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Equilibrium shapes of the director arising around a cylindrical particle in nematic
liquid crystal are studied in their dependence upon the value and type of anchoring
between the director and the lateral surface of the particle. Perpendicular and parallel
orientations of the particle axis with respect to the non-perturbed nematic director are
considered. In the case of strong anchoring between the director and the lateral surface of
the particle the equilibrium distance between the axis of the particle and a disclination
line is obtained as a function of value anchoring energy. In the case of weak anchoring for
nematic in external electric field the analytical expression for the distribution of the
director field around the cylindrical particle is obtained.

WccnemoBaHbl paBHOBECHBIE KOHMDUIYPAIMU IUPEKTOPA, BOSHHUKAIOIME BOKDPYT IIHJIMHI-
PUUYECKON YACTUILI B HEMATHUYECKOM JKUIKOM KPHCTAJNJIE, B 3aBHCHMOCTH OT BEJIUYUHBI U
TUNA CHEILIEH!Us IUPEKTOopa ¢ ee DOKOBOII IIOBEPXHOCTHIO. PaccMOTpEeHB! IepHeHAUKYIApHAA
U mapajiieibHAad OPHUEHTAIMH OCU YACTUIIBI OTHOCHUTEJLHO HEBO3MYIIEHHOI'O AUPEKTOPa He-
MaTHKa. B cilydyae CHJIBHOI'O CIEILIEHUS AUPEKTOpa ¢ OOKOBOU IIOBEPXHOCTBIO UYACTUIIBI
HaileHO PaBHOBECHOE PACCTOSHNE NUCKINHANMOHHON JIMHUKA OT OCU YACTHUIBI KaK (PYHKIIUIO
BEJMUYNHBI SHEPruy cuelieHud. [Ipu ciaaboM clelieHny, KOTIa PACCMATPUBAEMBIN HEMATHUK
HAXOAUTCHI BO BHEIIHEM 39JC€KTPHUUYECKOM II0Je, IIOJYYEHO AHAJHUTHUYECKOE BBIPAKEHIE pac-
npegeseHrs OIS SUPEKTOPA BOKPYr MUJINHIPUUYESCKON UACTHUIIHI.

In the recent years, so-called liquid-crystal systems, in which the interaction of liquid crystal with the
surface of the solids is important, are widely used. Among them the most well-known are the systems,
in which the liquid crystal, in the form of drops, is situated in the polymeric matrix [1, 2]. But it is
not long ago that the research of another kind of heterogeneous liquid-crystal systems is started. Such
systems are the mixture of nematic liquid crystal (NLC) with small (~ 100 A in diameter) silicon particles
(aerosil), which are named filled nematics [3-7]. The aerosil particles, interacting with the liquid crystal,
form heterogeneities of detector field structure, which cause a certain kind of incident light diffusion and
essentially surpress the detector heat fluctuations. Electric field being applied, such a sample becomes
transparent at a lower voltage, than in case of aerosil absence.

So, studying of equilibrium shapes of director field around the particles of various forms, placed in a
nematic matrix, rises much interest from the theoretical as well as from the experimental points of view.
The rate of detector field heterogeneousness is obvious to sufficiently depend upon the anchoring of the
liquid crystal director with the particles surface. In the research [8] the distribution of NLC field around a
spherical particle at weak adherence of director with its surface was found out. If the adherence if strong
enough, then there can appear disclination-like structure defects of director field around the spherical
particle [9-11].
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In this paper the structure of director field, appearing around a cylindric particle in nematic liquid
crystal in external electric field is studied. Let us note that the problem in case of no electric field and
weak director anchoring with the particle surface was considered in the paper [12].

We consider two types of nematic director anchoring with the lateral surface of cylindric particle:
a) homeotropic — the direction of simple director orientation vector e is perpendicular to the lateral
surface of the particle; b) circular — the vector e direction is perpendicular to the cylindric axis of the
particle and tangent to its lateral surface. Besides, the cases of two different orientations of ¢ylindric axis
1 of the particle as to the perturbed director n, of nematic — perpendicular (1 L n,) and parallel (1| n,)
ones, which correspond to the two equilibrium shapes of director field, are considered.

Let us consider homogenous nematic liquid crystal, in which a cylindric particle of radius R is placed.
The length of the particle L we consider a little larger than R, so that we shall neglect the fringe effects
at the cylinder bases. Let such an NLC containing the particle be situated in external homogenous
electrostatic field with field vector E, directed along the non-perturbed nematic director n,.

In rectangular Cartesian coordinates system with z axis directed along the cylindrical axis of the
particle, we shall characterize the director field n in the volume of NLC by two angles: polar Q(r) — the
angle between the director n and the positive direction of z axis and azimuthal ®(r) — the angle between
the vector projection n onto plane zy and the positive direction of z axis. Then in the coordinate system
chosen

n = sin ((r) cos &(r) - e, + sin Q(r) sin &(r) - e, + cos(r) - e, . (1)

The full free energy of NLC, containing the particle, in the electric field can be written as follows

F:‘//fezdv+‘//fEdV+S/fst,

fu = % {K (divn)? + K> (n-rotn)® + K3 [n x rotn]? } ,

fo=-t(n-E), (2)

8x
W, . W .
fs = _Te cos® (Y — Y,) — T‘O cos?(6 —d,), Wy >0,W,>0.

Here f; is the cubic density of Frank elastic energy; fg is the cubic density of anisotropic contribution
into the energy of NLC interaction with the electric field; fs is the density of nematic free surface energy,
written in the form of Rapini potential [13]; e, = &) — £, > 0 is the anisotropy of static permittivity; Wj,
W, are the polar and azimuthal energies of director anchoring with the lateral surface of the cylindric
particle respectively; 7, is the polar angle between the simple director orientation vector e on the lateral
surface of the particle and the external normal direction to this surface; 0, is the azimuthal angle in the
plane of tangent lateral surface of the particle between the vector e projection onto this plane and the
direction of a certain polar axis; v, § are the polar and azimuthal angles, setting the director n direction
on the lateral surface of the particle respectively.

Let us introduce a polar coordinate system (r, ) in the plane zy and, minimizing the free energy (2)
on the angles ©} and ®, we shall get the following equations

INfa+fe) 1 O fer
-~ Oa =0, 3
ox r z{y: Taaax 3)
and, respectively, the boundary conditions for them
afS 8fel
( ox 90x/),—p @)

0
where x =Q0,®; 0, = —;a=r,¢,z.
da
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Let the cylindrical axis 1 of the particle be perpendicular to the non-perturbed director of n, nematic.
Let us direct axis z of the Cartesian coordinate system along the non-perturbed director. Due to the
homogenousness of the system in the direction of axis z for homeotropic as well as for circular type
of director anchoring to the cylindrical particle lateral surface the polar angle is (r) = #/2, and the
director field distortion around the particle, according to (1), will be flat. In this case, there are no
torsional deformations (n - rotn = 0), and in the approximation Ky = K3 = K we obtain the following
equation to determine the azimythal angle ®(r, ¢) of the director from the correlations (3) and (4), taking
into account (1)

e E?
Ad — a . _
S Sin 286 =0, (5)
and the boundary condition for it
od
2K S — Wsin2(® — &) =0, (6)

r=R

where ®, is the azimuthal angle of simple director orientation vector e on the lateral surface of the
cylindrical particle. It is obvious that in case of absolutely rigid anchoring of the director with the
particle lateral surface, the boundary condition (6) takes the form ®(R,¢) = ®,.

Let the anchoring of the director with the particle lateral surface be homeotropic, then the azimuthal
angle @, of vector e is

if —=< <7T
P, 5 2 R
®, = (7)
— if z<c,0<3—7r
Y-, B 5

Let us consider the case when the external electric field is absent (EF = 0), and the polar anchoring
energy Wy of the director with the particle lateral surface is infinite (Wy = oc0). It is easy to see that (see
Fig.1a) in the plane yz there appear particles, symmetrical to the cylindric axis, and two disclination
force lines “—1/2”. From the reasons of symmetry, we can also write

(I)(T,—(p) = —<I>(7“, 90)7 (I)(T77T - 90) = —<I>(7“, 90)' (8)

Then the solution ®(r, ) of Laplace’s equation (see(d)) is to be found in the first quarter of complex
plane s = x + {y in the exterior of the circle with the radius R (in the region D = {r > R,0 < ¢ < 7/2}).
Obviously, on the boundary of the region under consideration, the sought function ®(r, ) must meet the

following conditions:
{

0, if R<r<+4o0, p=0,
T

2 if T:R70<S0<§7

®s = (9)

T T

3 if R<r<a,cp:5,

T

0, if a<r<+oo,cp:5,

where a i3 the distance from the disclination line to the cylindrical particle axis (@ > R).

Using the function ‘
w(s) = % ((%)2 + (g) > (10)

let us conformally map the considered region D of the complex plane s to the upper half-plane of the
complex plane w = u + #v. As a result of such mapping, the function ®(r,¢) = ®(s) grades into the
function ®(w), and the boundary points of the region under consideration D (r = R,o0;¢ = 0,7/2)
grade into the points of real axis 4 in the complex plane w. The boundary conditions (9) for the function
®(r, ) after the transformation (10) give the values of function ®(w) in the real axis. So, for the harmonic
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Fig.1. The structure of director field around the cylindrical particle at rigid homeotropic (a) and circular
(b) director anchoring with its lateral surface in case 1 L n,.

function <i>(w) we have Dirichlet’s problem for the upper half-plane Imw > 0, the solution of which can

+oc -
~ 1 d(t)dt
be written with Poisson integral [14, 15]: ®(w) = — (tv()% .
T —u v

—x0

Substituting the values ®(w) on the real axis and integrating, we have

T

= = 1 b+ 1 cosp —u

O(r,p) = ¢(w) = 5 arctg ” “ 4 o /arctg+ dp, (11)
0

=3 (G () )emre o= (G (B) s o= (G0 (B) )

The value of equilibrium distance a from the disclination line to the cylindrical particle axis should
correspond to the minimum of free energy F' of NLC containing the particle. Minimizing the dependence
F(a), we have o* = 1,27R.

In case of strong (but not absolutely rigid) anchoring of the director with the particle lateral surface
(56 _ WeR

> 1) at E = 0 the solution of Laplace’s equation for the function ®(r, ) (see (5)) should
be sought in the form

o (r, ) = &(r, ) + o(r,), (12)

where |¢(r, )| < |®(r, )|, and the function ®(r,) is defined by the correlation (11). It is obvious that
the function ¢(r,y) also meets the Laplace’s equation A¢ = 0 and the boundary condition, following
from (6) and written in the linear approximation by ¢(r, )

o N
<E€¢_RE)7’:R =1 W

The solution of Laplace’s equation for function ¢(r,), taking into consideration the symmetry
correlations (8) and its limitation at » — oo, has the following form

(13)

r=R

00 2k
o)=Y Bue (£ sinie). (14
k=1
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Fig.2. The dependence of equilibrium distance a*/R of disclination line to the cylindrical particle axis

on the value of polar energy ¢ of homeotropic (circular) director anchoring with its lateral surface at
11 n,.

where the coeflicients By found, respectively, from the boundary condition (13), take the form

w/2
4R o0d
By =—— | 2= in(2ke) dp . 15
I T / 5 Rsm( @) dp (15)
0 r=

Minimizing the free energy (2) of NLC, containing the particle, for (12) solution, taking into account
the correlations (14) and (15), we obtain the dependence of equilibrium distance a* , shown in the Fig. 2
(the disclination line from the cylindrical axis of the particle) on the value of anchoring €4 polar energy
for the director with the particle lateral surface. Let us note that at the anchoring polar energy value
gy < 10 disclination lines are not formed, and a weakly deformed structure, considered in [12], appears.

Let the director anchoring with the particle lateral surface is weak (g4 < 1), and the NLC under
consideration is situated in external homogenous electrostatic field with field vector E = (F, 0, 0).

Solving the equation (5) in the linear approximation by ®(r,¢), taking into account symmetry
correlations (8) and the limitation of the solution at the infinity, we obtain

B(r,p) = Z Doy Kopy (é) sin(2m) , (16)

[dr K
where Ko, (z) are modified Bessel functions [16], Iz = % is so called electric coherent length,
€a

and D, are some coeflicients.
Substituting the solution (16) obtained into the boundary condition (6), in which (7) is taken into
account, in the linear approximation by ®(r, ), we obtain the following equation

o0 o0
Z Doy K, (zR) sin(2mep) — 0 Z Doy Ko (zR) sin(2mep) cos 2 = 5% sin 2p,
TR 1 2.’IJR

m=1

where g = R/lE, the stroke in the modified Bessel functions means argument derivative.
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Due to linear independence of functions sin(2me) on the interval [0, 27], we have an infinite system
of algebraic equations for defining the coeflicients Do,,:

£ 13
Dy Ky(ag) — ﬁ Dy Ky(zg) = —ﬁ :
(17)

€
Dy K, (xR) — ﬁ (D2m+2 Komy2(xzr) + Dam—2 K2m72($R)) =0, m2>2.

D: m
It follows from the equations (17), that at large 1 such correlations hold: 2m = O( ) and,
2m—2
s0, the series (16) converges by m absolutely and uniformly. Then in the expression (16) in the sum by m

we can limit ourselves with a finite terms number calculation with any desired accuracy, and this leads to
a finite number of equations (17) and the problem becomes technically soluble . Then, limiting ourselves,
for simplicity sake, by calculation the terms with m < 3, we have

Dy—_0 1 Dy = g Ko(zr) £ Ko(zr)K4(zR)

22p Ky(zg)’ 42 Ky(zr)Ki(zR)’ - 8z} Ki(zr)Kj(zp)K{(xr)

The substitution of the found expressions for the coefficients D», D4 and Dg into (16) gives the distribution
of director NLC field around the cylindrical particle in the electric field.

Let us consider the circular type of NLC director anchoring with the cylindrical particle lateral
surface. In case of absolutely rigid anchoring Wy = oo at external electric field absence, in the plane zz
two symmetric disclination lines appear parallel to the particle cylindrical axis in the distance a from it
(see Fig.1b). Taking into account the symmetry correlations (8) we seek a harmonic function ®(r, ) in
the region D = {r > R,0 < ¢ < 7/2} of the complex plane s = x + iy , to meet the following conditions
on the boundary of the region under consideration:

0, if a<r<4oo, =0,
—g, if R<r<a, p=20,
dg = (18)
~Z i r=R 0<p<=
' Sk 1 Y < 5
. T
0, it R<r <400, p= 5
Having conformally mapped the region D by the transformation (10) on the upper half-plane of the
complex plane w and solving in it the Dirichlet problem for function ®(w), we obtain
d(r, ) = arctgw dp. (19)
v

Minimizing the free NLC energy (2) for (19) solution, we obtain the same result, as in case of
homeotropic director anchoring with the particle lateral surface, the equilibrium distance a* = 1,27R
from the disclination line to the particle cylindrical axis.

In case of strong anchoring ¢4 > 1 of the director with the particle lateral surface at F = 0, the
solution (12) with the consideration of (14) preserves its form with the difference that in the expression
(15) for the coefficients Byy, the function ®(r,¢) is defined now by the expression (19). The dependence
a*(gy) of the disclination line equilibrium distance to the particle cylindrical axis on the value of anchoring
polar energy &g of the director with the particle lateral surface coincides with the presented in Fig.2.

If the director anchoring with the particle lateral surface is weak, and the NLC is situated in the
external electric field, then, solving the problem similarly to the case of homeotropic anchoring, we
obtain the expression (16) for the azimuthal director angle, where

i 1 D, = 59 K (xR)
2zr Ki(zg)’ 4 41;R Kl(zr)K(zr)’

D, =
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In the extreme case of electric field absence (E = 0), the distributions (16) of nematic director field
around the cylindrical particle, obtained in 3.1c and 3.2c for both types of director anchoring with its
lateral surface, are in accord with the results of the paper [12].

Let the cylindrical axis 1 of the particle is parallel to the non-perturbed director n, = (0,0, 1), and
the NLC in question is situated in external homogenous electrostatic field E = (0,0, E). Regarding the
director anchoring with the particle lateral surface as homeotropic, let us represent the NLC director in
the form

n = cospsin Q(r) - e, +sinesin Q(r) - e, + cos Q(r) - e, . (20)
In the approximation K| = K3 = K the free energy (2) of NLC containing the particle is
AN £, B2 dr
F = 7rKL/ [7'2 (—> +r— sin2Q + sin’ Q — 4“—Kr2 cos’ Q| — — 7K Legsin® Q|T:R .

dr dr T r
R

From the correlations (3) and (4), we obtain the following equation for the polar angle Q(r)

,d20 A0 1 £, E?

T & — 2 4 = 21
"= +r = T 3 sin 202 aric | sin2Q =0 (21)
and the boundary condition to it
a1
— +=(1 in 202 =0. 22
[R dr+2( +¢e9) sin L:R 0 (22)

At weak anchoring gy < 1 of the director with the particle lateral surface, we obtain, solving the
equation (21) with the boundary condition (22) in the linear Q(r) approximation:

() = Bulr/le) \/; (1 + R Ki(wR)) .

K+(zR) T+e Ki(zr)

After the substitution of the found value of the polar angle Q(r) into (20), we obtain the director
distribution in the volume of NLC containing the cylindrical particle.

In case of director circular anchoring with particle lateral surface, the director in the nematic volume
director has the form

n = —sinpsin Q(r) - e, + cosesin Q(r) - e, + cosQ(r) - e, . (23)

In the approximation K = Ky = K3 # K, the free NLC energy is

(o0} P
TKL do\? 4 e E? . | dr
F= 2 (&2 L2 6in20 +sin? Q + vsintQ — & 20820 L=
1+u/lr (dr) gy Smett s ven dnfe (L V)rTcost )
R

-2
—nK Le, sin Q|T:R ,

W,.R L K- K,
K ' Ky
As a result of free energy F' minimization by the angle 2, we obtain the following equation

where e, =

d*Q dQ 1 ‘ e E?
2 hr— — (= in” ) sin 20 — =2— (1 ?5in 20 = 24
roT T (2 + vsin Q) sin 2Q) S (1 +v)r”sin 0 (24)
and the boundary condition for it
o 1
Jr + = (1+e,(1+v))sin2Q =0. (25)
dr = 2 R
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Let us consider weak anchoring €, < 1 of the director with the particle lateral surface. Solving the

equation (24) with the boundary condition (25) in the linear approximation by €(r), we have

K\ (rvTF/ln) \/§ (1+ sn/THv .K{(mﬁ))_

) = i) V2 T To a0+ FKienviTy)

Substituting the value of £2(r) obtained into (23), we find the director field around the particle. Let

us note that in case of electric field absence, the director distributions (20) and (23), obtained coincide
with the results of [12].

AR
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PiBHOBaxkHiI KOH(iryparlii gupekTopa y HEMaTUKy
3 I_II/IJ'IiH,JIpI/I‘-IHI/IMI/I BKJIIOUECHHAMUN

M. ®. Jledneti

Hocmimkeno piBHOBaXkHI KOH(pIryparlil AUpEeKTOpa, dKi BUHUKAIOTH HABKOIO HJIHIPUYHOL 9da-
CTHHKH y HEMATHIHOMY DIAKOMY KPHCTAJIl 3a/1€7KHO Bil BEJUYHNHN M THILY 3YeIIeHH: AUPEKTOpa 3 il
6igH010 TMOBEPXHEID. PO3IIIAHYTO TEPIIEHIUKY/ISAPHY Ta MapasebHy Opi€HTalll 0Ci IaCTUHKA BiIHOCHO
He30yPEHOT0 TUPEKTOPA HEMATHKA. ¥ Pa3i CIVIBHOrO 3YEIJIeHHS AUPEKTOpa 3 GITHOI0 MOBEPXHE 9a-
CTHUHKHW 3HAHIEHO PIBHOBAYKHY BiJCTAaHL NUCKIIHAITHOL JTiHIT BiZl 0CI YaCTUHKY K (PYHKINO BEIUINHA
eHeprii 3uerienss. g c1abKoro 3uereHHs, KOIU JOCJI Ky BAHW HEMATHK IIepefyBa€ y 30BHIIHBOMY
€IEKTPUYHOMY IT0JIi, OTPUMAHO aHAJITHYIHUH BUPa3 PO3IOILILY MOJIA AUPEKTOPa HABKOJIO IWJIIHIPHIHOL
JACTUHKH.
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