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Optical properties of LiNbO3;:Zn
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by micro-pulling down method
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The present interest in small compact diode pumped lasers has supported research on
new solid state laser systems based on non-linear crystals. High quality LiNbO; fiber single
crystals were grown by micro-pulling down method. It was found indirectly from the
optical properties of the LiNbO; fiber single crystals that doping those with ZnO increases
their photorefractive resistance. In addition, photoluminescence properties due to the
addition of Nd,O, dopant have been investigated.

CoBpeMeHHBIM HHTEpeC K MaJorabapuTHBIM KOMIIAKTHBIM JiadepaM C AUOLHOI HAKA4YKOU
CTUMYJIHUPYET KCCIEeLOBAHNE HOBBIX TBEPIAOTEJbHBIX JIA3€PHBIX CHCTEM Ha OCHOBE HeJIHHEeli-
HBIX KPHCTAJNJI0B. MeToqoM MUKDPOBBITATHMBAHUSA BBIPAIEHBl BHICOKOKAYECTBEHHBLIE BOJIOKOH-
uere MoHOKpucTaibl LINDO;. M3 onTHuecKnx CBOKMCTB BOJOKOHHBIX MOHOKDHCTAJLIOB KOC-
BEHHBIM IIyTE€M YCTAHOBJIEHO, UTO UX JierupoBanne ZnO MPUBOAUT K ITOBBLIMIEHUIO CTOMKOCTHU
K (OTOMHIYIMPOBaHHON pedpariuu. Kpome Toro, mcciegoBaHBI (POTONIOMUHECIEHTHBIE
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cBoiicTBa, obycioBnennsle npucyrcrsueM Nd,O; Kak jerupyromeii mpumecH.

Lithium niobate LN (LiNbO3) single crys-
tal has been studied for various industrial
applications such as holographic storage de-
vices [1], solid-state lasers [2] or optical
waveguides [3]. However, one serious disad-
vantage of undoped LiNbO5 (LN) crystals is
the photorefractive effect which occurs
when they are irradiated with high-power
laser beams, which restricts their utiliza-
tion in optical device applications. There-
fore, the suppression of the optical damage
is a very important objective for LiNbO5 op-
tical devices. To provide an effective solu-
tion to this problem, the photorefractive re-
sistance of the LINbOj; crystal needs to be
improved by addition of ZnO or MgO. How-
ever, as with undoped LiNbO3, a dark trace
is also induced in Mg-doped LiNbO; by a
high-power laser beam [4]. Therefore, Volk
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et al. [5] suggested the use of ZnO doped
LINbO; as a new photorefractive-resistant
material that does not exhibit the darkening
effect under irradiation from a laser beam
with intensity of up to 120 MW /cm2. An-
other potential application of LN is in Nd3*
based compact diode-pumped self-frequency-
doubled lasers which emits green radiation,
useful for applications in optical data stor-
age, undersea imaging, diagnosis in medi-
cine, excitation sources to replace ion gas
lasers for science and pumping of paramet-
ric oscillators and amplifiers [6].

In this work, the LiNbO3:Zn and
LiINbO3:Zn,Nd fiber single crystals were
grown by the micro-pulling down (u-PD)
method. The grown crystals were free of
cracks and homogeneous distributions of
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Table. Growth conditions of LN:Zn and LN:Zn,Nd fiber single crystals

Starting materials

Li,CO3, Nb,Os, ZnO, Nd,O,

Stoichiometic composition (Li,CO4:Nb,O5:Zn0)
Congruent composition (Li,CO5:Nb,05:Zn0)
Zn:Nd:LN (Li,CO4:Nb,05:Zn0: Nd,0,)
Crucible
Nozzle diameter
Pulling-down rate
Pulling-down axis

Crystal diameter

Atmosphere

50:50:1, 50:50:2, 50:50:3
48.6:51.4:1, 48.6:51.4:3, 48.6:51.4:5
50:50:1:0.3, 50:50:3:0.3
Pt
1.0 mm
Average 0.5 mm/min
<001>
0.8~1.0 mm
Air

the ZnO and Nd,O; dopant concentration
were observed by electron probe analysis
(EPMA). The change of the IR transmission
spectra and photoluminescence properties
with increase of ZnO and Nd,O; dopant con-
tents was investigated for the grown crystal
fibers.

Li,CO3, Nby,Og, and dopants powders of
99.99 % purity were used as starting mate-
rials. Zn:LN and Zn:Nd:LN fiber single crys-
tals were grown using u-PD method. The

u-PD method is described in [7] in detail.
This method is characterized by the high
pulling rate and the low thermal strain
which differ from other growth methods
[7], and it is possible to grow stoichiometric
single crystals from incongruent melt com-
position [8]. The growth conditions are sum-
marized in Table.

Fig. 1 shows a schematic diagram of the
u-PD apparatus. This growth equipment
consists of a Pt crucible directly heated re-
sistively, an after-heater made from Pt
wire, an annealing furnace, and a crystal
lowering mechanism containing a micro X-Y
stage. The crystal diameter was kept con-
stant by controlling the temperature of the
crucible and after-heater during the growth
process.

The concentrations in the fiber single
crystals were determined by EPMA (JEOL
JXA-8900R) and the defects were observed
by optical microscopy. The IR transmission
spectra of the crystals were obtained using
a Fourier Transform Infrared spectro-
photometer (FT-IR, Bruker IFS-66/S) at
room temperature. The PL spectra were
measured using a laser Raman and photolu-
minescence spectrometer (SPEX 1403) and
PL measurements were divided into three
wavelength ranges.
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Fig. 1. Schematic diagram of pu-PD apparatus.

The LiNbOs5:Zn fiber single crystals of
near-stoichiometric and congruent composi-
tions were successfully grown by the u-PD
method. The fiber crystals were 20~30 mm
in length at a diameter of 0.8~1.0 mm. The
grown crystals had a uniform shape and
their diameter was almost constant. The
grown crystals were transparent and
changed from colorless to yellow with in-
creasing ZnO concentration. Fig. 2(a) and
(b) shows the distribution of the Zn concen-
tration in ZnO doped near-stoichiometric
and congruent LiNbO; fiber single crystals
along the growth c-axis. The distributions
of 1, 2 and 3 mol.% ZnO in the near-
stoichiometric LiINDO5 crystals are shown in
Fig. 2(a), while Fig. 2(b) shows the composi-
tion distribution of 1, 8 and 5 mol.% ZnO
in the congruent LiINbO; crystals. The
EPMA results revealed that the ZnO concen-
tration was very similar to the initial melt
composition. This means that very little

537



H.J.Lee et al. /| Optical properties of ...

C,\ﬁ/t%
a
A AA3 )
A A
15} “ “‘AAAAAAA‘A .t *
= [ )
1.0 o.o..o..O .o........2
0.5 . e .t
.I.. -.. -.--..
0.0l ! ! 1 1 |
0 2 4 6 8 I, mm
C,wt%
» W b)
. a R AA3
o5l ‘AA“ AA‘A P A
20
° e_° .. .%.
15F ..°°.. Co070 et o
1.0F
o5l ..l....ll.ll. ..- EyEp Em g --.1.
) 1 1 1 |. " " " .I ]

=20 2 4 6 8 10 12 14 |, mm

Fig. 2. Distribution of ZnO concentration in the
LiNbO; fiber single crystals along the growth
c-axis: a — stoichiometric crystals doped SLN:
1- 1 mol. %, 2 — 2 mol. %, 3 — 8 mol. %;
b — congruent crystals doped CLN: 1— 1 mol.
%, 2 -8 mol. %, 3 -5 mol. %.

segregation occurred during crystal growth,
because of the restricted convection in the
micro-nozzle and the shape of the flat solid-
liquid interface. A flat solid-liquid interface
is established with a meniscus of narrow
width and the same diameter as the crystal
under the micro-nozzle. The axial tempera-
ture gradient at the solid-liquid interface
was about 300°C/mm and was controlled by
adjusting the temperature of the Pt after-
heater. The configuration of the miero-noz-
zle and after-heater makes it easy to control
the shape of the flat liquid-solid interface
and its temperature [9].

The optical transmission spectra of the
crystals were measured using an FT-IR
spectrophotometer. Fig. 3(a) shows the OH~
absorption peaks of the near-stoichiometric
LINbO; fiber single crystals obtained by
adding 1, 2 and 3 mol.% ZnO. The OH-
absorption peak of the undoped LiNbO; crys-
tal was located at 3485 cm™! and the doping
of the LINbOj crystal with 1 mol.% ZnO
appeared only to change the absorption
band intensity without resulting in any OH~
absorption band shift (OH™ absorption band:
3483 cm™1). The OH~ absorption bands of
the 2 and 8 mol.% doped LiINbO; fiber sin-
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Fig. 3. IR absorption band of ZnO doped —
a — nearstoichiometric crystals doped SLN:
1- undoped, 2- 1 mol. %, 3 — 2 mol. %, 4 —
8 mol. %; b — congruent LiNbO; fiber sin-
gle crystals doped CLN: I- undoped, 2 —
1 mol. %, 3 — 83 mol. %, 4 — 5 mol. %.

gle crystals were shifted to 8505 and
3518 cm™1, respectively. On the other hand,
Fig. 3(b) represents the OH~ absorption
peaks of the congruent LiNbO; fiber single
crystals with 1, 3 and 5 mol.% ZnO. The
OH~ absorption peaks of the undoped and 1
and 8 mol.% ZnO doped LiNbO; fiber single
crystals were all located at approximately
3478 cm~!. However, in the case of the
5 mol.% ZnO doped LiNbO; fiber single
crystals, the OH™ absorption peak shifted to
3487 cm 1.

The OH~ absorption peaks were con-
firmed to be almost same for the undoped
near-stoichiometric LINDO3 (3485 cm—-1) and
the 5 mol.% doped the congruent LiNbOj
(83487 ecm™1). As a result of this experiment,
the near-stoichiometric LiNDO5 fiber single
crystals showed the better photorefractive
resistance than the congruent LINDOj. This
phenomenon provides convincing proof that
the Zn2* ion dopant initially enters into the
Li sites rather than the Nb sites because of
the change in the misfit compensation in
the LINbO5; crystal [10]. In the near-
stoichiometric LINDO5; fiber single crystal,
Zn?* jons can occupy the Nb sites at even a
little amount of ZnO dopant, while Zn2*
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ions in the congruent LiNbO; fiber single
crystal can substitute for Nb sites at over
5 mol.% ZnO doping because of the change
of misfit compensation. The Zn2* ions sub-
stitute for the Nb; ions and then, when the
ZnO doping level exceeds the threshold
point, extra Zn2* ijons substitute for Nby,.
The Zn2* jons which occupy the Nb sites
form strongly negatively charged (Zan)3‘
ions in the LINbOgj crystal. As a result, the
decreased positive ions can improve the op-
tical conductivity of the photoelectrons.
This means that the OH~ absorption band
spectra can shift to a higher energy when
the negatively charged (Zan)3‘ ions are
formed in the LINDO3 crystal. It is therefore
to conclude that the threshold levels of ZnO
doping the near-stoichiometric and the con-
gruent LINbO; fiber single crystals were
measured to be of the order of 2 and
5 mol.%, respectively.

The 1 and 3 mol.% ZnO co-doped LN:Nd
fiber single crystals of stoichiometric com-
position were successfully grown by u-PD
method. The crystals had a size of
0.8~1 mm in diameter and about 25 to
30 mm in length. The crystals were trans-
parent and blue. Fig. 4(a) shows a PL spec-
trum of LN:Nd co-doped with 1 and 3 mol.%
Zn0O single crystal fibers in the range of
800-900 nm. The double spectrometer tech-
nique was used to measure the PL proper-
ties at room temperature, using an Ar-ion
laser as the exciting source. The excited
Nd3* jons were initially excited to upper
energy level and then dropped to the meta-
stable state. The PL intensity from the sam-
ple doped with 8 mol.% ZnO was stronger
than that of the sample doped with 1 mol.%
ZnO at the same wavelength. The strongest
intensity peak was found in the wavelength
range around 880 nm. This peak is due to
the 4F3 5%y o transition. Figs. 4(b) and
(c) show PL spectra of LN:Nd single crystal
fibers co-doped with 3 mol.% ZnO in the
range 1000-1100 and 1300-1400 nm. The
strongest intensity peaks are found in the
wavelength ranges around 1065 and
1340 nm, respectively. The peak around
1065 nm is due to the 4F3 2—>4I11/2 transi-
tion and that around 1340 nm, to the
4F3/2—)4113/2 transition.

Thus,using the pu-PD method, LN:Zn and
LN:Zn,Nd fiber single crystals were grown to
confirm the optical properties. The distribu-
tion of the ZnO concentration in the LiNbO;
fiber single crystals was homogeneous along
the growth c-axis. The near-stoichiometric
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Fig. 4. Photoluminescence spectra of the
LiNbO4:Nd co-doped with ZnO fiber single
crystals: (a) 800-900 nm; (b) 1040-1100 nm;
(c) 1300-1400 nm wavelength.

LINbO5 fiber single crystals have shown a
better photorefractive resistance than the
congruent LINbQOj;, because of the almost
same OH~ absorption peaks in undoped
near-stoichiometric and 5 mol.% doped con-
gruent LiINbO; fiber single crystals. The
threshold levels for the ZnO doped near-
stoichiometric and congruent LiNbO; fiber
single crystals were confirmed to be of the
order of 2 and 5 mol.%, respectively.

In addition, the PL spectra of
LiINbO3:Zn,Nd fiber crystals were measured
in the range of 800-900, 1000-1100 and
1300-1400 nm. The most intense peaks
were at the wavelengths around 880, 1065
and 1340 nm, these peaks being due to the
1F3,94 g9, Fg/5>% 115 and 1Fg 554 5 9
transition, respectively. Also, the intensity
of PL from the grown crystals was in-
creased by addition of ZnO.
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OnTuuyHi BJIACTHMBOCTI BOJIOKOHHHX MOHOKPHCTAJIB
LiNbO5:Zn and LiNbO;:Zn:Nd,
[0 BUPOINEHI MEeTOA0OM MIKPOBMTATaAHHS

I' Qo JIi, Jnc.Y .Illyp, O.Haxamypa, J].I'.IOn

CyuacHuii imTepec 0 mMajorabapuTHHX KOMIIAKTHUX JiadepiB 3 IiOLHOI HAKAUYKOIO CTH-
MYJIOE€ AOCIiIKEeHHS HOBUX TBEPIOTLIbHUX JIA3€ePHMUX CHCTEM Ha OCHOBI HesiHiflHMX Kpuc-
Tawie. MerogoM MIKpPOBUTSraHHS BHPOIIEHO BHMCOKOSKIiCHI BOJIOKOHHI MOHOKpHCTAIU
LINbO;. 3 onrmyHmMX BiIacTHBOCTEl BOJOKOHHHMX MOHOKDHCTAJIB HENPAMHUM ILIAXOM BCTa-
HOBJIEHO, 10 mpu ix JjeryBauui ZnO mnigBumyerbesa crifikicrs mo @oroingykoBamoi ped-
paknii. Kpim Toro, mociimikeHo (hoToMIOMiHECIEHTHI BJIACTHUBOCTi, OOYMOBJIEHI IPUCYTHiCTIO

Nd,O, Ak meryBanpHOI moMimkwu.
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