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Regularities of change in the dependence of the yield stress on grain size in transition
from the microstructured to the nanostructured state are discussed. It is shown that,
using S-functions, a generalized equation for the yield strength dependence on the grain
size with regard to changes in the hardening mechanisms of polycrystals in the vicinity of
critical grain sizes d,., and d,.., can be obtained. This equation enables to describe the
softening effects in transition to nanostructures (the so-called "negative” trend of the
Hall-Petch relationship) and an abrupt hardening under conditions of increased inter-
granular cohesive strength.

OO0cy:KIaioTcsi 3aKOHOMEPHOCTH HN3MEHEHHs 3aBUCHMOCTHA HAIPSMKEHHUS TEeYeHWUs IIPU
mepexojie 0T MUKPO- K HAHOCTPYKTYPHUPOBAHHOMY COCTOSHHUIO. IIoKasaHO, YTO C IIOMOIIBIO
S-QyHKIHIA MOMKHO HOJYYATHL OOOOIIEHHOE ypaBHEHNEe 3aBUCHMOCTH IIPEeIesia TEeKyd4eCTH OT
pasMepa 3epHa C yuyeToM WM3MEeHEeHHS MEeXaHHN3MOB YIIPOUHEHMS IIOJUKPHCTAIIOB B OKPECT-
HOCTH KPUTHYECKHX PasMepoOB 3epeH dxpl u d}cp2' 9TO ypaBHEHMEe II03BOJISeT ONMCATh KaK
a(pdeKTHl PasylIpOYHEHN A [IPU IIepexojle K HAHOCTPYKTypaMm (TaK HAs3bIBAEMBII ~ OTPUIATE]b-
HBI  Xon 3aBucuMocTu XoJuua-Ilerua), TaK W, HAIIPOTUB, PE3KOE YIPOUYHEHUE IIPU yCJIOBUU
IIOBBIIIIEHHON IIPOYHOCTH MEK3EPEHHOI'O CIIeILIEHHU.
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Undoubtedly, Professor Lev Palatnik can
be called among the founders of nanotech-
nologies and the investigation of the me-
chanical properties of nanostructured mate-
rials (though the word "nanomaterial” was
not used at that time) because he studied in
great detail the mechanical properties of
thin films where either nanolayered struc-
tures or extremely small grain sizes up to
amorphous structures can be obtained
rather easily. In a generalizing work [1], he
discussed different effects of changes in the
mechanical properties of thin film objects.
L.Palatnik formulated the idea that "the
classification of films into "thin" and "mas-
sive” omnes is conventional and acquires a
clear physical meaning only when a specific
structural state and a specific physical
property are considered. A critical thickness
hy, (or an interval of hjp) below which the
parameter A influences directly the struc-
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ture of the condensate can serve as a crite-
rion of the thin film state”. This idea corre-
sponds to the modern concepts of the speci-
ficity of properties of nanostructured mate-
rials in connection with the manifestation

of the specific "size" effect.
The investigation in the influence regu-

larities of the structural element size, in
particular, the grain size, on the strength
of materials was always in the focus of at-
tention. It is well established that, in a
rather wide range of a polyecrystalline mate-
rial grain size, the Hall-Petch equation is
satisfied [2—7] where the dependence of the
yield strength o, on the grain size d can be
expressed by the formula

G, =g + kyd 2, (1)
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Fig. 1. Schematic dependence of the yield
strength on the grain size in transition from
the grain microsizes to grain nanosizes.
Curve 1 corresponds to the transition from
the Hall-Petch equation to a decreased
strength in the nanosize range ("negative”
slope) [12-18, etc.]; curve 2, to the transition
to the dependence with an exponent of d of
-1 at d,,<d<d..;, and to abrupt hardening
for the grain size decreasing below d,,, in the
case of strong boundaries [23—25].

where the parameter o, characterizes the
averaged resistance to dislocation motion
over the grain body and the coefficient ky
characterizes the difficulty of slip transfer
through the grain boundary. A large body
of experimental data confirms that in many
cases, both parameters (o, and ky) are prac-
tically constant in the grain size range from
several hundreds of micrometers to several
micrometers. If deviations from this de-
pendence are observed, those can be caused
by either a change in the state of grain
boundaries, which can be characterized by
the coefficient ky, or by a change in the
resistance to dislocation motion over the
grain body o, due to redistribution of impu-
rities or alloying elements between grains
and grain boundaries when the grain size is
varied.

Moreover, is some works [8—10] deforma-
tion-induced structures, the exponent of d in
Eq.(1) was reported to vary from —1/2 to —1.

In recent years, the interest to the de-
pendences of the strength (yield strength)
on the grain size is increased due to studies
of the mechanical properties of nanostruc-
tured materials. The most often discussed
effect lies in the fact that, instead of the
successive hardening, an inverse relation-
ship, i.e., a "negative” slope (ky < 0) of the
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Fig. 2. The yield strength o as a function of
the grain size d in chromium obtained by
magnetron sputtering [23, 24].

Hall-Petch relation is observed in the
nanometer grain size range. This inverse
Hall-Petch effect was observed experimen-
tally for a number of materials [11-17,
etc.], and a set of models was proposed to
explain it [18-22, etec.].

In our investigations [283, 24] on materi-
als obtained by the vacuum deposition meth-
ods, two effects were observed, namely, in
transition from the microstructured to the
nanostructured state, at least two critical
grain sizes (d,.; and d_») were revealed in
the vicinity of which the hardening mecha-
nism changes. In particular, in the submi-
cron grain size range d,.;<1 um, the expo-
nent of d in Eq.(1) changes from —-1/2 to —1
occurs (Fig. 1, curve 2).

It follows from Figs. 1 and 2 that in the
nanosize range (d<d,,s), a drastic hardening
is observed instead of a common transition
to the negative slope, due to the segregation
of useful impurities at the grain boundaries
in thin chromium films [23, 24]. This al-
lowed to propose a concept of "useful” im-
purities increasing the strength level of
nanostructured materials [24, 26].

This work is aimed at the analysis of the
above-mentioned effects and at an attempt
to obtain a generalized dependence of the
yield strength on the grain size.

1. Transition from —1/2 exponent to —1
one in dependence (1) in the case of grain
refinement. For deformation-induced micro-
structures, such a transition was noted a
rather long time ago [8-10]. In particular,
after severe plastic deformations, the for-
mation of deformation-induced ultrafine-
grain structures is usually noted [27], the
disorientation of individual elements in
such a structure being quite comparable
with characteristic disorientations of grains
in a conventional polycrystalline aggregate.
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Fig. 3. Experimental dependence of the yield strength (o) for fine-grained VT1-00 commercially

pure titanium on the grain size (d) in the o(d"1/2) coordinates [32] (a); our approximation of
experimental data presented in Fig. 3a using o(d"1/2) and o(d"!) dependences (b).

In [27], the concept of the critical grain-
boundary angle (6., > 8—5°) was introduced.
When it is exceeded, the boundary of the
deformation substructure exerts resistance
to slip transfer which is practically equal to
that exerted by the large-angle grain bound-
ary. Later, using the improvements in the
instruments and methods for the determina-
tion of such disorientations, it was shown
that those can attain tens of degrees [10,
28, 29].

As noted above, for such structures,
when the grain sizes of deformation origin
are smaller than several micrometers, the
exponent of the grain size in dependence (1)
is equal to -1, rather than to —1/2. Thus,
at d<d,,;, the following relation is actually
satisfied:

Gy =0p + kid71, (2)
where the term o has the same meaning as
in Eq.(1) and the coefficient k;, though
charactrerizing also the difficulty of slip
transfer through the grain boundary, has
obviously other dimensionality and, there-
fore, a somewhat different physical mean-
ing as compared to those of the coefficient
ky in Eq.(1).

Considering this effect, Thompson [8]
postulated actually that, at grain sizes
smaller that a certain critical wvalue, the
hardening described by Eq.(2) becomes more
efficient. This critical grain size can be de-

termined at the intersection point of de-
pendences (1) and (2). Namely,

ey = (By/ )2 3)
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In works of the authors [28-25], it was
shown that the type (2) dependence is valid
not only for grains of the deformation ori-
gin, but also for ultrafine-grained struc-
tures obtained using vacuum deposition
technologies. In [30], it was also reported
that, e.g., for a Cu—Cr multilayer composi-
tion, at a certain critical layer sizes, a knee
is observed in the dependence of the yield
strength on the grain size in the coordinates
of Eq.(1), while in processing of the same
data in the o (d71) coordinates, dependence
(2) is satisfied well. In [31], it is stated that,
in the submicron grain size range (for
strained iron and titanium), the dependence
o(d) is described much better by Eq.(2) than
by Eq.(1).

In Fig. 3a, very interesting results from
[32] are shown. The authors presented test
data of strained titanium in the o(d~1/2) coor-
dinates. In the plot, two regions of the type
(1) dependence can be distinguished. Namely,
in a region of relatively large grain sizes,
ky = 0.26, while for grain sizes smaller than
a certain critical grain size, k, = 1.59. The
cause of such a stepwise change in the coef-
ficient %, is not quite clear. Moreover, the
authors note that for the second region, the
term o, has a negative value, which has no
physical meaning, and that the value of the
coefficient k, = 1.59 MPa-m1/2 seems to be
overestimated and unrealistic.

A way out can be found if it is assumed
that at a grain size d,.; <1 um, the transi-
tion from dependence (1) to dependence (2)
takes place. In Fig. 8b, the data shown in
Fig. 3a are approximated with two inter-
secting curves in the coordinates of the
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Fig. 4. Electron micrographs of polycrystal-
line molybdenum deformed at room tempera-
ture: (e~ 2 % (a), e = 83 % (b).

Hall-Petch equation. In this case, it is natu-
ral that dependence (2) has the form of an
increasing curvilinear function.

Let us consider the physical meaning of
such a transition. In the region of large
grains of d > d,,.; size, the ordinary Hall-
Petch equation is satisfied. It is known that
there are at least three models [7] explain-
ing the existence of a type (1) dependence.
The model of handover transfer, where the
actuation of a dislocation source in a neigh-
boring grain is initiated by stress concen-
tration at the head of a dislocation cluster
in the first grain, is most generally ac-
cepted. According to this model [4],

k, = 20,r1/2, (4)

where ¢, = aGb/l is the stress of the source
actuation in the neighboring grain (o being
a coefficient of an order of 1; G, the shear
modulus; b, the Burgers vector, I, the char-
acteristic length of a Frank-Reed source);
and r is the distance of the source from the
head of the dislocation cluster.

In Fig. 4a, a typical structure illustrat-
ing the slip transfer through a grain bound-
ary and obtained for a polycrystalline mo-
lybdenum sample after insignificant plastic
deformation by rolling (e # 2 % at 20°C) is
shown. Fig. 4b shows a structure obtained
in the same material after a severe plastic
deformation (¢ =83 %). It is important
that within grains of the deformation ori-
gin, dislocations are hardly observed when
their size becomes smaller than 0.4 pm.

Naturally, a certain distribution of
sources in start stresses and distances (r)
exists, but, in polycrystalline materials,
these values become averaged, so ky = const
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Fig. 5. Dependences of ky on the grain size [25].

in the grain size range where Eq.(1) is sat-
isfied. The coefficient k, appears to be sen-
sitive to blocking of disfocations due to im-
purities and may vary rather substantially
depending on the impurity content, heat
treatment, and, in some cases, at changes in
the grain size [7].

In [25], attention was given to the fact
that when the grain size decreases to values
close in the order to r and I ones, these
values are no longer constant and, since
their size cannot be larger than d, we can
assume that as the grain size decreases to
values smaller than d,.;, the r and I ones
are proportional to d. Then it is easy to
obtain from expression (4) that, in this case
(for d < d,,;), the k, value also depends on
the grain size as follows:

ky = 0,Gb/d" = ky/d". (5)

It is just this ky(d) dependence that was
obtained in [25] for a number of microcrys-
talline materials in the corresponding grain
size range (Fig. 5).

Thus, strictly speaking, the dependences
(1) and (2) are equivalent in the sense that
both dependences reflect the handover char-
acter of slip transfer through a grain
boundary. Only at d > d_,;, the coefficient
ky is constant, while at d < d_,;, it becomes
dependent on the grain size according to
expression (5). Correspondingly, substitut-
ing expression (5) in formula (1), we obtain
dependence (2).

In [18, 32], the following problem was
also discussed. As the grain size decreases,
the possible number of dislocations in a flat
cluster and, therefore, the stress concentra-
tion at the head of such a cluster must
diminish. Then, for a source in a neighbour-
ing grain to be actuated, the stresses must
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increase, that is what defines the cause of
yield stress rise according to expression (1).
It is clear, however, that there exists a
grain size at which no clusters are formed
within the grain, and the yield stress must
be proportional to the activation stress of
the Frank-Reed source, i.e.,

Actually, in [33], such a stress necessary
for the deformation of severely deformed
iron has been determined and it has been
shown that o; = 3.4-5.9. Since the Frank-
Reed source characteristic length [ must be
equal to a certain part of the grain size d in
order that the source can work (it is usually
assumed that [>1/3d), the presented estima-
tion of a; seems to be realistic.

In conclusion of this section, we can note
what follows. The transition from depend-
ence (1) to (2) takes place not only in the
case of grain refinement by methods of se-
vere and intense deformations, but also in
polycrystalline materials where the grain
size is varied using other technologies, in
particular, when such microcrystalline ma-
terials are obtained by gas-phase deposition
[28-25, 34]. As the critical grain size d,,.;
is attained, essentially no dislocation clus-
ters are nucleated inside such fine grains,
which is confirmed by electron microscopy
studies.

It is clear, however, that, as the grain
size further decreases, there comes a mo-
ment when, for a dislocation source to be
actuated within a grain, a stress of the
order of the theoretical shear strength is
required. Thus, the mechanism of handover
slip transfer must be exhausted, and the
yield stress must attain the theoretical
strength. This, however, does not occur.
Moreover, in many cases, the yield stress
drops abruptly. In what follows, the causes
of such a behavior are discussed.

2. Yield strength of polycrystals in a
nanometer grain size range. In Fig. 6, pre-
sented is a dependence of the normalized
yield stress (o —ocgy)/k on the size of
nanograins (to a grain size of about 2 nm)
for some materials that was generalized in
[14]. In is seen that in some cases, in a
grain size range smaller than a certain
characteristic critical size d,.; (as a rule,
10-30 nm), a further grain refinement, in
contradiction to relation (1), either does not
result in hardening or is accompanied by
softening (the inverse Hall-Petch effect).
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Fig. 6. Dependences of the normalized yield
stress on the grain size for some materials
[14].

At present, numerous works are known
devoted to the discussion of similar devia-
tions [11-18, ete.]. It is assumed that the
plastic straining mechanisms in materials
with nanograins differ from those in the
coarse-grained analogs, which is connected
with both the small size of structural ele-
ments and an increase in the volume frac-
tion of the so-called "imperfect”™ material,
namely, grain interfaces. For the descrip-
tion of obtained experimental results, a nu-
merous theoretical models were proposed
for plastic straining in nanocrystalline ma-
terials.

A general classification of such models is
presented in [18]. It includes models de-
scribing the yield strength of a nanocrys-
talline material basing on different "mix-
ture rules”, models where ordinary motion
mechanisms of lattice dislocations domi-
nate, models of grain-boundary plasticity
mechanisms (grain-boundary slip, diffusion
plasticity along grain boundaries), models
of twinning mechanisms. Some models take
into account the competition of different
straining mechanisms, because, as a rule,
several mechanisms act simultaneously in
real materials.

In our opinion, among all the above-men-
tioned models, the most thoroughly devel-
oped are those basing on mixture rules and
the concept of a nanocrystalline material in
the form of a two-phase composite consist-
ing of an intragranular and an intergranu-
lar phases. Such an approach can be used
both without concretizing the plastic strain-
ing mechanisms of crystallites and inter-
granular boundaries and taking those into
account. At the same time, the dislocation
models that assume the presence of plastic
flow carriers in the form of lattice and
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grain-boundary dislocations, joint disclina-
tions, are considered to be rather problem-
atic because direct investigations indicate
that dislocations are absent in nanograins.
Nevertheless, the authors of all proposed
models noted that they agree well with ex-
perimental results.

However, along with experimental data
testifying to the presence of the inverse
Hall-Petch effect in the nanometer grain
size range, there exist data on an increase
in the strength (hardness) in the same grain
size range, e.g., results presented in [35]. A
dependence of the yield strength on the
grain size d in deposited chromium (Fig. 2)
obtained by the authors indicates also an
abrupt increase in the yield strength at a
grain size smaller than d,..5 ~ 0.1 pm and can
be described by the relation o = oy + k3d’3.

According to the concept of "useful™ im-
purities proposed by the authors [24], the
observed drastic strength (hardness) in-
crease of nanocrystalline chromium is due
to the influence of interstitial oxygen
atoms, which are "useful” impurities for
chromium because they exhibit a stronger
chemical bond with chromium atoms than
that between chromium atoms. The segrega-
tion of oxygen results in the formation of a
stronger (harder) shell from interfaces,
which forms a honeycomb structure with
softer plastic chromium grains being located
within it (Fig. 7).

It should be noted that an abrupt yield
strength rise as a result of the grain refine-
ment to a size smaller than d,..; is possible
only in multicomponent systems at an ap-
propriate choice of components. In single-
component materials, a decrease in the
grain size results in an increased volume
fraction of imperfect material in grain
boundaries and at triple grain-boundary
junctions and, therefore, to a decreased
yield strength (hardness).

To describe the yield stress in a nanome-
ter grain size range, we used the approach
based on a mixture rule. We assumed that
the volume fraction of a crystalline material
is (d — t/d)2, the fraction of grain bounda-
ries is (1 — (d — t/d)?). The vyield stress
value of a material at grain refinement de-
pends on the strength of their boundaries (it
increases as grain boundaries are strength-
ened by useful impurities and decreases in
single-component materials). Taking into ac-
count the shear occurs in a plane, we propose
the following relation for the yield stress at a
grain size smaller than d,:

Functional materials, 16, 4, 2009

Fig. 7. Electron high-resolution micrograph
of chromium deposited using a magnetron
technology [24].

2 2
d - d - 7
og=(1- {th )op + {th oop )

where t is the thickness of grain bounda-
ries, op, the strength of grain boundaries;

and opop, the grain theoretical strength.

Since the strength of dislocation-free
grains tends to the highgest possible (theo-
retical) strength of a material, oop can be
assumed to correspond to the theoretical
strength of the material. For instance, it is
stated [36] that there exists a certain criti-
cal crystallite size at which conventional
mechanisms of plasticity and hardening stop
acting and an ideal strength is realized in
grains, at which the microhardness no longer
depends on the grain size and remains con-
stant. For a number of metals, the values of
such critical grain size evaluated in [36] show
a large spread. For example, this size ranges
from 1.2 to 59.83 nm for aluminum and from
1.7 to 89.4 nm for copper.

It is worthy to note that, when refining
intergranular straining mechanisms of a
material in a nanometer grain size range,
we can represent cp in expression (7) in an
analytic form.

3. Generalized Hall-Petch equation. Thus,
the consideration of the yield strength vari-
ations in a wide grain size range, including
the nanometer range, indicates the presence
of two critical sizes that define changes in
the straining mechanism when being at-
tained. When the grain is refined to d_,;,
the yield strength variation character is de-
scribed by the Hall-Petch relation (1), in the
grain size interval from d,..; to d,.s, it is
described by Eq.(2), and at grain sizes
smaller than d,,, by relationship (7).
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One can combine the indicated depend-
ences and derive a generalized equation that
describes the yield strength variation de-
pending on the grain size in a wide range
with regard to transitions to different de-
pendences at attaining the critical sizes,
using the so-called sigma functions, namely,
S-functions [387]. A feature of S-functions
(the Gompertz function, Pearl function,
etc.) is that in the vicinity of the critical
argument, their value changes from 0 to 1,
that is why their use enables one to combine
functions fi(x) and fo(x) having the plots
intersecting at certain critical values, in
one common function:

F(x) = S()f1(x) + (1 = S()f(x).  (8)

The chosen S-function must correspond
to the physical meaning of transitions at
attaining the critical values. Since it is
known that in the material, there exists a
certain grain-size distribution described by
the log-normal distribution

_ln(d) - ln(dcrl,crz)) 9)
23%’2 ’

_ A
f(d) = Sl’zd@EeXP(

where A =1 = const and s; 5 is the dis-
tribution variance for the first and second
transition, respectively, then, to construct a
generalized equation, it is expedient to use
antiderivative (9) as an S-function

S(d) = -f f(dyd(d) = (10)
1 1 [In(@) - In(d,,)
= E + Eerf T ,

where erf(x) = %JA exp(-t2)dt, t = 0...x.
s

An equation constructed using S-func-
tions chosen in such a way is a generaliza-
tion of Egs.(8), (4), and () and has the
form

G = {6151(deyy) + Ol — S1(de1)|Sa(dero) +
+ o5(d)(1 — So(d,,0))- 11)

According to (11), if all grains corre-
sponding to the given distribution are in
the range of values above d,.;, then the
Hall-Petch dependence (1) holds, for grain
sizes lying in the interval from d..; to d,.s,
dependence (2) is valid, and for grain sizes
smaller than d_.», dependence (7) holds.
From (11), it also follows that at grain sizes
smaller than d,.;, the yield strength may
increase or decrease depending on the
strength of grain boundaries. Figure 8a

370

G/E

005

d
0.04F dorr o

0.03F

002

0.00 1
S

1.0

038

I
I
I
I
I
I
|
0.01F :
!
I
I
I
I
I
I
|

06
0.4

02

0.0 1 1
0 50 100 150

1 ]
d-95 mm-03

Fig. 8. Dependences of the normalized yield
strength on the grain size for deposited chro-
mium in the case of “strong”™ boundaries
(curve 1) and "weak” boundaries (curve 2) (a)
and S-functions in the vicinity of critical
grain sizes (b).

shows a dependence of the normalized yield
strength (the yield strength divided by
Young’s modulus) on the grain size, con-
structed for a wide grain size range accord-
ing to (11) and with account for the follow-
ing experimentally obtained data for depos-
ited chromium: o, =10.22 GPa, k,=
1.4 kg/mm3/2, d.r; = 0.81 um, dopg =
0.057 um, s; = 0.3, and sy =0.15. In the
nanosize range, the value opp =12 GPa is
taken, which is somewhat higher than the
lowerest imate of the chromium theoretical
strength, and the thickness of grain
boundaries is ¢ =2 nm. In the case of a
strong bond along grain boundaries
("strong”™ boundaries), at op; =20 GPa
(op; > ocp), an abrupt increase in the yield
strength (curve 1) corresponds to the tran-
sition to nanosizes, which agrees well with
an experimental curve (Fig. 2). In the hypo-
thetical case of weak intergranular cohesion
("weak” boundaries), we take cg; =2 GPa
(op; is much smaller than cpp) and observe
its decrease (curve 2), i.e., the so-called in-
verse Hall-Petch relation.

Thus, it is seen that Eq.(11) takes into
account the hardening mechanism changes

Functional materials, 16, 4, 2009
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in the vicinity of the critical grain sizes and
agrees well with the experimental data ob-
tained by the authors. However, it should
be noted that the plasticity mechanism of
nanostructured materials for grain sizes
that rules out the intragranular straining
can be further refined, and, in this case, o3
will take a more specific form.

In view of the fact that, in Fig. 8a, the
yield strength normalized with respect to
Young’s modulus is laid off on the ordinate
axis, we consider that the obtained depend-
ence can be used in the future for a com-
parative analysis of the hardening level not
only for chromium, but also for other mate-
rials. However, since Young’s modulus of
nanostructured materials may differ sub-
stantially from tabular values (due to the
state of grain boundaries, texture, and
other factors), it is reasonable to obtain a
dependence of the normalized hardness on
the grain size. This seems to be convenient
because, in many cases, using the method of
automatic indentation (nanoindentation), it
is rather easy to determine both the hard-
ness and Young’s modulus values and,
hence, their ratio, in one experiment at
each point at which the hardness is tested.

We can pass from the o/E(d) dependence
to H/E(d) one using the Marsh formula that
relates the hardness and the yield stress:

HV _6.61nE +0.28+0.6In—2—, (12)
o 4 +v

GS S

where E is Young’s modulus and v is Pois-
son’s ratio.

In Fig. 9, the dependence of the hardness
normalized with respect to Young’s modulus
on the grain size is presented (the hardness
values of the grain-boundary material are
indicated near the curves) calculated in the
mentioned way. This dependence enables us to
describe both the descending branch for the
case of "weak” boundaries and the stabiliza-
tion or even increase in the strength (hard-
ness) in the case of "strong” boundaries in
the nanometer grain size range.

The dependence H/E(d) can be also used
for the fast evaluation of a material harden-
ing degree by comparing it with the theo-
retical hardness value of the material and
hence with the theoretical hardness value of
the material which corresponds of the high-
est possible hardening value for the given
material and, hence, with the largest possi-
ble value of the H/E = Hy,,,./E ratio.

The concept of theoretical hardness was
introduced by the authors in [38]. The theo-
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Fig. 9. Dependences of the hardness normal-
ized with respect to Young’s modulus on the
grain size for some values of a grain-bound-
ary material strength.

retical hardness of a material is its maximal
hardness which can be attained provided
that the stress that causes plastic flow in
the material under the indenter corresponds
to the theoretical shear strength of this ma-
terial. The theoretical hardness value can be
calculated using the formula

H = BE/o(l + V), (13)

theor.

where v is Poisson’s ratio, the o values are
within limits 5 << a << 80; for metallic ma-

terials, we can take C ~ 3.

It is seen that for the value o = 30, the
theoretical hardness can be H,,,,. ~ 0.1 E
depending on Poisson’s ratio of the mate-
rial. These values are the lower limit of the
possible theoretical hardness.

It was noted [39, 40], that, when the in-
dentation is done using a Berkovich in-
denter, the ratio of the hardness to the elas-
ticity modulus is described as

H/E*=0.3206 - (h/h,), (14)

where h, is the penetration depth within
which the indenter contacts with a material
after complete loading up to P,,,; h,, the
part of the indenter penetration depth
within which the contact with the material
is absent as a result of a sink-in formed in
the material near the indenter; and E*, the
effective Young’s modulus (E* = E/(1 — v2),
where v is Poisson’s ratio and E is Young’s
modulus.

An experimentally obtained dependence
H/E" on (hy/h,) (Fig. 10) shows that, at in-
dentation with a Berkovich indenter, for a
material with the given elasticity modulus,
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Fig. 10. Experimental dependence of H/E®
ratio on the ratio of the characteristics h /A,
obtained at indentation [39-40].

the ratio H/E® cannot exceed 0.1803, and
the largest specific hardness values
(H/E" ~ 0.14-0.15) correspond to the amor-
phous or amorphous-nanocrystalline (quasi-
crystalline) states.

To conclude, at decreasing the grain size
(or the size of another structural element,
e.g., the layer thickness in layered materi-
als), three characteristic regions with quali-
tatively different influence of the structure
on the yield stress can be distinguished that
are separated by two critical grain sizes.
Respectively, at least three analytical de-
pendences of the yield stress for each region
can be considered. The first two regions are
characterized by handover slip transfer
through grain boundaries with a constant
coefficient of the Hall-Petch equation in the
first region (k, = const) and with a coeffi-
cient of the Hall-Petch equation depending
on the grain size (k, = ky/d'/2) in the sec-
ond one. This results in a change of the
exponent in the Hall-Petch equation from
—1/2 to —1 as the grain size decreases to a
value below d,..,. When passing to the
nanosize region through d.,», the depend-
ence of the yield stress on the grain size can
be described using a composite model.

To construct a generalized dependence of
the yield stress on the grain size, it has
been proposed to use S-functions, for which
antiderivatives of log-normal grain-size dis-
tributions have been chosen. A generalized
dependence of the yield stress on the grain
size normalized with respect to Young’s
modulus, which describes both the "nega-
tive" Hall-Petch relation (for “"weak”
boundaries) and the increasing dependence
(for "strong boundaries). Using the Marsh
formula, a generalized dependence of the
hardness normalized with respect to
Young’s modulus on the grain size was ob-
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tained, which makes it possible to use the
automatic indentation method to assess the
structural sensitivity of hardening in a
wide variation range of the structural ele-
ment sizes. A further refinement of the
proposed technique must be connected with
the refinement of the plasticity mechanism
in the third stage and, hence, the analytical
dependence of the yield stress in the region
of nanocrystalline and amorphous-nanocrys-
talline structures.
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U.Erb, Acta

Ilepexin Bix MiKpoO- 10 HAHOCTPYKTYDP,
rpaHUYHE 3MIiIlHEeHHSA

C.0.®Pipcmos, T.I''Pozynv, 0.0.1llym

OOroBOPIOIOTECA 3aKOHOMIDHOCTI 3MiHUW BaJIe;KHOCTI HANPYr¥W ILJIMHHOCTI IPU IIepexomi
Biff MiKpo- 0 HAHOCTPYKTypoBaHOTO cTaHy. IlokasaHo, IO 3a JOMOMOTOI0 S-PYyHKIIifT MOKHA
OTPUMAaTU y3arajibHeHe DIBHAHHSA 3aJIeKHOCTI I'PaHUIII MJIMHHOCTI Bij posMmipy sepHa 3 ypa-
XyYBaHHAM 3MiHU MexaHi8MiB 3MillHEHHS IOJIKPUCTANIB B OKOJI KPUTUUYHUX PO3MipiB 3epeH
dkpl i d;cp2' Ile piBHAHHA [O3BOJAE ONMHMCATU AK e(PeKTU IHeMiIlHeHHS IPU Iepexonai mo
HaHOCTPYKTYP (Tak 3BaHW{ ' HeraTwuBHUM Xix samemuocti Xojnaa-Iletua), Tak i, HaBOmaku,
pPiBKe 3MiIlHEHHS 3a YMOBU IIiABUINEHOI MIiITHOCTI MeK3€pEHHOTO 3UYellJIeHH.
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