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In frameworks of the Mandel model, the method of probability calculation of n-photon
registration by the quantum photocounter of low-intensive one-mode electromagnetic noise
is developed. The accuracy of method is provided by the smallness of the registration time
value in comparison with the relaxation time.

B pamrax momenu Manpgens, paspaboTaH MeTOA BBIUUCIEHUA € TapaHTUPYeMOH BEpPOSAT-
HOCTU n-(QOTOHHOIN peTrvCcTparUM KBAHTOBBIM CUETUMKOM HUBKOWHTEHCHUBHOTO IIIYMOBOTO
OHOMOJOBOTO DJEKTPOMATHUTHOTO M3JIyUYeHUA. TOUHOCTE MeToa 00eCTIeYnBAeTCA MAJOCTHIO
BEJMUNHEI BPEMEHU HaOJIOMeHUsA MO CPAaBHEHWIO CO BPeMEHEM 3aTyXaHUs.

For the description of the registration process of low-intensive electromagnetic radiation, it is necessary
to take into account its quantum nature. In this case, the field is registered by separate portions consisting
of photon groups. As low its intensity and as more the resolution of quantum counter as the registration
of separate photons is more probable. Their number registered during the time T is random with the
necessity. This randomness may be as the sequence of two reasons. First is the quantum nature of
the registered electromagnetic radiation. Second is connected with the fact that the field may have the
stochastic (noisy) constituent besides the regular (signal) one. Since the photon number is random, the
problem of the registration process description consists of the prediction of the probability distribution of
the registered photons. If the registered electromagnetic field contains the stochastic constituent then its
quantum state is statistically mized and it is described by the density matrix. In this case the concrete
structure of the density matrix is closely connected with the choice of the adequate mathematical model of
the electromagnetic noise. Thus, in the general case, the desired probability distribution of the registered
photon number is "quantum"and it is defined by the diagonal of the density matrix in the filling number
representation.

Simplification of the problem of the registration process description arises at sufficiently large
typical frequencies of the registered electromagnetic field. In this case, one may use the quasi-classical
approximation as it is shown in [1]. Therefore, the probability of registered photon number may be
calculated on the basis of the ordinary classical probability distribution

P,=Pr{ii=n}= %(J” exp[—J]) (1)
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representing the so-called composite Poisson distribution. It is referred to the Mandel distribution in
quantum optics [2]. Here J is the random value representing the energy of electromagnetic field absorbed
during the registration time 7. Brackets denote the averaging on its probability distribution.

Let us consider the model of the quantum photocounter [1] of the onemode electromagnetic radiation
being completely noisy. In this case, the appropriate model of the electromagnetic noise is the complex
Ornstein-Uhlenbeck process as it is proposed in the photodetection theory. The random value J is
represented by the formula [1]

J

(A 2
70 = [ | as

where ((s) = &(s) + i7)(s), s € R are trajectories of the complex process connected with real Ornstein-
Uhlenbeck’s processes {£(¢);t € R}, {n(¢);t € R} being stochastically equivalent and independent. From
the physical point of view, they correspond accordingly to electric and magnetic constituents of the noise
electromagnetic field. Ornstein-Uhlenbeck’s processes are markovian and gaussian and they are completely
characterized by these properties and their stationary condition. This class of processes is parametrizated
by two numbers v > 0, ¢ > 0. Each Ornstein-Uhlenbeck process is completely determined by the following
formula of the conditional probability density w(xo,#o|z,t) of the transition from the point zo € R at
to € R to the point € R at ¢ € R which depends on parameters v, o,

v e viz-— $0€7V|t7t0|]2
w(zo, to|z,t) = (WU = ezultto|)> oxp (_ o (1 —e=2vlt=tol) ) ‘ @

In this case the one-point distribution density w(z), z € R of the process is determined by the formula

2

w(z) = lim w(mo,t0|:1:,t):(7r—yg)1/2exp (-%) (3)

to——o0

The characteristic function Q(—i)\), A € R of the random variable J[¢] of the process ¢ is given by the
known Ziegert formula [4],

. ( drv exp(vT) 4)

1/2
Qg()\) = (exp(=ATIED) = (r+v)?2exp(rT) — (r —v)? exp(—rT)>

where 7 = Vv? 4+ 2Xo. Since processes {61}, {7(t)} are independent and equivalent, the generating
function of the random variable J[(] is found on the basis of equalities

QM) = Q:(NQ5(N) = QF(N) .

The Mandel distribution P,, determined by the formula (1) and by the probability distribution of
the random variable J induced by the probability distribution of the process ¢ = {((t);t € R} are very
complex. It is easy to obtain the asymptotic formula of the probability distribution P, at T — 0. It has
the form P,/ P® 5 1 where P is the following Poisson distribution [1]

1 T\" T
n. 14 14

For the correction of this formula, it is necessary to find such a method of the calculation of probabilities
P, which permits to determine them with the guaranteed accuracy. In this work we propose such a
calculation procedure. It permits to find probabilities P,, with any accuracy on the basis of formulas (1)
- (4) at the sufficiently small T value. The approximation obtaining is based on the representation of the
Mandel distribution in the form of the series expansion

1\ L
Pn:lz(l'l) <Jn+l) (5)
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where the averaging is fulfilled on the probability distribution of the random process {((¢);¢ € R}. Since
each moment (j”>, n € N of the random value J is proportional to T™ at T — 0, then one may expect
that just such an expansion is appropriate for the solution of the above-mentioned problem. The problem
consists mathematically of the calculation of these moments and of the remainder estimation connected
with the finite part of the series (5).

1. Calculation of random value J moments

Let us decompose the generation function Q(A) = (e"‘j ) of the random value
T
- L2
Jj= / ‘ &) ] dt
0

into the power series on A. Introducing the "dimensionless"parameter vT instead of T, we designate
hereafter by the same letter T if it will not cause a misunderstanding. We represent the function Q(\)
by the formula

Q) =eTG ().

It is valid the following expansion for the function G(A) into the series on powers of the variable
g= (1422, 2z =2\0/17,

=3 g [+ (1 32)]

After some transformations it may be represented in the form of the expansion on A powers,

G\ = Z % [um + %vm,l + vm}
m=0
where . ,
Um = n;n (zn)! (n iL_!m)! ;. mEN, ©)
O = D meN, . (7)

Cn+ D! (n—m)!’

n=m

For the convenience, we introduce the functional F[z|A] depending on sequences A = {a,;n € N;}. This
functional represents the ordinary power series

Flz|A] = Z 2"an
n=0

with sequence A components as its coefficients. It possesses the obvious property consisting of the fact
that it is multiplicative relative to the production of two sequences A and B according to the convolution
rule

(A o B)n = Z ambp_m ,
m=0

i.e. F[z|A o B] = F[z|AJF|z|B]. Besides, it is additive by obvious way relative to the addition of sequences
A and B. We consider the sequence W = (w,; m € N) with components wy = 0 and

Wy = —€ T (U + MUy 1/2+ V), mEN, (8)

m!
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Since e~ (ug + vo) = 1, the expansion (7) of the function G()) into the series on A powers may be

represented in the following form

G\ =eT [1+§:zmwm]=€T(1—F[Z|_W])7 Z:%' ©)

m=1

On the basis of multiplicative and additive properties above-formulated, the following expansion of the
function G=(\) on A powers is obtained

G =e (L =Flz| - W) = e TR [z]X]

where X = (zp;n € NL1), 29 = 1,

n

Th=Y (1! (W), , neN (10)

=1

and W! 1 = 1,2,... are I-tipled convolutions of the sequence W. Substituting this expansion and the
expression of the function Q(\), we find

Q) =eTGY(\) = F[z|X]. (11)

According to the moment definition of the random value J , on the basis of the production function Q()),
we obtain from Eq.(11) the formula

M, = (—1)" (%ﬁ”)m — (=1)"n! (i_';)nxn (12)

2. Moment estimations

For the solution of the accuracy estimation of successive approximations of the Mandel probability
distribution, it is necessary to find some a priori estimations of moments M,, of the random variable .J.
They are based on the following inequality

1 en
— < = 1
(2n)! — 22n(nl)? (13)
The proof of its validity is based on the identity
(2n)! = 2"n!(2n — 1!t == 2°"(n!)? exp (Z In(1 — (21)1)> . (14)
=1
The logarithm of the righthand side is estimated from below,
In(1-Q)™H)>-171, 1=1,2,...,n. (15)
We estimate the sum Z 1/1 from above considering it as the integral sum of the function a=!,
=1
"1 [ d
o<1+ [Z=1+hn. (16)
paet l / o

Applying inequalities (15) and (16) for the below estimation of the righthand side of Eq.(14), we find
Eq.(13).
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On the basis of the inequality (13), we make sure that the following above estimation for coefficients
Um, m = 1,2, ... is valid,

2m = 2n
< et 2100y, o) = Y S ()

where Ip(T) is the zero order Bessel function of the imaginary variable. Indeed, from the formula (6),
using the inequality (13), we have for any m € N that it is valid

(@ & (e
um<eZ D S =T X P

Eq.(17) follows from here.
Notice that v, < [T/(2m + 1)]u,,, we obtain the above estimation for coeflicients v,,,, m = 1,2, ...,

e .
U < o (T/2)" T 1 (1)

It is convenient to change the Bessel function Io(7") in obtained estimations by more simple one not
making worse these estimations seriously. Namely, on the basis of the famous integral representation of
the function Io(7T"), we have Io(T) < T at T > 0.

Since the Bessel function
2m—1

T/2
Z(/lw

of the first order justifies to the inequality 1,(7") < Io(T) at T > 0, further it may change also by e’
the above estimation obtaining.
Summarizing, we may state that the estimation

e

ml(m — 1)! (18)

T m]
Wi < .

T/2)°™ . =14+ —+=
T/ o). ol = [14 -+
is valid for coefficients w,,.

Now we obtain the a priori estimations for moments of the Mandel distribution. We proof the following
statement.

For moments M,, it is valid the inequality

o (5] b < (1)

where the function (1) is defined by the formula
P(T) =T —1)(1+T/2) + €.
For the proof of it at m > 1, we rewrite the formula (10) by the following way

m—1 k
T = — W + Z (-1)’671 Z W1y —...— 1y H wy; - (19)
k=1 j=1

Ieeey 1 >0
I+ H<m

Then, using the estimation (18), we have

k
|mm‘ < |wm| + Z Z |wm—ll—~»~—lk| H |wlj‘ <
j=1

k=1 l1,--slp>0
¥ AHp<m

<(1/2)* Z ) Hlt(l_lﬁp i) =

k=1 l1,1>0 j=1
4. A l=m
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o k
<(T/22m2 (Zp £ >

The sum in brackets in the last expression, according to definitions of Bessel function and the function ¢
is equal to I1(2) + T (Io(2) — 1) /2 + Iy(2)/T. Therefore, using estimations of the Bessel function on the
basis of the exponent, we obtain that this expression does not exceed ¥(7T")/T. Then, taking in mind of
the obvious inequality ey (T) > 1, we find at m > 1

_ep(T)

|| < (T/2)*™ Ze" W (T)/T)* = o) - T

7 (T (T) /4" (20)

From here, using the formula (12), the validity of the formulated statement follows.

3. Approximations of the Mandel distribution and estimations of their accuracy

We consider the Mandel distribution representing it in the form of the expansion on moments

1 o (=1
—mz 7 Myyn
=0

or, on the basis of the representation (9),

I)HZ(”” (%) (1)

We determine the sequence of approximations P,(lm, N = 1,2, ... of the probability distribution which
present it with the accuracy up to the Nth power of the parameter (¢7/v?) at n < N,

N—n 7
PN = (=) > (n+1)! (2_0> " Tign - (22)

n!
=0

Further, we estimate the deviation of the (N — 1)th approximation from the exact distribution (1).
On the basis Eq.(21), using the estimation (20), we have

_penj L e (2_a)l<ew>l
|Po = Py |Sn! ez/J—Tl;V(l—n)! v? 4 ’ (23)

Let us consider now the series

dr N N n n—l
v =i =1 (i) (7)<

120 ¢\ e
1—<§(1—c> SMag

Applying the obtained estimation to the inequality (23), we find that the Nth approximation PT(LN) of
the Mandel distribution has the guaranteed accuracy defined by the inequality

oY) ey (20N _edTy 1
|P, — P |g<ew_T> 5 (=5 <3
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Now, it is necessary to find the effective algorithm of the building of consecutive approximations Py(LN).
For this, it is necessary to point out the method of the component calculation of the sequence X. Since
these components, according to the definition (23), are built by means of convolutions of the sequence
W, it is sufficient to learn to calculate successively all components of this sequence. The key point of such
a problem is the following assertion which is proved easily by the induction on the parameter m.

Namely, for each m = 0, 1,2, ..., the formula

<8aam exp(:l:al/zT)) = mletTRE(T) (24)

a=1

takes place where polynomials R (T') of the m degree on the variable T are determined by the recurrent
relation

T - (21)!
+ e N _\2Y pE + =1.
Rm+1(T) 2(m + 1) ;( 1) 22[(“)2 Rmfl(T)a RO (T) 1
Now, on the basis of the formula (24) and the definition of coefficients u,,, we find their in the form
_ (o™ 1/2 _ L Tt ~Tp—
Uy = aa—mch(a T) = gm! (e"RE(T)+e "R, (T)) . (25)
a=1

Analogously to the formula (24), the following identity

<3_’” [at/2 exp (ial/zT)D _ %(m +DIETRE (T,

m
80[ a=1

is proved. Based on it, from the definition of coefficients v,,, we have

o ( o™ sh(a'’T) ) - %(m + ) (eTRE, (T) + e TR, (T)) . (26)

O™ al/?

Then, on the basis of formulas (25), (26) and the formula (8), components of the sequence W are
represented by the following way

) m+1

1 m
wn = SRA(T) (1+2)+ T R (1) +

T

1 1
we [ (14 ) 4 B R men (27)

Formulas (10), (27) and (22) permit to calculate successively all approximations PN of probabilities
P,,. In this section we give the example of such a calculation in 3d approximation on the parameter 7.
At first, the explicit form of polynomials R (T), m = 0,1,2,3,4 is found,

Ry(T)=1, RNT)=+T/2, Ry(T)=(T/2*)(TF1),
Ry (T)=+(2*-3)7' T (T? £3T +3),
RE(T) = (27-3)7 T (1% F 6T + 15T F 15) .

After that, we calculate components w,,, m = 1,2, 3, on their basis,
wi =T/2, wy=2""(2T%-2T +1-e7?T), (28)

wy = (3-2°)71 (27° — 672+ 97 — 6 + 3(T + 2)e 7). (29)

At last, components z,,, m = 1,2, 3 are found by the formula (19),

2 3
=1, 21 =-—-w, X9 = —wo +wy, .1'3:—’&)3-!-210111}2—11)1,

422 Functional materials, 12, 3, 2005



Yu.P.Virchenko, N.N.Vitokhina / Calculation of the ...

or, after the substitution (28), (29),
= -T/2, 2,=2"*(2T"+2T —1+e7?T) |

z3=—(3-2°)71 [27° + 677 + 3T — 6+ 3(3T + 2)e™*"] .

Explicit expressions of components x,,, m = 0,1,2,3 permit to write the approximated expressions of
n-photon registration probabilities for n = 0,1, 2,3 up to the third order (N =0, 1,2, 3). All probabilities
PN

In third approximation on T at N = 3, we obtain the approximate formulas

of more high values n > 3 are equal to zero in this approximation.

(3) _ _£ o \? 2 _ =27y _
PP =1-5 +(_2V2) (7% + 2T — 1+ ¢~27)
2 3 .
- (%) [27% + 672 + 3T — 6 + 3(3T + 2)e "] ,
v

o

oT T \* . _
=) a1

3 5 5
+2(50) [27° + 617 + 3T — 6 + 33T +2)e *7] ,
1%

2
B = (525) (7% +2T - 1+4¢727) -

3 .

—9 (%) [27% + 672 + 3T — 6 + 3(37 + 2)e~27] ,
v

_2/0

3 3 . —27
P =2 (505) [20° 461" +37 6+ 3(37 +2)e™"] .

In this work, we have solved principally the old problem of quantum optics [4], i.e. we have built
the calculation algorithm for n-photon registration probabilities of the noisy electromagnetic irradiation
in frameworks of the proposed problem setting. It is necessary, however, to point out on a lack of our
solution. We devote attention on the fact that obtained formulas permit to calculate the registration
probability for each concrete photon number n. But they does not permit to calculate the registration
probability in the case when this number is indefinite, i.e. it is not known strictly and, therefore, it is
the parameter in the problem. It is connected with the fact that their analytical presentation is very
tedious when its order increasing. In particular, in connection with this fact, it is impossible to calculate
distribution moments with guaranteed accuracy on the basis of obtained formulas.
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Po3paxyHok posmnoxainy imoBipHOcTeil a4 ducaa (HOoTOHIB OJHOMOJOBOTO
CTOXaCTUYIHOIO BI/IHpOMiHIOBaHHﬂ

FO.1I1. Bipuenxo, H.H. Bimoxina

Ha migcrasi momeni Maunens moGymosano meros of4ucIeHHs IMOBIpHOCTI n-hOTOHOI peecTpa-
il KBAHTOBHUM TpHAMadeM HI3bKO IHTEHCHBHOT'O OHOMOJOBOTO €/IEKTPOMArHITHOrO miymy. TO4HICTH
MeTOy 3yMOBJIEHA MAJIUM 3HAYEHHSIM YaCy PEECTPAIlil y MOPIBHAHHI 3 YaCOM PeJIaKCaIlii.
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