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The activator centers in LigGd(BOj); single crystals doped by Ce and Eu have been
investigated. Two types of activator centers in LigGd(BO3);:Ce single crystals and one
activator center type in LigGd(BOj);:Eu ones have been established. The optical charac-
teristics of activator centers have been determined.

MzyueHbl aKTUBATOPHBIE IEHTPHI B MOHOKPUCTAJIAX MEePCIeKTUBHOTO CIMHTUJLIAINOHHO-
ro Marepmana — JuTuii-ragonuHueBoro 6Gopara LigGd(BOj);, aKTHBHPOBAHHOTO eBpOIKEM
uiau mepueM. MeTogaMy ONTUYECKOro IOTJIOMIEHUs, (DOTO- ¥ PEHTIreHOJIIOMUHECIEHIUN yCTa-
HOBJIEHO HaJIW4YMe ABYX THIOB IeHTPoB B Kpucramiax LigGd(BOj);:Ce u ommoro tuma meHT-
pos B kpucramrax LigGd(BO3);:Eu. Ompenenens! xapaKTePUCTHKM AKTHBATOPHBIX I€HTDPOB.

Borate compounds are materials of good
prospects to use in scintillation technique,
quantum electronics and as phosphors.
Their attractiveness is due to a number of
physicochemical characteristics defined by
the crystal structure peculiarities. The
practical application of rare-earth borates is
based on the spectroscopic properties of Ln
activator ions [1-3]. In [1], the data have
been reported on a promising compound
LigGd(BO3)3:Ce (LGBO:Ce) for neutron de-
tection. However, there is no information in
literature on optical centers formed by acti-
vator ion in this crystal. In this work, the
activator centers are considered. The main
activator centers and their characteristics
are determined in LGBO single crystals acti-
vated by two rare-earth elements (Ce and Eu).

The questions associated with Ce and Eu
valence in LGBO single crystals are to be
considered in this connection. It is usually
believed [4] that a rare-earth activator hav-
ing bivalent stable states will have a high-
est state if its electronegativity X is lower
than that of host cation being replaced. For
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example, in CaF, crystals, europium has the
Eu2* charge state, while it has the Eu3* one
in Csz, because Xcd = 1.4 eV > XEu DXCa
= 1.04 eV. Considering the X values for ce-
rium, europium, and gadolinium [5] we get
that in LGBO:Ce, Xce < Xgq (1.08 and 1.11,
respectively), thus, the Ce** charge state is
more preferable than Ce3* one. In
LGBO:Eu, Xg,<Xgq (1.01 and 1.11), i.e.
most likely europium will have Eu3* state in
the host. Thus, there is the problem of ex-
cess positive charge compensation in
LGBO:Ce crystals. In the end, however, the
charge state of rare-earth element in a host
will be determined by the growth conditions
and/or post-growth heat treatment [6].

An overlap of Gd3* emission with 4f-5d
absorption band of Ce3* (A = 320, 350 nm)
is observed in LGBO:Ce crystal spectra.
This results in the energy transfer from
Gd3* host ion to the activator and Ce3* lu-
minescence peaked at A = 395 nm. The exci-
tation photoluminescence spectrum of
LGBO:Ce crystals is shown in Fig. 1. Ce3*
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Fig. 1. Excitation spectrum of Ce3* emission

gle crystal.

photoluminescence is excited in the bands at
A = 245-250, 270—280 nm corresponding to
the 8S;,9—%D; and 8S; %I, transitions of
Gd3* ion and at A= 320, 350 nm corre-
sponding to the 4f-5d transitions of Ce3*
ion. Moreover, a peak at A = 300 nm (Fig. 2,
curve 1) appears in the LGBO:Ce crystal
absorption spectrum. This peak is associated
with the charge transfer Ce*t+ 0%
~ Ce3* + O (electron transfer from 2p
orbital of oxygen to empty 4f shell of ce-
rium) [7]. The intensity of the A = 300 nm
peak depends on Ce3*/Ce#* ratio in the host
crystal. According to the chemical analysis
data, the Ce3*/Ce#* ratio in the crystal is
1:4 and can vary depending on the growth
conditions.

The absorption spectrum of LGBO:Eu3*
crystal (Fig. 2) comprises a broad band in
the UV region and lines corresponding to
f—f transitions of Gd3* and Eu3* ions. The
band peaked at A =250 nm is a charge
transfer one and corresponds to the electron
transfer from 2p orbital of oxygen to empty
4f shell of europium ion: Eu3* + 0%
~ Eu2* + O~ [8]. Under excitation in the
Gd3* absorption band (A = 245-250, 270-
280 nm), LGBO: Eu3* crystals exhibit red lu-
minescence. This evidences the transfer of
excitation energy from Gd3* to Eu3*. The
emission spectrum of LGBO:Eu3* consists of
the peak at A = 313 nm (Gd3* emission) and
the group of lines between 575 and 720 nm
corresponding to transitions from the first
excited state 5D0 to the 7F]~ (j = 0-4) levels
of Eu3* ion (Fig. 3). As the europium con-
centration increases, the Gd3* emission in-
tensity at A = 313 nm decreases. In the pho-
toluminescence spectrum of
LigGdg g7EUg 03(BO3)3 crystal, the Gd3* emis-
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Fig. 2. Absorption spectra of single crystals:
LigGdp.955C€0,045(BO3)3 (1); LigGdg ggEUg 01(BO3)3
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Fig. 3. LigGd,_,Eu,(BO3); single crystals lumi-
nescence spectra of at excitation by A = 276 nm:
x =0.03 (1); x = 0.01 (2); x = 0.003 (3).

sion is not observed, i.e. the full energy
transfer from Gd3* to Eu3* occurs at euro-
pium concentration 3 at.%.

Let the peculiarities of LGBO crystal
structure be considered. The regular LGBO
structure consists of gadolinium and lith-
ium polyhedrons. The distances between
gadolinium cations and oxygen anions in
gadolinium polyhedrons shaped as chain
clusters extended along the b direction are
within 0.2351 to 0.2556 nm. Lithium cat-
ions are coordinated with four and five oxy -
gen anions, the Li—O distance being of
0.1875 to 0.2428 nm. Boron forms only
boron-oxygen triangles unbound to each
other but linking the gadolinium and lith -
ium polyhedrons. The B-O distances range
from 0.1369 to 0.1398 nm. The distances
between gadolinium cations and the nearest
lithium and boron ones are 0.265 to
0.322 nm and 0.274 to 0.286 nm, respec-
tively. Comparison of Gd3* (0.128 nm),
Eu3* (0.122 nm) and Ce3* (0.102 nm) ionic
radii for coordination number 8 allows the
suggestion that the activator ions enter pre-
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Fig. 4. Activator centers in LGBO:Ce single crystals: CeGd3+ (1); CeGd4+, Vi (2); the arrows show
more probable position of lithium vacancies for charge compensation.

dominantly the gadolinium sites. The intro -
duction of cerium as Ce** needs the excess
positive charge compensation. The compen -
sation may be realized due to formation of
lithium or boron vacancies in the nearest
coordination sphere of Ce#* activator. But
the lithium vacancy creation seems to be
more probable [9]. A similar effect is ob-
served in Li,B4O7:Ln single crystals [3].
The analysis of absorption and luminescence
spectra of LGBO:Ce and LGBO:Eu crystals
and their structure allows to consider the
existence of two types of activator centers
in LGBO:Ce crystals and one activator cen-
ter in LGBO:Eu crystals. Those are Cegq3",
i.e., Ce3* being in the Gd3* site of the crystal
lattice (first type activator center, Fig. 4,a);
Cegq**, Vi i-e., Ce** being in the Gd3* site
of the crystal lattice, the excess positive
charge being compensated by lithium vacancy
V|, (second type activator center, Fig. 4, 2);
Eugg®t i.e., Eud* being in the Gd3* site of
the crystal lattice. The Cegq®* and Eugg®*
activator centers are seen to be similar to one
another and do not need any charge compen -
sation. The positive charge compensation is
necessary in Cegq** V|; activator center. In
this case, the electric neutrality equation can
be written as [Lig_,0,][Gd,_,Ce,**] [B31[Ogl,
where [] is the crystal lattice site, O is a
vacancy. Two components, T; =5 ns and
Ty = 24 ns, characterize the decay of Cegy3*
activator center photoluminescence while
the single component T1; =1 ms charac-
terizes the decay of one.

In the frame of dipole-dipole approxima -
tion, the energy transfer probability P,,
from Gd3* host ion to activators (Ce3* and
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Eu3*) and critical transfer radius R, were
estimated according to [10]:

Pya = 1)
ﬁ4c4Ic(E)dED g U J,Fd(E)F JE)IE _
= KRS,
R, = (K 19)VS, (2)

where 7 is the Plank constant; ¢, light
speed; n, the reflection index; T, the decay

time; R, distance between the donor and ac-
ceptor; E, energy; IO(E)dE, the integrated
absorption cross section which we can get
from the acceptor absorption spectrum;
F4(E) and F,(E), spectra of donor lumines-
cence and acceptor absorption, respectively.
R, is the critical transfer radius. The multi-
plier (so/sefka)4 is assumed to be equal to 1
[10]. For Gd3* . Ce3* transfer, we get P,
~108 s71 and R, ~5 E. Comparison of R,
and Gd-Gd distances in the chain (3.88 E)
and that between the chains (6.68 E) allows
us to conclude that the Gd3* — Ce3* energy
transfer occurs most probably within the
Gd-chain. In other words, the energy trans-
fer from Gd3* to Ce3* can occur only from
two nearest Gd3* ions. This makes it possi-
ble to introduce rather high Ce3* concentra-
tions into LGBO crystals without concentra-
tion quenching of luminescence. In the case
of LGBO:Eu3* crystals, we obtain P, ~
30104 s ! and R, ~ 7 E. Thus, the excitation
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energy can be transferred from Gd3* ion to
nearest Eu3* ions both within a chain and
between neighboring chains. It is to note
that exact determination of one-dimension
or three-dimension Gd3* - Eu3* energy
transfer is hampered at room temperature
by a number of principal difficulties [11].

Thus, the activator center models have
been proposed for LGBO single crystals
doped by cerium and europium. Two types
of activator centers in LGBO:Ce single crys-
tals and one activator centers in LGBO:Eu
single crystals have been established. In the
frame of dipole-dipole approximation, the
energy transfer parameters from Gd3* host
ion to activators (Cegy3* and Eugy®*) and
critical transfer radius R, have been esti-
mated.
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S.I.Gordeev,

AKTHUBATOPHI IIEHTPU Y MOHOKPHCTAJIAX

LisGd(BOs3);:Ln (Ln = Ce, Eu)

M.D./Jy6o06ux, O.B.I'aiidyx, B.B.I'punvos, T.I. Kopwuxrosa,
O.B.Toamauwes, O.M.Illlexoe6yoé6, P.Il.Aseyvruii

BuBueHO aKTMBATOPHI IEHTPU Y MOHOKPHUCTAJIAX MIEPCIEKTHUBHOTO CIIUHTUJIALINHOIO Ma-
Tepiana — JsmTiii-ragoniniesoro Gopara LigGd(BOj);, akTmBOBaHOro €Bpomiem Ta mepiem.
MeromaMu OITHYHOTO IOTJMHAHHS, (OTO- Ta PEHTTEeHOJNIOMiHecIeHIii BCTaHOBJIEHO Ha-
ABHICTH ABOX THHIB meHTpiB y Kpucranax LigGd(BOj);:Ce Ta ommoro tmumy meHTpiB y Kpmc-
ranax LigGd(BO3);:Eu. BusHaueHO XapaKTepUCTHKHN aKTHBATOPHUX LEHTDIB.
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