of luminescence. In the case of LGBO:Eu $^{3+}$ crystals, we obtain P_{dd} ~ $3 \cdot 10^4~{\rm s}^{-1}$ and $R_c \sim 7$ E. Thus, the excitation

energy can be transferred from Gd^{3+} ion to nearest Eu^{3+} ions both within a chain and between neighboring chains. It is to note that exact determination of one-dimension or three-dimension $Gd^{3+} \rightarrow Eu^{3+}$ energy transfer is hampered at room temperature by a number of principal difficulties [11].

Thus, the activator center models have been proposed for LGBO single crystals doped by cerium and europium. Two types of activator centers in LGBO:Ce single crystals and one activator centers in LGBO:Eu single crystals have been established. In the frame of dipole-dipole approximation, the energy transfer parameters from Gd^{3+} host ion to activators ($\mathrm{Ce}_{\mathrm{Gd}}^{3+}$ and $\mathrm{Eu}_{\mathrm{Gd}}^{3+}$) and critical transfer radius R_c have been estimated.

References

- C.W.E.van Eijk, SCINT'97, Shanghai, China (1998), p.3.
- 2. B.V.Grinyov, M.F.Dubovik, A.V.Tolmachev, Optical Single Crystals of Complex Borate

- Compound, Institute for Single Crystals, Kharkiv (2002) [in Russian].
- 3. B.V.Grinyov, E.F.Dolzhenkova, M.F.Dubovik et al., in Book: Functional Materials for Science and Engineering, ed. by V.P.Seminozhenko, Institute for Single Crystals, Kharkiv (2001) [in Russian].
- 4. M.F.Dubovik, A.I.Promoskal', B.S.Skorobogatov, *Optika i Spektroskopia*, 22, 665 (1967).
- R.A.Lidin, L.L.Andreeva, V.A.Molochko, Handbook of Inorganic Chemistry, Khimia, Moscow (1987) [in Russian].
- V.Kh.Bagdasarov, in: Advances in Science and Engineering: Crystal Chemistry, VINITI, Moscow (1987) [in Russian].
- 7. H.Ebendorff-Heidepriem, D.Ehrt, Optical Materials, 15, 7 (2000).
- 8. V.Jubera, J.P.Chaminade, A.Garcia et al., J. Luminescence, 101, 1 (2003).
- 9. E.F.Dolzhenkova, V.N.Baumer, S.I.Gordeev, Kristalografia, 48, 614 (2003).
- 10. D.L.Dexter, J. Chem. Phys., 21, 837 (1953).
- 11. C.T.Garapon, B.J.Jacquier, J.P.Chaminade et al., J. Luminescence, 34, 211 (1985).

Активаторні центри у монокристалах $Li_6Gd(BO_3)_3$:Ln (Ln = Ce, Eu)

М.Ф.Дубовик, О.В.Гайдук, Б.В.Гриньов, Т.І.Коршикова, О.В.Толмачев, О.М.Шеховцов, Р.П.Явецький

Вивчено активаторні центри у монокристалах перспективного сцинтиляційного матеріала — литій-гадолінієвого бората $Li_6Gd(BO_3)_3$, активованого європієм та церієм. Методами оптичного поглинання, фото- та рентгенолюмінесценції встановлено наявність двох типів центрів у кристалах $Li_6Gd(BO_3)_3$:Се та одного типу центрів у кристалах $Li_6Gd(BO_3)_3$:Еи. Визначено характеристики активаторних центрів.