УДК 539.3

РОЗРАХУНОК ДЕФОРМОВАНОГО СТАНУ СТІЛЬНИКОВИХ ТРУБ У НЕОДНОРІДНОМУ ҐРУНТІ

М. Г. СТАЩУК, М. І. ДОРОШ

Фізико-механічний інститут ім. Г. В. Карпенка НАН України, Львів

За допомогою рядів Фур'є запропоновано спосіб оцінки деформованого стану стільникової підземної труби з урахуванням змінності коефіцієнта реакції оточувального грунту. В результаті у рекурентній формі записані коефіцієнти рядів Фур'є для усереднених компонент вектора переміщень стільникової конструкції. На цій основі розраховано радіальне переміщення полімерної труби уздовж її обода.

Ключові слова: полімерна стільникова труба, максимальний прогин, коефіцієнт реакції трунту, ряди Фур'є.

Важливість застосувань трубопровідного транспорту з кожним роком стрімко зростає завдяки його продуктивності і економічності. Поряд з традиційними чавунними і сталевими трубами усе частіше використовують полімерні великого і малого діаметрів, надійність яких вища, ніж металевих [1, 2]. При цьому, з одного боку, необхідно економити полімерний матеріал та знизити вартість труб, а з іншого – створити труби з прогнозованою надійністю. Тому останнім часом широко використовують стільникові (пустотілі) поліетиленові труби та ємності зі структурованою будовою стінки. Технологія виробництва тонкостінних конструкційних елементів стільникової структури полягає в неперервному намотуванні на спеціальних пристроях-барабанах звичайних водопровідних поліетиленових трубок діаметром 20...110 mm з їх одночасним екструзійним зварюванням між витками.

Заходи підвищення надійності труб різноманітні: стабілізація несучої здатності; зменшення рівня навантажень під час експлуатації; і, нарешті, створення уточнених методів розрахунку напружено-деформованого стану для конкретних умов їх роботи. Найпоширеніший спосіб відкритого укладання трубопроводів у траншею, де основне навантаження на них створюється від ваги грунту засипки (активний тиск). Зазвичай під час розрахунків активний тиск грунту приймають як вертикальне навантаження [3, 4]:

$$q = H\rho, \tag{1}$$

де *H* – висота від поверхні ґрунту до горизонтального діаметра трубчастого елемента конструкції; ρ – густина ґрунту.

У результаті труба піддається деформаціям, які залежать від жорсткості конструкції та структури ґрунту. Згідно з працею [5] під час проектування полімерних гнучких трубопроводів укорочення вертикального діаметра не має перевищувати 3% від зовнішнього діаметра конструкції. Тому для розрахунку та проектування підземних гнучких трубопроводів необхідно знати максимальний прогин труби.

Особливістю деформації підземної труби, на відміну від наземної, є те, що вона працює спільно з ґрунтом, який тут відіграє подвійну роль. З одного боку, створює і передає активний тиск q на трубу; з іншого – є основою, чинячи опір за допомогою реактивного тиску в результаті переміщення труби. Що гнучкіша

Контактна особа: М. Г. СТАЩУК, e-mail: stashchuk@ipm.lviv.ua

труба, то суттєвіший вплив реактивного тиску ґрунту на загальну поведінку конструкції, що є важливим фактором для забезпечення кругової форми стільника.

Найбільш простою та найпоширенішою моделлю взаємодії грунту з трубою є модель Фусса–Вінклера [6], згідно з якою грунтова основа переміщується тільки в точці прикладення сили. При цьому грунт засипки не може сприймати розтягувальне напруження, а отже, на тих ділянках конструкції, які переміщаються від грунту, реакція середовища відсутня. Інтенсивність реактивного тиску подають у вигляді компонентів: радіального η, тангенціального η₂ та поздовжнього η₁, які пов'язані з переміщеннями серединної поверхні оболонки лінійною залежністю [6]:

$$η = \begin{cases}
 kw, \text{ коли } w \ge 0, \\
0, \text{ коли } w < 0,
\end{cases}$$

$$η_1 = k_1 \upsilon \text{ та } η_2 = k_2 u,$$
(2)

де w, v та u – відповідно радіальні, тангенціальні та поздовжні переміщення серединної поверхні; k, k_2 та k_1 – коефіцієнти реакції грунту у відповідних напрямках. У розрахунках вважаємо, що k_1 та k_2 є набагато менші за k.

Зазвичай, укладаючи трубу в траншею, її оточують ґрунтом зворотної засипки [7], утрамбовуючи його з боків. Також часто умови залягання труби є змінні (щільність, вологість, тип ґрунту, глибина траншеї) [4]. Таким чином, трубу оточує ґрунт, який має відповідно і змінний коефіцієнт реакції по ободу труби. Тому важливо дослідити поведінку стільникових трубних елементів конструкцій у грунті зі змінним радіальним коефіцієнтом реакції основи.

Вважаємо, що по довжині стільникової труби навантаження постійне та симетричне відносно вертикальної площини, а труба настільки довга, що поздовжні деформації можна знехтувати. Також допускаємо, що коефіцієнт реакції грунту в радіальному напрямку k змінюється по ободу труби і симетричний відносно вертикальної площини. Визначення деформованого стану такої конструкції зводиться до розв'язання системи диференціальних рівнянь (СДР) [8, 9]

$$\frac{B^*}{R^2} \frac{\partial^2 \upsilon^*}{\partial \varphi^2} + \frac{B^*}{R^2} \frac{\partial w^*}{\partial \varphi} + \frac{D^*}{R^4} \frac{\partial^2 \upsilon^*}{\partial \varphi^2} - \frac{D^*}{R^4} \frac{\partial^3 w^*}{\partial \varphi^3} = -q_2(\varphi) ,$$

$$\frac{D^*}{R^4} \frac{\partial^4 w^*}{\partial \varphi^4} + \frac{B^*}{R^2} w^* - \frac{D^*}{R^4} \frac{\partial^3 \upsilon^*}{\partial \varphi^3} + \frac{B^*}{R^2} \frac{\partial \upsilon^*}{\partial \varphi} = q_z(\varphi) - \eta(\varphi) , \qquad (3)$$

де w^* , v^* – усереднені по перерізу трубки конструювання радіальні та тангенціальні переміщення; R – радіус серединної поверхні стільникової труби; q_z та q_2 – зовнішні навантаження у відповідних напрямах; $\eta(\varphi)$ – радіальна реакція ґрунту; D^* та B^* – відповідно циліндрична жорсткість і жорсткість на розтяг, які визначають співвідношення

Рис. 1. Схема стінки стільникової оболонки.

Fig. 1. A scheme of a wall of a cellular shell.

$$B^* = \frac{EF}{h(1-v^2)}, \ D^* = \frac{IE}{h(1-v^2)}.$$

Тут E, v – модуль Юнга та коефіцієнт Пуассона матеріалу конструкції; h – діаметр трубки; F та I – відповідно площа та момент інерції перерізу трубки-стінки труби з урахуванням зварного шва. Для профілю стінки стільникової оболонки (рис. 1) жорсткості D^* та B^* перепишемо у вигляді

$$D^* = \frac{h^3 E}{12(1-v^2)} \left[1 - 3\pi \left(\frac{1}{2} - \frac{1}{SDR} \right)^4 \right],$$

$$B^* = \frac{hE}{1 - v^2} \left[1 - \pi \left(\frac{1}{2} - \frac{1}{SDR} \right)^2 \right],$$

де SDR = h/d – стандартна величина [5], що є основною конструкційною характеристикою труб; d – товщина трубки. Зазвичай для трубок, з яких формують стінку стільникових конструкцій, приймають SDR = 9; 10; 11. На основі першого співвідношення (2) допускаємо, що радіальна реакція грунту засипки

$$\eta(\phi) = \tilde{k}(\phi) w^{*}(\phi); \ \tilde{k}(\phi) = \begin{cases} k(\phi), \text{ коли } w^{*}(\phi) \ge 0, \\ 0, \text{ коли } w^{*}(\phi) < 0. \end{cases}$$
(4)

СДР (3) розв'язуємо методом послідовних наближень, де складник $\eta(\phi)$ на *i*-му кроці ітерації подамо у вигляді

$$\eta^{i}(\phi) = K w^{*i}(\phi) - (K - \tilde{k}(\phi)) w^{*i-1}(\phi) .$$
(5)

Тут $K = \max_{\varphi} k(\varphi); w^{*i-1}(\varphi) - \text{розв'язок СДР (3) на ($ *i* $-1)-му кроці, <math>w^{*0}(\varphi) = 0$.

На кожному *i*-му кроці розв'язок СДР (3) будуємо у вигляді тригонометричних рядів Фур'є [10], де усереднені компоненти переміщень w^* , v^* та зовнішнє навантаження q_z , q_2 шукаємо за співвідношеннями

$$w^{*i}(\phi) = \sum_{n=0}^{\infty} C_n^i \cos n\phi, \ \upsilon^{*i}(\phi) = \sum_{n=1}^{\infty} B_n^i \sin n\phi,$$
(6)

$$q_{z} = \begin{cases} -q \cos \phi, \ \phi \in [-\pi/2, \ \pi/2] \\ 0, \ \phi \in [\pi/2, \ 3\pi/2] \end{cases} = \sum_{n=0}^{\infty} q_{zn} \cos n\phi,$$
$$q_{2} = \begin{cases} q \sin \phi, \ \phi \in [-\pi/2, \ \pi/2] \\ 0, \ \phi \in [\pi/2, \ 3\pi/2] \end{cases} = \sum_{n=1}^{\infty} q_{2n} \sin n\phi.$$
(7)

Tyr $q_{zn\neq 1} = -\frac{a_n}{\pi} \frac{2q\cos(\pi n/2)}{n^2 - 1}$; $a_0 = 1/2$; $a_{n\neq 0} = 1$; $q_{z1} = -\frac{q}{2}$; $q_{2n} = -nq_{zn}$.

Другий доданок складника $\eta^{i}(\phi)$, що задає рівність (5), розвинуто у ряд

$$(K - \tilde{k}(\varphi))w^{*i-1}(\varphi) = \sum_{n=0}^{\infty} \gamma_n^i \cos n\varphi , \qquad (8)$$

де $\gamma_n^i = \frac{a_n}{\pi} \int_0^{2\pi} (K - \tilde{k}(\varphi)) \left(\sum_{j=0}^{\infty} C_j^{i-1} \cos j\varphi \right) \cos n\varphi d\varphi$. Інтеграли у співвідношеннях (8)

обчислюємо за допомогою квадратурних формул Гауса [11].

Підставляючи розвинення (6)–(8) у СДР (3) для *i*-го кроку ітерації, отримуємо коефіцієнти розвинення (6) в явному вигляді:

$$C_{n}^{i} = \frac{R^{2}}{n} \frac{n(R^{2}B^{*} + D^{*})(q_{zn} + \gamma_{n}^{i}) - (R^{2}B^{*} + D^{*}n^{2})q_{2n}}{R^{2}D^{*}K + R^{4}B^{*}K + D^{*}B^{*}(n^{2} - 1)^{2}},$$

$$B_{n}^{i} = \frac{R^{2}}{n^{2}} \frac{n(-R^{2}B^{*} - D^{*}n^{2})(q_{zn} + \gamma_{n}^{i}) + (R^{2}B^{*} + D^{*}n^{4} + R^{4}K)q_{2n}}{R^{2}D^{*}K + R^{4}B^{*}K + D^{*}B^{*}(n^{2} - 1)^{2}}.$$
(9)

Числові результати. На основі рекурентних формул (9) виконано числовий розрахунок деформованого стану стільникової труби радіуса R = 1 m. Для трубок, з яких формували трубу, приймали SDR = 10, h = 0.07 m, E = 850 MPa, v = 0.3; для грунту – H = 1.5 m та $\rho = 1800$ kg/m³.

Під час розв'язання СДР (3) співвідношення (4) взято у вигляді

$$\tilde{k}(\phi) = \begin{cases} k(\phi), \text{ коли } \phi \in [\pi/3...5\pi/3], \\ 0, \text{ коли } \phi \in [0...\pi/3] \cup [5\pi/3..2\pi]. \end{cases}$$

Рис. 2. Зміна усередненого радіального переміщення $w^*(\phi)$ по ободу труби: $1 - k(\phi) = k_0; 2 - k_0 + c(\pi - |\phi - \pi|);$ $3 - k_0 + c(\pi^2 - (\phi - \pi)^2).$

Fig. 2. Change of average radial motion $,w^*(\varphi)$ along a pipe contour: $1 - k(\varphi) = k_0;$ $2 - k_0 + c(\pi - |\varphi - \pi|); 3 - k_0 + c(\pi^2 - (\varphi - \pi)^2).$ На рис. 2 подано числові значення компоненти радіального переміщення $w^*(\varphi)$ по ободу труби.

Приймали $k_0 = 1$ MPa/m та c = 0,2 MPa/m. 3 отриманих результатів можна встановити укорочення вертикального діаметра $\Delta = |w^*(0) + w^*(\pi)|$ полімерних підземних трубопроводів. Найбільше воно буде для м'якого грунту (крива *1*) і становитиме $\Delta = 6$ сm, для жорсткіших грунтів маємо 5,1 сm (крива *2*) та 4,7 сm (крива *3*).

ВИСНОВКИ

Запропонована методика дає змогу дослідити деформований стан гнучкої труби, в тому числі і стільни-

кової, у ґрунті зі змінним коефіцієнтом реакції основи по ободу труби. Її можна використати також для відповідних розрахунків, що враховують залежність коефіцієнта реакції ґрунту від компонент вектора переміщень труби.

РЕЗЮМЕ. С помощью рядов Фурье предложен способ оценки деформированного состояния сотовой подземной трубы с учетом изменяемости коэффициента реакции окружающей почвы. В рекуррентной форме записаны коэффициенты рядов Фурье для усредненных компонент вектора перемещений сотовой конструкции. На этой основе рассчитано радиальное перемещение полимерной трубы вдоль ее обода.

SUMMARY. By means of Fourier series the method for estimation of the deformed state of a cellular underground pipe with account of the change of the surrounding soil reaction coefficient is proposed. As a result the Fourier series coefficients are written in a recurrent form for an averaged component of a vector of motion of a cellular structure. On this basis the radial motion of a polymeric pipe along its contour is calculated.

- 1. Гвоздев И., Швабауэр В. Производство труб большого диаметра из полиэтилена // Полимерные трубы. – 2004. – № 1. – С. 2–5.
- 2. Сезонов М. Украинский рынок полимерных труб для наружных сетей // Там же. 2008. № 4. С. 36–40.
- 3. *Клейн Г. К.* Расчет подземных трубопроводов. М.: Изд-во лит. по строительству, 1969. 240 с.
- 4. Клейн Г. К. Строительная механика сыпучих тел. М.: Стройиздат, 1977. 256 с.
- Швабауэр В. В., Гвоздев И. В. Расчет подземного трубопровода из термопластов // Полимерные трубы. – 2007. – № 3. – С. 52–56.
- 6. Власов В. З., Леонтьев Н. Н. Балки, плиты и оболочки на упругом основании. М.: Стройиздат, 1960. 374 с.
- СП 40-102-2000. Проектирование и монтаж трубопроводов систем водоснабжения и канализации из полимерных материалов, 2000. – 27 с.
- Стащук М. Г., Дорош М. І. Визначення деформованого стану підкріпленого стільникового трубопроводу // Тези Міжнар. конф. "Сучасні проблеми механіки та математики", 28 травня 2008 р. – Львів, 2008. – Т. 2. – С. 239–241.
 Максимук О. В., Стащук М. Г., Дорош М. І. Розрахунок стільникового полімерного
- 9. Максимук О. В., Стащук М. Г., Дорош М. І. Розрахунок стільникового полімерного трубопроводу, підкріпленого періодичною системою пружних шпангоутів // Мат. методи та фіз.-мех. поля. 2009. № 2. С. 135–143.
- 10. Тимошенко С. П., Войновский-Кригер С. П. Пластины и оболочки. М.: Наука, 1966. 625 с.
- 11. Бахвалов Н. С. Численные методы. М.: Наука, 1975. 638 с.