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Monte-Carlo simulation of random hyperbranched polymers with flexible branches was
conducted. It was shown that such polymers demonstrate universal conformational proper-
ties. In particular, there exist a critical hyperbranched polymer generation number
G..~6 at which the transfer occurs from coil-type structure with scaling properties
similar to those of linear polymer coil to fractal structure. The fractal dimension dfr ~ 3
is universal independently on details of random hyperbranched polymer internal building.
It is shown that system entropy is of Tsallis type.

OGcysxaaroTes pesyJabTAThl KOMIIBIOTEPHOTO MonenupoBaHus MmMerogoMm Mourte-Kapmao ru-
eppasBeTBIEHHBIX ITOJUMEPOB CO CJIYYaNHBIM BeTBJIE€HMEM ¢ THOKUMH BeTBAMU. IlokasaHo,
YTO TaKue AeHAPUMEephl TeMOHCTPUPYIOT YHUBepcaJbHOe IMOBeJeHNe He3aBUCUMO OT AeTajeit
UX BHYTPeHHero crpoeHus. Tak, cyllecTByeT KpUTHUecKUl HoMep mokojenua G,.~ 6, npu
KOTOPOM IIPOUCXOLUT IIePeXOoJ], OT CTPYKTYPHI THUNA KJIYOOK CO CBOMCTBAMH, ITOJOOHBIMU
CBOMCTBAM JIMHEMHBIX IIOJUMEPOB, K (PpaKTaJbHON CTpPYKType. PpaKTajbHasg pPasMepHOCTh
dfr ~ 3 ABJdeTCSI YHUBEPCAJbHON BEeJIUUYNHON HE3aBUCUMO OT AeTajieil BHYTPeHHero CTpoeHusd
runeppasBeTBJIEHHOr0 moaumMepa. Ilokasano, uro sHTpomusa cucreMmbl umeer dopmy Ilaneca.
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Recently, highly branched dendritic mac-
romolecules have attracted much interest
due to their structural characteristics. Den-
dritic macromolecules can be classified into
two types: one is a monodisperse macro-
molecule with well defined and defect-free
structure, a so-called dendrimer, and the
other one is a polydisperse macromolecule
with imperfect structure, a so-called hyper-
branched polymer. Since dendrimers are
costly and due to many synthetic steps the
rapid preparation of a large amount of poly-
mers is not possible. Hyperbranched poly-
mers show structural characteristics of den-
drimers such as low viscosity and high
functionality and can be prepared in a much
simpler way (one-pot polymerization) com-
pared to the synthesis of dendrimers (see,
e.g. [1-4)).

Such structures combine properties of
linear polymers and solid particles, which
makes them unusual nanoobjects. Number

Functional materials, 16, 4, 2009

of branches in such molecules grows expo-
nentially with generation number, that
makes them compact particles with low in-
terpenetrability. At the same time, hyper-
branched polymers possess typical traits of
polymers, such as ability to change their
shape in dependence of environment proper-
ties. All this makes researching hyper-
branched polymers an important part of mo-
lecular nanoscience with highly promising
applications in nanomedicine, creation of
high quality surfaces, liquid crystal screens
etc (see e.g.[1-4]).

Present work is dedicated to the com-
puter modeling of random hyperbranched
polymers. Random hyperbranched polymer
is a polymer, each repeat unit of which can
become branching point with equal prob-
ability. Schematic representation of random
hyperbranched polymer with degree of
branching equal to 2 is given in Fig. 1. The
properties of random hyperbranched poly-
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mers have been studied theoretically and
via computer simulation since first works of
Flory [5, 6]. Flory established universal
scaling low for the molecular weight distri-
bution of hyperbranched polymers [5, 6].
However, the drawback of this theory con-
sists in the assumption that there are no
excluded volume interactions. In reality,
however, excluded volume interactions that
lead to fluctuation effects can not be ne-
glected in 8D case. This has been demon-
strated via computer simulation by Cameron
[7—8] and shown theoretically as well as via
computer simulations by Buzza [9, 10].
Both theoretical studies [9] and simulation
results [10] predicted, in particular, that
the fractal dimension of hyperbranched
polymer chains in the reaction melt equals
to 3 that is significantly different from the
mean-field result ds. =4 and the percola-
tion result dy = 2.53 [9, 10]. It was also
found that molecular weight distribution of
random hyperbranched polymers has a uni-
versal form that does not depend on degree
of branching and is different from that
found via mean-field approximation [5, 6].

Since Flory’s works [5, 6], most of the
studies employed the mean-field method
[11-21], where excluded volume interac-
tions are taken into account in spatially-av-
eraged way via introducing mean field and
fluctuations are neglected. In these works
statistical properties of hyperbranched poly-
mers in melt such as the molecular weight
distribution and fractal structure were
studied. However, the applicability of these
results is limited due to the fact that they
neglect excluded volume interactions, as it
was shown in [7-10].

Besides mentioned works [7—10], there
have been a few theoretical and simulation
studies of random branching in hyper-
branched systems where excluded volume
interactions effects have also been included.
Galina et al. [22] have performed a Monte
Carlo simulation of a 2D percolation type
model with a variable capture radius to
mimic the effects of diffusion. However,
Buzza [9] has shown that in the non-mean-
field regime the large-scale properties of
hyperbranched polymers depend critically
on spatial dimension. Thus, theoretical and
simulation studies performed in [7—10] are
more experimentally relevant.

The principal difference of the present
work from the previous computer simula-
tion studies of random hyperbranched poly-
mers is that the average number spacers
per branch <M> is taken quite large (up to
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Fig. 1. Schematic representation of third gen-
eration hyperbranched polymer with random
branching.

60) and, simultaneously, excluded volume
interactions are taken into account. To the
best author’s knowledge, in all previous
works on computer simulations of random
hyperbranched polymers the branch length
was restricted to several (up to seven) spac-
ers. In theoretical works [5, 6, 18, 19] hy-
perbranched polymers with long branches
were considered, however excluded volume
interactions were not taking into account
[5, 6] or accounted for via mean-field ap-
proximation that rendered the results non-
realistic, as it was shown in [7-10].
However, only considering hyper-
branched polymers with long flexible
branches that include many spacers allows
to obtain universal scaling properties, that
characterize individual polymer, not a poly-
mer melt as a whole, in a way similar to
linear polymers (see e.g. [23]). Thus, consid-
ering random hyperbranched polymers with
long flexible branches, and, simultaneously,
taking into account excluded volume inter-
actions allowed to find polymer density pro-
files and dependence of polymer size on gen-
eration number as well as fractal dimension
of individual polymer in solvent, not of
polymer melt. All these characteristics at
large enough average number of spacers per
branch <M> accept universal form not de-
pending on the details of polymer building.
These results, described in details below,
are new as compared to the previous works.
The purpose of the present work is find-
ing via computer simulation universal scal-
ing laws, describing conformational proper-
ties of random hyperbranched polymers. For
this purpose, hyperbranched polymers with
long flexible branches are modeled by
Monte-Carlo method via random walks on
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3-dimensional cubic lattice. Simulation re-
lates to hyperbranched polymers in solvent,
where repulsive part of interaction potential
between non-connected spacers much ex-
ceeds the attractive part. The details of the
method, applied for modeling dendrimers
are described in the work of the author
[24]. The average number of spacers per
branch <M> was varied from 20 to 60, and
generation number G taken from 1 to 9.

In the present model, each spacer of
model hyperbranched polymer represents
part of molecular chain of real hyper-
branched polymer longer then so-called per-
sistent length, at which correlation between
orientations of periodic molecular units,
constituing each branch, vanishes. The end
of each spacer can became a bifurcation
point with equal probability p. The average
number of spacers per brunch <M> =1/p.
In the present work only p <<1 are consid-
ered that corresponds to long flexible poly-
mer branches with <M> > 1. The total
number of consecutive branchings of a poly-
mer is called hyperbranched polymer gen-
eration. All branches, that are separated by
the same @ number of branching points
from the central spacer form Qth shell of
polymer.

The number of hyprbranched polymer
spacers grows exponentially with generation
number, while hyperbranched polymer size
increases much slower, and, as a conse-
quence some of branches can get stack and
stop growing. However, in the present work
only such hyperbranched molecules are con-
sidered, where number of bifurcations sepa-
rating each end point, where polymer
growth is terminated, from the central node
is the same. In other words all endpoints
belong to the same shell. This type of ran-
dom hyperbranched polymers is the most in-
teresting from the application point of view
due to compact structure and large number
of end segments, which can be modified ac-
cording to various practical needs [1-4].

Computational difficulties connected
with peculiarities of hyperbranched polymer
topology, were overcome via building struec-
tures with highly extended inner branches
that allowed more space for the growth of
exponentially larger number of outer ones.
From all possible randomly built branches,
consisting of M spacers, and belonging to
the shell @, are selected those with the
length larger or equal to L(M,Q). (L(M,Q) is
the parameter of the problem over which
system entropy should be optimized). For
this purpose, a number n;,;,, of random at-
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Fig. 2. Radial density c(R) of spacers for random
hyperbranched polymer (bold line), dendrimer
(thin line) and linear polymer (dashed line).

tempts should be made (some of these at-
tempts are unsuccessful because the ob-
tained branch is not of the right length or
its growth is prohibited by other branches).

After j-th structure is built, the prob-
ability pj(G) to obtain the same structure as
a result of unbiased random growth

(L(M,Q)=0), can be estimated as
A = p; |L(M,Q)] = (1)

-1
= |:Z(G) H ntries:| (Q =1,2..6),

all branches
of the jth structure

where

Ze=Y

all structures| allbranches

B (2)

H Niries (2)
is the statistical sum of the system.

System entropy S(G) was calculated ac-
cording to Shannon-Gibbs formula as

S(G) = -2, p{(Gnlp(&], (3)

all structures

where p; are calculated according to Egs.(1),
(2). System entropy S(G) was maximized
over parameter L(<M>,Q) (<M> = 30,
35,...60, @ = 1,2...G3)) so that most probable
conformations of the system were found.
The results were averaged with account of
probabilities p,(G) over more then 104 con-
formations for each hyperbranched polymer
generation. The dependence of system size R
(equal to average distance from polymer
spacers to the central one) on hyper-
branched polymer generation G is presented
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Fig. 3. Dependence R(G) of random hyper-
branched polymer size on its generation for
<M> = 60 (squares) and approximating func-
tion f(G) = 6.9-26/3,

in Fig. 8 for various <M>. For G > 6 and
<M> > 40 it takes universal form

R(G) ~<M>v2G/3, v =0.6. (4)

The fractal dimension dg. of hyper-
branched polymers is found to be equal to
3, which is in excellent agreement with the
hyperscaling prediction [9]. Let us note,
that fractal dimension dt. =3 of random
hypebranched polymers is larger than that
of dendrimers (dg ~ 2.57 [24]). Evidently,
random branching allows a more compact
organization of hyperbranched molecule due
to existence of a small fraction of very long
branches.

Examples of radial spacer density pro-
files for random hyperbranched polymers,
dendrimers and linear polymers with the
same number of spacers are presented in
Fig. 2. It can be seen from the figure that
hyperbranched polymer is essentially more
compact system than linear polymer in a
coil state. It was shown that such polymers
have filled core. At long enough branches
(<M> > 35) the density profiles take uni-
versal shape that does not depend on <M>
and G. Dependence of sysiem entropy S(G)
(calculated according to Eq. 3) on genera-
tion number G is shown in Fig. 4 for vari-
ous <M>. Simulation results demonstrated
that, for polymer generations G > 6, this
dependence is well approximated by recur-
sive formula

S(G)=25G-1)-(1-¢S@G-1)2 (5)

with relative error less than 2 %. (Here 1-¢ ~
2.24.107% for <M> =40, 1-¢~8.85.107°
for <M> = 60). Such form of dependence
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Fig. 4. Dependences S(G) of random hyper-
branched polymer entropy on its generation
for average branch length <M> = 40 (circles)
and <M> = 60 (squares); arrows show the
values of Tsallis parameter 1—q, calculated
according to Eq. 4.

S(G) is evidently determined by the fractal
properties of hyperbranched macromole-
cules. It can be seen from Fig. 1, that each
hyperbranched polymer H; of generation G
with entropy S(G) consists of two hyper-
branched polymers H ; of generation G—1
that are connected to each other by a single
branch. Thus, entropy S(G) of polymer Hg
consists of the sum of entropies of its parts
(polymers Hg ;) with the subtraction of the
term, corresponding to their interaction.
The closer is value of ¢ in Eq. 4 to unity,
the smaller is interaction between sub-poly-
mers Heq_g.

Eq. (4) is a particular case of Tsallis
form of entropy [25] a system under inves-
tigation consists of two equivalent subsys-
tems. It should be noted that, although pa-
rameter (1—¢q) is much smaller than unity,
the non-additive term makes significant
contribution to the total system entropy.

Thus, it was shown in the present work
that random hyperbranched polymers with
long enough branches demonstrate universal
scaling properties. In particular, there exist
a critical hyperbranched polymer genera-
tion number G,..~ 6 at which the transfer
occurs from coil-type structure with scaling
properties similar to those of linear polymer
coil to fractal structure. It was shown that
such polymers have filled core. At long
enough branches (<M> > 35) the density
profiles take universal shape that does not
depend on <M> and <G>. The fractal di-
mension ds. ~ 3 is universal independently
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on details of random hyperbranched poly-
mer internal building. It was shown that
system entropy is of Tsallis type.

The result that random hyperbranched
polymers with long flexible branches pos-
sess filled core (terminal spacers reach poly-
mer center) qualitatively agree with theo-
retical predictions [18, 19], that takes into
account excluded volume interactions via
mean-field approximation and contradicts to
theoretical works [5, 6] that do not take
into account excluded volume interactions
at all. However, found in the present work
fractal dimension dy. ~ 3 differs from mean
field predictions [17, 18] that give d. ~ 4.
This fact is, evidently, due to the limited
applicability of the mean field method to
random hyperbranched polymers, shown in
the works [7—10].
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MoaeaoBaaaa metogom MouTe-Kapio
rimeppo3rajy:;KeHuX IOoJiMepiB 3 THYYKMMH CerMeHTaMu

M.Pamnep

OGroBOPOIOTHC PE3yAbTATH KOMII’IOTEPHOI'0 MoAea0BaHHA mMeromoMm Monre-Kapio rimep-
posraiy:KeHux [IOJIiMepiB i3 BHIIAAKOBMM PO3Traly:KeHHSM 3 IHydYKuMHU riaxamu. Iloxasawno,
[0 TakKi meHApMMEepH [LeMOHCTPYIOTh YHiBepcaJbHY I[IOBEIiHKY HE3aJeyXHO Bim meraieit
BHYTpimHBLOI OymoBu. Tak, icmye KpurTuurmit HOMep mokoximma G,.~ 6, 3a saxoro Bimby-

BAa€ThCA IIepexis Bix JAHIIOTOBOTO THUIY CTPYKTYPU 3 BJIACTUBOCTAMH,

HOAIOHMMH IO

NMiHifHUX moaimepiB, Ko ppakTanbHOI cTpyKTypu. PpaKTanbHa PO3MipHiCTH dfr ~ 3 € yHiBep-
CAJIbHOI0 BEJIMUUHOIO He3aJle;KHO BiJ meTasieil BHYTPilIHBbOI OYJOBU TillepposTayKeHOTro II0-

Jimepa.
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ITokasaHno, mo enTponia cucremu Mae llanicoBcbKy (hopmy.
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