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EFFECT OF SILYMARIN ON N-NITROSODIETHYLAMINE INDUCED
HEPATOCARCINOGENESIS IN RATS
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Aim: To study the effect of silymarin on the levels of tumor markers and MDA (malondialdehyde) — DNA adduct formation during
N-nitrosodiethylamine induced hepatocellular carcinoma in male Wistar albino rats. Methods: The levels of AFP, CEA and activities
of liver marker enzymes in serum, MDA-DNA immunohistochemistry were done according to standard procedures in the control and
experimental groups of rats. Results: Hepatocellular carcinoma was evidenced from significant (p < 0.05) increases of alpha-fetoprotein,
carcinoembryonic antigen, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, acid phosphatase, lactate
dehydrogenase, gamma-glutamyltransferase and 5’-nucleotidase in serum and increased MDA-DNA adducts were also observed
in the tissue sections of hepatocellular carcinoma. Silymarin treatment significantly attenuated the alteration of these markers and
decreased the levels of MDA-DNA adduct formation. Conclusion: Silymarin could be developed as a promising chemotherapeutic

adjuvant for the treatment of liver cancer.
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Hepatocellular carcinoma (HCC) is the most frequent
primary malignancy of the liver and accounts for as
many as one million deaths worldwide in a year. In some
parts of the world it is the most common form of internal
malignancy and the most common cause of death from
cancer [1]. Well-known risk factors of hepatocellular
carcinoma includes hepatitis B virus (HBV), hepatitis C
virus (HCV), aflatoxins, alcohol and oral contraceptives.
Smoking, androgenic steroids and diabetes mellitus
are also suspected risk factors [2]. One approach to
control liver cancer is chemoprevention — when disease
is prevented, slowed or reversed substantially by the
administration of one or more non-toxic naturally occur-
ring or synthetic agents. In this regard, recently naturally
occurring polyphenols are receiving increased attention
because of their promising efficacy in several cancer
models [3]. Silymarin is one of such naturally occurring
compounds isolated from Silybum marianum, which has
shown to have significant anticancer effect on several
cancers both in vitro and in vivo [4-9].

Classically, a marker is synthesized by the tumor and
released into the circulation, but it may be produced by
normal tissues in response to invasion by cancer cells
[10]. A variety of substances, including enzymes, hor-
mones, antigens, and proteins may be considered as
tumor markers. Analysis of tumor markers can be used
as an indicator of tumor response to therapy. Sensitive
and specific liver cancer marker enzymes are used
as indicators of liver injury. Analysis of these marker
enzymes reflects mechanisms of cellular damage
and subsequent release of proteins and extracellular
turnover [11]. Lipid peroxidation generates a complex
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variety of products, many of which are reactive electro-
philes some of these react with protein and DNA and as
aresult are toxic and mutagenic [12]. Malondialdehyde
(MDA) is one of products of lipid peroxidation that reacts
with DNA to produce MDA-DNA adducts, which have
been implicated in the induction of G—T transversions
and A—G transitions [13]. The ability of MDA-DNA ad-
ducts to induce frame shift mutations in sequences for
genetic instability is emerging as a possible direct link
between oxidative stress and human cancers [14, 15].
Thus, the purpose of present study is to evaluate the
effect of silymarin on the level of tumor markers, and
MDA-DNA adducts formation during N-nitrosodiethyl-
amine induced hepatocellular carcinoma in rats.

MATERIALS AND METHODS

Animals. Wistar male rats weighing about 150-180¢g
were obtained from Tamilnadu Veterinary & Animal Sci-
ence University (TANUVAS), Madhavaram, Chennai,
India. The animals were housed in cages under proper
environmental conditions and were fed with a commer-
cial pelletted diet (M/s Hindustan foods Ltd., Bangalore,
India). The animals had free access to water.

Chemicals. N-nitrosodiethylamine (NDEA) and
silymarin were manufactured by Sigma chemical Co.,
(St. Louis, MO, USA). All other chemicals used were
from SRL (Mumbai, India).

Experimental design. The experimental animals
were divided into five groups (as shownin Fig. 1), 6 ani-
mals per group. Rats from group 1 (normal control)
were fed with standard diet and pure drinking water;
in group 2 hepatocellular carcinoma was induced
by providing 0.01% NDEA through drinking water
for 15 weeks as described in [16]; rats from group
3 were treated with 1000 ppm silymarin alone in diet
for 16 weeks; rats from group 4 were pretreated with
1000 ppm silymarin one week before the administra-
tion of 0.01% NDEA and received it till the end of the
experiment (i.e. 16 weeks); rats from group 5 were post
treated with 1000 ppm silymarin for 5 weeks after the
administration of NDEA for 10 weeks and received it till
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the end of experiment. After the stipulated experimen-
tal period the rats were anaesthetized with diethyl ether
followed by cervical decapitation. The experiments are
performed after the approval of the Institutional Animal

Ethics Committee IAEC No. 01/009/06.
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Fig. 1. Experimental protocol

Analysis of alpha-fetoprotein (AFP) & car-
cinoembryonic antigen (CEA). AFP and CEA were
measured in blood serum by chemiluminescent im-
munoassay (Fully Automated ADVIA Centaur, Bayer
U.S.A. chemiluminescence system).

Biochemical studies. The blood samples were
collected from the experimental animals, liver tissue
was removed and washed inice-cooled saline, and tis-
sues were chilled in a beaker on cracked ice for 5 min,
and then minced with sharp scissors. 10% homog-
enate was prepared inice-cooled 0.1 M Tris-HClI buffer
(pH 7.4). Standard procedures were used to assay the
various biochemical parameters. Protein content was
estimated by Lowry et al. [17]; activity of enzymes was
valued as described elsewhere (aminotransferases
(AST, ALT) — [18], phosphatases (ACP, ALP) — [19],
lactate dehydrogenase — [20], gamma-glutamyltrans-
ferase — [21], 5'-nucleotidase — [22]).

Immunohistochemical staining of MDA-DNA ad-
ducts. Immunohistochemistry for MDA-DNA adducts
was carried out according to Zhang et al. [23]. Briefly,
tissue sections were deparraffinized in two changes of
xylene at 60 °C and rehydrated through a graded series

of alcohols. Then the slides were washed in 1 x PBS,
treated with RNase (100 pl/ml) at 37 °C for 1 h, washed
with 1 x PBS, treated with proteinase K (10 pg/ml) at
room temperature for 10 min and washed. To dena-
ture the DNA, the slides were incubated with 4 N HCI
for 10 min and then washed with 50 mM Tris base for
5 min, both atroom temperature. After washing with 1 x
PBS, slides were incubated with 0.3% H,O, in methanol
at room temperature for 30 min. Non-specific binding
was blocked with 3% BSA and the slides were incubated
overnight at 4 “C with anti-MDA monoclonal antiserum
number D10A1 (Dr. P. Srinivasan, Korea Atomic Energy
Research Institute, Korea). The slides were washed in
PBS and then incubated with anti-mouse HRP labelled
secondary antibody (Genei, Bangalore, India) for 1 hat
room temperature. The peroxidase activity was visuali-
zed by treating slides with 3,3’-diaminobenzidine tet-
rahydrochloride (SRL, Mumbai, India), the slides were
slightly counterstained with Meyer’s hematoxylin. The
labeling index was expressed as number of cells with
positive staining per 100 counted cells in five randomly
selected fields at the magnification of objective 40 x
under light microscope.

Statistical analysis. Data were evaluated with
SPSS/10 software. Hypothesis testing methods in-
cluded one way analysis of variance (ANOVA) followed
by least significant difference (LSD) test. Statistical
significance was defined as P values less than 0.05. All
results were expressed as mean + standard deviation.

RESULTS

The significant increase in the levels of AFP and
CEA in the serum was observed in group 2 as com-
pared with group 1 (Fig. 2). Significant decrease of
the level of these tumor markers was demonstrated
in the silymarin-treated animals from groups 4 and 5
as compared with group 2.
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Fig. 2. Effect of silymarin on the levels of AFP and CEA in the serum
of control and experimental groups of animals (n =6 per group). Re-
sults are expressed as mean + SD. p < 0.05 compared with 2group1,
bgroup 2, °group 4, group 5. Units: IU/mL for AFP, ng/mL for CEA

Table. Effect of silymarin on the levels of AST, ALT, ACP, ALP, LDH, GGT and 5'NT in the serum of control and experimental group of animals

Groups AST ALT ACP ALP LDH GGT 5'NT
Group 1 3.90+0.44 25.3£2.85 27.23 £2.37 145.6 £ 16.6 1.42£0.16 1.47+0.17 3.09+0.36
Group 2 758 +£0.85*¢ 4751 £4.99*¢  48.8 £556*¢ 283.9+ 32.37%¢ 2.48+0.28*¢ 292+ 0.29%¢  £.19 (.71
Group 3 3.82+0.48 24.91+£2.83 26.24 +2.25 143 £16.3 1.4+0.16 1.45+0.16 3.08 £0.35
Group 4 5.3 =0.60%¢ 31.6 +3.60°  33.42+3.69%¢ 196 +22.30®¢  1.71 +0.19%¢ 1.91£0.21%¢ 4,31 £ 0.49%¢
Group 5 6.42+ 0.73® 38.9+4.43%  40.7 + 4.64*° 241 + 28.4¢ 2.09+0.24% 2.39+0.27°%  5.15+0.57°%°

Note: Results are expressed as mean + SD, (n = 6); p < 0.05 compared with 2group 1, °group 2, °group 4, ‘group 5. Units: umoles of pyruvate liberated
mg protein per min for AST, ALT and LDH; umoles of phenol liberated mg protein per min ACP and ALP; nmoles of p-nitroaniline formed mg protein per min

for GGT; nmoles of Pi liberated mg protein per min for 5'NT.
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Animals from group 2 exhibited a significant in-
crease in the activity of AST, ALT, ACP, ALP, LDH, GGT
and 5'NT in blood serum as compared with group 1
(Table). Silymarin-treated animals from groups 4 and
5 showed a significant decrease in the levels of these
enzymes when compared with group 2 (animals with
NDEA-induced hepatocarcinoma). The activity of AST
and ALT was significantly decreased in the liver tissue
of animals from group 2 as compared with group 1
(Fig. 3), silymarin-treated animals (groups 4 and 5)
showed a significant increase in the level of transami-
nases as compared with group 2. The activity of ACP,
ALP, LDH, GGT and 5'NT was significantly increased in
the liver tissue of animals from group 2 as compared
with group 1. There was a significant decrease in the
activity of these enzymes in silymarin-treated groups
as compared with group 2.

Activity
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Fig. 3. Effect of silymarin on the activity of AST, ALT, ACP, ALP, LDH,
GGT and 5’NT in the liver of control and experimental groups of
animals (n =6 per group). Results are expressed as mean + SD. p
< 0.05 compared with 2group 1, °group 2, °group 4, “group 5. Units:
pmoles of pyruvate liberated mg protein per min for AST, ALT and
LDH; umoles of phenol liberated mg protein per min for ACP and
ALP; nmoles of p-nitroaniline formed mg protein per min for GGT;
nmoles of Pi liberated mg protein per min for 5'NT

As it was shown by immunohistochemical analysis
of liver sections, the MDA-DNA adducts were ob-
served in 3% of hepatocytes in normal control animals
(Fig. 4, a). The rate of hepatocytes which were positive
to MDA-DNA adducts was 43%, 2.96%, 18% & 29% in
the liver sections from NDEA-induced hepatocarcinoma
(Fig. 4, b), silymarin alone (Fig. 4, c), silymarin pretreat-
ed group (Fig. 4, d), and silymarin post-treated animals
(Fig. 4, e) respectively. The graphical representation of
% positive cells for MDA-DNA is shown in Fig. 4, f.

DISCUSSION

During carcinogenesis, some enzymes can be used
as an biochemical indicators of tumor response to
therapy [11]. Hepatospecific enzymes were activated
when hepatocellular damage gave rise to abnormali-
ties of liver function and these enzymes are remarkably
increased in HCC. AST and ALT activities in blood serum
are generally accepted as an index of liver damage and
thistendencyis also known to be distinctin rodents [16].
There was a good correlation between the activities of
ALT and AST with tumor volume during therapy. Rocchi
etal. [24] reported that there was anincrease in the levels
of these transaminases activity in serum of HCC patients.
In concurrent with the above findings an elevated serum

aminotransferase activities were observed in animals
bearing HCC with simultaneous decrease in the liver
tissue; silymarin treatment significantly attenuated this
alteration thereby showing its anticarcinogenic activity.

Elevation of alkaline phosphatase is one of the signs,
suggesting space-occupying lesions in the liver. An in-
creased activity of ACP and ALP was seen in blood serum
and liver of animals with HCC, this may be due to the
disturbance in secretory activity or due to altered gene
expression in these conditions. Development of tumor
results in tissue damage that lead to the release of ALP
into circulation [25] and this enzyme level have been el-
evated in blood serum and liver tissue of the tumor-bear-
ing animals and this elevation is significantly suppressed
by the supplementation of silymarin in diet. GGT has
been shown to play an important role in the metabolism
of foreign substances and also during cell growth and
differentiation [26] and is overexpressed in tumor cells
resistant to therapeutic drugs [27]. Experimental stud-
ies have shown that GGT was strikingly activated during
the course of hepatocarcinogenesis induced by several
hepatocarcinogens in animals [28]; chemical carcino-
gens may initiate some systematic effects that induce
GGT synthesis [29]. This elevation reflects the progress
of carcinogenesis, since its activity correlates with tumor
growth rate, differentiation and survival of the host [30];
in concurrent with above findings there was an increase
in the levels of GGT in the serum and liver of animals
bearing HCC. This elevation indicates the basic tumor
burden, and silymarin treatment significantly decreased
the elevation of the level of this enzyme.

5'nucleotidase was found to be elevated in the
animals with solid tumors [31]. The increased activ-
ity of this enzyme seems to have originated from the
proliferating tumor cells [32]. Elevated activities of
5'nucleotidase in carcinoma of liver and leukemia were
reported [11, 33]. In our study correlatively increased
activities of 5'nucleotidase were observed in blood
serum and liver of the carcinogen administered ani-
mals, and this elevation is significantly inhibited in the
animals treated with silymarin.

LDH is a fairly sensitive marker of solid neoplasm
[84] and very high LDH levels correlate with treatment
failure [35]; numerous reports revealed increased
LDH activity in various types of tumors [10, 36]. The
elevated levels of LDH may be due to its overproduc-
tion by tumor cells. Proliferating malignant cells exhibit
very high rates of glycolysis, which subsequently lead
to elevated LDH activity [37]. The results of the pres-
ent study are in agreement with literature data and
show elevated levels of LDH in blood serum and liver
of the NDEA administered rats, and this elevation was
attenuated in silymarin-treated rats.

Elevation of serum AFP levels has been reported in
several diseases including HCC [38]. AFP along with CEA
is most extensively used in the diagnosis of HCC [39, 40].
In our study also there was anincreased level of AFP and
CEA in the carcinogen administered animals confirming
the presence of HCC, and silymarin treatment signifi-
cantly reduced the elevation of both AFP and CEA.
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Fig. 4. Immunohistochemical staining of liver sections for MDA-DNA adducts: a — group 1; b — group 2; ¢ — group 3; d — group

4; e — group 5; (f) representative graph of % MDA-DNA positive cells. Magnification 40 x

MDA is a highly reactive electrophile, capable of
interacting with DNA to form MDA-DNA adducts [41],
thatinduce frame shift and base-pair substitution muta-
tions [13]. The level of MDA-DNA adducts is found to be
increased in several cancers [42—-45]. Recent evidence
suggests that oxidative stress may contribute to genetic
instability and promote tumor progression [14, 15]. In
the present study the levels of MDA-DNA adducts are
increased in HCC-bearing animals, and pre- and post-

silymarin treatment significantly reduced the formation
of MDA-DNA adduct. So, we can conclude that silymarin
could be developed as a promising chemotherapeutic
adjuvant for the treatment of liver cancer.
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BJINAHUE CUWJIMMAPUHA HATENATOKAHLUEPOTEHES,
MHAOYLUUPOBAHHbIN Y KPbIC N-HUTPO30O4U3TUJIAMUHOM

I[eab: u3y4uTh BIMSIHIE CHIIMMAPHHA HA YPOBEHb SKCNIPECCHH OITYXOJIEBBIX M OMOXMMHYECKHUX MAPKePOB 1 ()OPMUPOBAHKE ATYKTOB
MasionoBoro quansaernaa ¢ JIHK (MDA-DNA) npu pa3BUTHH reIaTOKAPIMHOMBI Y KpbIC JTUHHE Buctap. Memodsi: cTaniapTHeIMH
OMOXMMHMYECKHMH METOJAMH ONPEAEJISIIA AKTHBHOCTH (hepMEHTOB B CHIBOPOTKE KPOBU M NMPOBOWIN HMMYHOTHCTOXHMUYECKOE
onpenenenie MDA-DNA B TKaHH ne4eHH Kpbic. Pe3yabmamoi: IOKa3aHO, YTO NPH PA3BUTHH 3JJ0KAYECTBEHHOI renaToKapiu-
HOMBI B CHIBOPOTKE KPOBH JKMBOTHBIX 3HAUYMTEILHO YBEJIMYMBAETCS KOJIMYECTBO alibha-(eTonpoTenHa, pAKOBO3IMOPHOHAIBHOTO
AHTUIE€HA, AKTUBHOCTH ACTIAPTAT- U AJJAHUHAMUHOTPaHC(depa3bl, LIET0YHO¥ U KUCI0i ocdaTassl, 1akTaTaeruaporeHasbl, raMma-
rayraMuarpancdepassi v 5’ -Hykiaeornaasbl. IIpu nposeeHHr IMMYHOTHCTOXMMHUYECKOTO HCCIEI0BAHMS OTMEYAIIH MTOBBIIIEHHOE
obpa3osanne arykToB MDA-DNA B TKaHH Ie9eHH KPbIC CO 3JI0KAYeCTBEHHOI renarokapuuHomoii. [Ipn BBeaeHHN CHIIMMAPHHA
3HAYNTEJIbHO CHUIKAJICS YPOBEHb YKA3aHHbIX (DePMEHTOB B CHIBOPOTKE KpoBH U (hopmupoBanue anrykroB MDA-DNA B TRaHn
neyeHu. Jaxirovenue: NPUMEHEHNE CUJIMMAPUHA MOXKeT ObITh 3()()EKTHBHO ISl MPEAYNPEKIECHUST PA3BUTHS 3JI0KAYeCTBEHHOI
renaToKapuHHOMbI, HHAYHUPOBAHHOI N-HUTPO30IMITUIAMUHOM Y KPbIC, H 3TOT MPENapaT MOXKeT ObITh MHOTOO0SINAIONINM XH-
MHOTEPANEBTUYECKUM ATBIOBAHTOM JIJIsl JIeUeHHUsI PAKA TEYEeHH.

Karouesvie crosa: MDA-DNA, ambdadeTonpoent, 3J10Ka9eCTBEHHAS TeNATOKAPIMHOMA, N-HHTPO30AUITUIAMUIH, CHIINMAPUH,
cdaasoHoMIBI.
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