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It was shown in this paper that nonlinear spin waves can propagate in antiferromagnets
with uniaxial magnetic anisotropy in an external magnetic field. The nonlinear waves are
characterized by simultaneous oscillations of great amplitude of polar and azimuth angles
of antiferromagnetism vector. It means that nonlinear wave can propagate being the exact
dynamic 3D solution of Landau-Lifshitz equations in antiferromagnet. The dispersion of
polar and azimuth angle oscillations are found for antiferromagnetism vector. In particu-
lar, the dispersion for oscillation of azimuth angle in a long wavelength approximation
coinsides with known spin wave dispersion in antiferromagnet when the polar angle is
constant. Besides, the new type of spin waves obtained in this work is characterized by
possibility to form front structure at the wide class of 2D harmonic functions, possibility
of two-frequency and amplitude modulation.

IToxasano, uro B aHTH(EPPOMArHETHKAX C OJHOOCHOII MArHUTHOII aHU30TPOIIMeil BO
BHEIIIHEM MAarHHUTHOM II0JI€ MOTYT PaCIPOCTPAHATHLCS HEJNWHEHHbIEe CIIMHOBBIE BOJHBI, TaKue,
YTO OJHOBPEMEHHO IIPOMCXOAAT KOJeOaHus ¢ OOJNBIION aMILIMTYAON MOJSPHOrO M a3UMY-
TAJBHOTO YIJIOB BEKTOPa aHTU(EPPOMArHETHU3MA, T.€. MOMKET PACIPOCTPAHSATHCH HeJnHeHHas
BOJIHA, KOTOPAs SABJSETCS TOYHLIM JUHAMUYECKHM TPEXMEPHBIM pellleHreM ypaBHeHuil JlaH-
nay-Jlupmumna mas amtudeppomarseruka. HaligeHbl 3aKOHBI IHCIIEPCUN KOJEOAHUN MOJISP-
HOTO M a3MMYTAaJbHOI'O YIJIOB BeKTOopa anTudeppoMarHernsMa. B 4acTHOCTH, B AJUHHOBOJI-
HOBOM NPUOJNKEHNU IJd KOJIeOaHWI MOJSPHOIro yrja 3aKOH JHCIEePCHUHN KojJebaHuil asumy-
TAQJIbHOTO yIJa COBIIAJaeT C U3BECTHBIM BSaKOHOM [JQUCIEPCHM CIHMHOBBIX BOJH B
aHTA(EeppOMarHeTuKax B IIPUOJIMIKEHHUN, B KOTOPOM IIOJSPHBIN yroJ IoctosHeH. Kpowme
TOr0, HOBBIM THUII CIIMHOBBLIX BOJIH, IOJYYEHHBIA B JaHHOU paboTe, XapaKTepU3yeTCsI BOZMOK-
HOCTBI0O (DOPMUPOBAHUS CTPYKTYPHI (PPOHTA HA IIMPOKOM KJacce IapMOHUUYECKUX IBYXMep-
HBIX (PyHKIUHA, GPOpMbI KOoiebaHNA, a TaKKe BO3MOKHOCTBHIO [BYXYACTOTHOM M aMILIUTYIHOM
MOJYJISII[AHA.

The Landau-Lifshitz equation which was proposed by Landau for description of magnetization
dynamics in [1] is the basic one in scientific research of temporary evolution of magnetization [2],
propagation of spin waves including magnetostatic ones [3, 4] that is studying intensely in connec-
tion with new applications of magnetic materials for magnetic memory nanoelements and sensors
for fabrication of which it is important to understand deeply remagnetization processes [2]. Prog-
ress in this field occurs simultaneously in two directions: numerical micromagnetism and a search
for exact dynamic solutions of Landau-Lifshitz equation. For example, in works [5 — 9], excitation
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spin wave excitation after switching on a rotating magnetic field was conducted in the framework
of numerical micromagnetism. Achievements in o, finding exact solutions of Landau-Lifshitz equa-
tions, in particular, are mentioned in the work [11]. Every approach that's mean both numerical
modeling and exact solving of Landau-Lifshitz equation have its own advantages and restrictions.
Thus, methods of numerical modeling of systems having realistic sizes leads to the system of ordi-
nary differential equations that have about one million variables [2, 9]. Besides, Landau-Lifshitz
aquation can not be solved for certain problems by means of numerical methods because of exis-
tence of an infinite number of exact solutions under the same boundary conditions [12]. That is why
such solutions are important for an serve as the reference solutions testing numerical algorithms.
However, multidimensional exact dynamic solutions of Landau-Lifshitz equation as a rule can be
found only under strict restrictions for their form. In this connection direction of search for quasi-
axact solutions is also developing. Such solutions are exact enough for great intervals of time while
numerical method are especially adapted for visualization of solutions of Landau-Lifshitz equation
when time approaches to zero [13].

New exact dynamic solutions of Landau-Lifshitz equations are foud and analyzed in this work
for an antiferromagnet with uniaxial magnetic anisotropy in applied external magnetic field. The
model without damping is usually used for magnetic materials exposed to influence of short pulses
of magnetic field so that order parameter dynamics occurs so rapidly that it is possible to neglect
dissipative effects during the pulse action [4]. Nonlinear oscillations of antiferromagnetism vec-
tor calculated in this work as an exact solution of Landau-Lifshitz equations provide possibility to
describe propagation of oscillation with nonuniform vector antiferromagnetism distribution at its
front. And the spectrum of nonlinear waves in long wave length approximation obtained in this
work coincides with known spectrum of spin waves in an antiferromagnet. As it is well known that
uniform movement of magnetization represents traditional interest in the connection with ferro-
magnetic resonance and that as a rule homogeneous magnetic field induces magnetization move-
ment. However, it have been revealed in the resent works that taking on account significantly non-
linear nature of Landau-Lifshitz equations spatially homogeneous distributions of order parameter
zan be accompanied by spin-wave modes under high enough power of magnetic field pulses. In this
zase complicated magnetization distributions arise. Their investigation are important for modern
applications in the field of nanomagnetism. In this connection the results of this work are also of
interest.

Let us consider antiferromagnet with uniaxial magnetic anisotropy. Landau-Lifshitz equations
for antiferromagnetism vector without damping have the following form in a spherical coordinate
system [14, 15]:

fzsm2w¢—wﬂy-«de«v@mnﬁe)zo

ot , (1
6—02V26+[w% +02(V&p)2 —(up—wH)Z]sinecose =0

where § — is the polar angle of antiferromagnetism vector I, ¢ 1s the azimuth angle of an-

tiferromagnetism vector, wy =8Hy, g= 2% (bo 1s Bohr magneton, i is Plank constant),

4po M . o . ) )
W = Moo JAB , c= M,/ Ay (M is magnetization of antiferromagnet sublattice), A is
energy constant of uniform exchange, o, o, are constants of non-uniform exchange, f;, By are

zonstants of uniaxial magnetic anisotropy which are included in the expression of antiferromagnet
snergy [14-17]:
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where Jf is vector of magnetization of an antiferromagnet.
Similarly to the method explained in [12], we'll find the unknown functions 9, ¥ in the form:
0 = 2arctg|H(P(x,y,z2 — 1))]
0= Q3.2 +3(1) ’ @

where @(t) = wa (t)dt +wl, w —1is an arbitrary constant. In the case when wgy (t) =wp = const
@(t)=w'-t where w' —is a constant.

It is not difficult to become convinced that connection between the trigonometric functions that
are included in Landau-Lifshitz equation (1) and function H (P) can be expressed by formulae:

1-H?
cosh = 3
1+1;IH : 0)
sinf =+
1+ H?

Further the sign “+” is defined in the right part of the expressions (4) considering the function 6

to be positive because the polar angle 0 is changing in the range [O,W] .
The partial derivative is equal to

do _
Frin w'. ®)
where the definition w= w'—wy is introduced.

The solution of Landau-Lifshitz equations will be found according to the parametrization (3)
describing uniform motion of nonlinear static solution of Landau-Lifshitz equation with a velocity
v along the coordinate axis OZ .

It is not difficult to verify that

o
o 1+n? Voz ©)
where H' :ﬁ and also
dpP
2 2, 8H(1—H?\H'
div](Ve)sin6) = — s~ TC ( 2 S—P Z_Q .
(1+H2) i Ox; (1+H2) i ox; Ox;
8H (1—H?\H' op
a—t(sinze :g _,\‘)a_z’ (9)

(1+H2)8

where x; —are Cartesian coordinates of the radius-vector, i.e. x; =x, Xo =y, ¥3 =2.
Substituting the expressions (3) — (9) into the first equation of the system (1), it is possible to ob-
tain:

2 !
02 4H2 32Q+8H(1_H )H Q%
2

(1 N H2)2 7 o (1 n H2)3 — Ox; Ox; (10)
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The derivatives and functions are calculated for substitution into the second equation of the system (1):

520 —H 8P | Hr  20H? | (oP)
o = 2 V2 2 2| N5 1 [ an
ot 1+H* oz 1+H (1+H2) 0z

8 _ 2H' P

ox, 1+ H?2 x> (12)

2 ) 2 " 2 2

Zagz 2H223123+2 H2_2HH22£]. (13)
CoxE 1+ H® T ox; 1+H (1+H2) 7 Ox;

Substituting the expressions (11) — (13) into the second equation of the system (1) it is possible
to obtain:

g2 | M &P | H" _ 2HH® [@]2 -
1+ 1% 02° |1+ H? (1+H2)2 0z
g2 | M PP | He2nn? ((op)
1+H* 5 ox?  |1+H? (1+H2)2 o (14)

20 —0
O

X

2

2 leH(1-1?)
s

+[w% +sz
i

It is possible to derive the following system of equations for functions P, ¢ , H starting from
(10), (14):

8H (1~ H*|H' oP 9Q | oP|  —4tH® —o%Q
W{sz o, O, W a_z} _ (1 +CH2 )2 zl: axiz (15)

i

2" %P %P
2 _ sz .
i ox;

1+ H* 92" s
2 H" B 2HHy2 f\‘z[@]z_czz apP 2 N (16)
1+H? (1+H2)2 Oz T \0x;

@2 2H(1—H2)

ox;

2

+kw% —wz +sz
i

(1+H2)2

The system of equations (15) — (16) can be transformed to the separate system of equations for
functions P, @
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ZaP 0Q ___ 0P
ox; Ox; 32’ (17
32
2 7e=0
i Ox;

23219 ~2 8°P
Coxi F o2t

, . ) (18)
2(0P ax—| 9P 2 2, ax|0°Q
—| —c¢ —| +uwp—w +c — =0,
A [32'] zi:[@xi P zl: ox;
And also to the separate equation for the function H :
H"  2HH® HQ-H? 9
1+H? Q+H*? (@Q+H?*? (19)
If the functions P, & satisfy the Caushy-Riemann conditions:
or _ 0@
dx Oy
or __ 94
then the 2D Laplace operator applied to the functions P, @ gives identically zero:
&P 9P
—+t—=0
ox Oy
2 2
CAC @1)
x> 3y

Similarly it is possible to derive the following relations starting from the Caushy-Riemann con-
ditions (20):

oP0Q__ 0P 9@

ox Ox 9y dy

oPY (9P} _
ay B

Ox
By the way if the Caushy-Riemann conditions (20) are satisfied then the system of equations
(17) — (18) can be simplified significantly:

@2

@2. (22)
ox +[ ]

Ay

L OPOQ  oP
¢ ——=—w—
oz 0z 0z
2
_3§9:0 , 23)
0z
a2P_[1]232P
2> c) 922
o(PY  o(0PV | 2(0QF | o o 94
Y= —¢|—=—| +c7|—| +wg—w" =0 24)
0z 0z 0z
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The system of equations (23) — (24) can be transformed to the form:

2 2
% 1— [1] -0
Jz ¢
&Q
—F=0 , 25
022 (25)
OP( 5 0Q
- — =0
0z [C 0z ﬁ‘w]
OPY (o o\, 2(0QY | 2 3
[3_z] (“f —c )—i—c [a—z] +wy —w =0, (26)
There are two possible solutions of the system of equations (25) — (26):
1) If wy =0 and the conditions are satisfied
N=c
@ =0
oz (27)
Then it is possible to obtain
99 _ _w
oz ¢

Q=-"z+g(x5y)
¢ (28)

And the solution has the form:
P(x.y.2)=P(z—~t)+f(x.y)

Qx,y.2)= —%z—i—g(x,y)

s

where P(2 —~t) is an arbitrary function and functions f(x,y) and g(x,y) are interrelated by the
Caushy-Riemann conditions.
2) If v= Athen the unknown functions can be found in the form:
P(x,y.z—~t)=p(z—t)+f(x,y)
Q(x,5.2)=qz+g(x.) , (29)

where P and g are the certain constants and [/ (x,y), g(x,y) also satisfy the Caushy-Riemann
conditions.
The substitution of (29) into (25) — (26) gives the following conditions for the parameters:

pE*q+w) =0
pz(wz—cz)—i-czqz—i-w%—wz:O (30)
Solving the algebraic equations (30) it is possible to obtain two different solutions depending the

value of the parameter P . The fist solution has the form:

p=0

[2_ 2
w —UOO
q:f> w > Wy (62))

It is obvious for this solution that the polar angle of the antiferromagnetism vector 6 doesn’t
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depend on time. That is why such solution describes the well-known precession of the azimuth
angle ¢ .
The second solution of the equation (30) is specified by the expression:

’\{UO
q —_—
02
2 2
ATl
wo Wo C
= i7 B (32)
aE
c

The change of sign «+» onto «—» in the last formula corresponds to the substitution 2 — —2z in the
expression for oscillation of the polar angle of the antiferrtomagnetism vector 9.
Such nonlinear waves can propagate in the range of phase velocities 7

2

<~v<ec
w

c 1—[w—0

and for the case when w > wg . The last two inequalities provide values of the parameter p in the
expression (32) to be real. Thus ~=¢ 1is the limit velocity of propagation of the interrelated non-
linear spin waves of the type (30). If w=uwj then the lower limit of allowed phase velocities ¥=0
If w>wy then the lower limit of propagation phase velocity of the nonlinear spin waves is different

2
0 . . .
from zero Ymin = C4f1— [:] and “slow” nonlinear waves with the velocities ¥ < Vpin of the men-
tioned type can not propagate.

The notation —2 = — is introduced where 8y 1s the characteristic length. That is why the pa-
c
rameter P has the form®
5(~
p= 30) : (33)
5o

where

o(y) =

(34)

8(v) 1s the dependence of the characteristic size of nonlinear wave as a soliton on velocity . Thus
lim 6(~() =00 gpnd lim 6(~() =0
r‘{*}

¢ min

The solution (29) with this notations is transformed to the form:

P(x,y.z)= %:)(z—wt)—i— f(x.9)

Q(x,y,z)=—¥z+g(x,y) : (35)
c
The equation (19) for the function H can be transformed to the form:
(1+H?|H =20~ H(1-H*) =0 (36)

The substitution of variables and functions is done in the differential equation (36):
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Fig. 1. Dependence of oscillation amplitude - (curve 1)

and elliptic function module %y (curve 2) on parameter G 0.4
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di
H=v=%" 37
vV 1P 37
2
o @CH _dV _dVdH _dv

T 4p?  dP  dH dP  dH (38)

This substitution allows to reduce the order of the differential equation (36) and obtain the lin-
ear differential equation of the first order:

(1+H2)V%—2HV2—H(1—H2):0. (39)

The equation (39) can be integrated and the general solution of the equation (38) for the function
H (P) can be expresses though the elliptical functions

+dH
P(x,y.z2—nt)= f

5 - (40)
\/Hz +C (1+H2)
1
If —— < C; <0 then the last integral can be transformed to the form:
] by
tg [—] = : (41)
2 dn(co,/|C1|-P(x,y,z—wt),kl)

where

. \/1+2Cl+,/1+4cl , \/1+2cl—1/1+4cl
0 = , o =

2G| 2|4 ’

0 <k <1 is the module of the elliptical function,

2,1+ 4C
klz\/ + 1

1420 +1+4C

1 . A . . .
If C; =—= then the amplitude 6, of angle ¢ oscillations, i.e. the difference between the maxi-
mum and minimum values of the angle ¢ is equal to zero and the elliptic function module £ = 0. If
C, =0 then the amplitude of angle oscillation is equal to ™ and the elliptic function module & =1

1
The amplitude of oscillation is equal to 6q = 2arctg (¢ ) — 2arctg (by) in the range of 1< G <0,

The dependences of oscillation amplitude b on the parameter C; and elliptic function module &;
on the parameter C; are represented in ﬁgq.T 1.

It is obvious from Fig. 1 that it is possible to change the oscillation amplitude and the oscillation
form by means of choice of the parameters C; and k.

The following solution was obtained for the case when C; > 0:
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Fig. 2. Dependence of elliptic function module kg5 on the
0.4 parameter C; .
0.2}
0.0 1 1 1 1 1
0 20 40 60 80 Cq
Plx,y,z—~t
1—sn ( Y il ),
tg[ﬂ] - e (12)
2) Plx,y,z—~t ’
1+sn ( Y 1 ),
ke
where

by =~
SN T

0 <ky <1 is the elliptic function module.

The oscillation amplitude of angle 9 which is given by the solution (42) equals © and can not be
changed depending on the parameter defining the elliptic function module £, and the oscillation
form for the angle 6. The dependence of ks on C; is represented in Fig. 2.

Let us calculate the wavelength X for the spin wave of the type (41). Taking on account that the
period of the elliptic function dn(u.k) equals 2K (k) it is not difficult to obtain the wavelength:

2K (ky )804]1— [2]2

R

In this case imX\; (7)=0 and lim X\ (v)=oc.
e T "Ynin

Similarly it is possible to calculate the oscillation period 71 for the spin wave of the type (41):

(43)

2K (ky )804/1— [2]2

m = — (44)
JWJ[] (]

dx .

0 (1 — k2 .sin? x)

2%
The frequency of the spin wave of the type (41) {4 = - is expressed by the formula:
1

0|

where K (k) =
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[“]2

e ]

K (k) 60‘/1

That is why it is easy to verify that lim (“f) =o0 and lim 4 (“f) =0.

N—C N Vmin
Taking on account that the elliptic function period sn(u.k) equals 4K (k) it is possible to calcu-
late similarly the wavelength and the frequency of the wave of the type (42) depending on the phase

velocity of the wave ~:
2
4k2K(k2)60‘/1—[”]
Ny = <, (46)
2 2
Fefit
wo C
2 2
2’]‘(’\(\/1 [w] [1 [f\‘] ]
c
0y = (47)

Ak K (k) 60‘/1

Let us calculate the dispersion relation of the nonlinear spin waves. Let us introduce the following
shorthand notations for taking on account wavelengths and frequencies of the waves of both types (41),

o = (45)

42):
2
;50 41— ”]
c
(48)
R
ULJO C
2 2
2’]‘(’\(\/1 — [w] [1 — [f\‘] ]
W C
O = > , (49)
a5 \/1—[2]
where a; = ag = 4hy K (ky).
€ 21

Firstly let us calculate the wave vector r; = N

T

ki = = (50)
;501 /1 - [“]
C
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10 Fig. 3. Dependences of the dimensionless group velocity
08l 3 ul/ —% n the dimensionless phase velocity ~' = a
C 2 C
2 w
06 at different values of the parameter< :[d . Curve 1
1 corresponds to the value of the paramete W1 , curve 2
04F
—the value ¢ =1.1, curve 8— ¢=1.9 accordingly. The
02} strait line represents the dependence y’ = ,\‘/ .
00 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 v

Here Ilm K; = 00 lim Ky = 0
N—¢C N=Ymin

The inverse function has the form ~(x;):

1
a;5pk; ]2 +[ W ]2 G2Y)

N=c [l—

27 wn

Wo

Taking on account the last expression it is possible to obtain the dispersion relation for the non-
linear waves of the types (41) and (42):

1
Q =cr; 1— (52)

(3 2 2 .
a; 5ok w
vt vV v _l’_ _
21 wg

Starting from the last formula expressing the dispersion relation it is possible to obtain the

group velocity u; = % for the nonlinear spin waves of the types (41), (42):

Hl
a;5 ZH_z
13
c 11— 1 5 + Zr 5
0'60 2 w S 2 2
e e o B 4% | 2 | W
2T wp 9 9
u;, = . (b3)
1_ 1
2 2
%60 H_Z + v
27 ' wp

“min 1D the last formula for the group ve-
w; —0 w

2
It is possible to calculate that lim u; = c,|[1 _[w_o] =

2
o o . Yo
locity if the phase velocity is equal to the minimal one Y= Ymin = ¢4|1 — [j] when the wave vec-

tor value approaches to zero. It follows that the minimal phase velocity coincides with the group ve-
locity of the spin wave. If the phase velocity is equal to the maximal one ~ = c¢ and the wave vector
value approaches infinity lim u; = ¢ then the maximal phase velocity equals the maximal group

K; —00
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Qir
) ) ) ) ) ) ) 15F
Fig. 4. Dispersion relations of the nonlinear spin waves in
1
the dimensionless variables () = k! |1 . Curve 4l
(H{) +q
1 corresponds to the value of the parameter ¢ =1, curve
2 —the value of the parameter ¢ =1.9 | correspondingly. 05
0.0 1 1 1 1

0.0 05 1.0 1.5 Ki

velocity. In general it is not difficult to obtain the relation between the group and phase velocities
of the spin waves of the types (41), (42) in the range of the phase velocities Ymin <7V <C:

¢ W g 2)”
-2l
’\‘ UOO C
It follows that in general the values of the phase and group velocities dpon’t coincide for the
nonlinear spin waves.

) (54)

The dependence of dimensionless group velocity uj = % on the dimensionless phase velocity
2

N = % is represented in Fig 3 at different values of the parameter ¢ = el

Wo
. . . . . . . . . @;5
The dispersion relation of the nonlinear spin waves in the dimensionless variables Q) = l—OQi
e
a;d . . .
k= é—oﬂi is represented in Fig 4.
T

It is obvious from the graphic representation of the dispersion relation for the nonlinear spin
waves (Fig. 4) that the frequency approaches to zero at low values of the wave vector so to say that
the spectrum has no an activation. While the dependence of frequency on wave vector approaches
to the linear dependence at great values of the wave vector. At the same time the known spin waves

ar a) ar b)
5 -
60
4 -
40 |- 3
2
20
// 1F
a4 a
0 1 1 1 1 1 0 1 1 1 1 1
-02 -0.1 0.0 0.1 C, 0 20 40 60 80 C,
11

Fig. 5. Dependences of the parameter @; on C; : a) in the range of values C; €

_Z’Z]; b) in the
1
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in linear approximation are characterized by the existence of activation [16,17].

Besides, the dimensional frequency and wave vector of polar angle oscillations ¢ depends on the
parameter C; while the dimensionless parameter a; depends on C; as it is represented in fig. 5. It
means that oscillation frequency for angle 6 (41) depends on oscillation amplitude 9 . The oscilla-
tion 6 frequency for the solution (42) depends on the elliptic function module %, .

Taking on account the expressions (3), (29). (32) it is possible to obtain the frequency (2, and the
wave vector K, of the azimuth angle oscillations ¢ of antiferromagnetism vector:

@:H@z—Q@tJrg(x,y), (55)
W
Ko ==, (56)
c
Q, =—w'. 61

Taking on account the functional dependence (51) of the nonlinear spin wave phase velocity
“f(ﬁi) related with the polar angle 0 oscillations let us transform the dispersion relation (58) to
the following form which takes on account the dependences of azimuth angle oscillation frequency
Q, on the wavelengths of both interrelated oscillations of polar and azimuth angles of antiferro-
magnetism vector. Considering the expressions (56), (57) the following dispersion relation has been
obtained for azimuth angle oscillation «:

2

2 2 2 2 2
Ry a; 8ok, Chy a;8pk; adokicrg,
I B R T (1 e ) i e e
wg 2% wo 2% 27wy
2, = g 5 “9H,(59)
It is worthy to mention that
2 9 2 2 2
Cry @;dok; Chy @;dok; @;BokCk,
I Y + 1+ - —
y 2 Wy 2% Wy 2n 27wy
¢=|—| = >1 (59)
ULJO 2 ’

The dispersion relation (58) allows the passage to the limit of usual linear spin waves when the
azimuth angle ¢ oscillates. If the wavelength of polar angle oscillation 6§ approaches to zero in the
formula (58) (i.e. locally ¢ = const) that corresponds to the wave vector value k; =0

Q, = 2y + (o, ' —wopr ©60)

The spin wave dispersion relation in the limit case (60) coincides with the dispersion relation of
usual spin waves of azimuth angle oscillations [16, 17].

Considering (59) it is possible to transform the dispersion relation of nonlinear spin wave oscil-
lations of 6 (52) to the following form which takes on account the dependence of the frequency (),
on the wave vectors of 6 and ¢ angle oscillations:

2
O =cr; (1—
i T 5 5 9 9 2 9 - 61)
1+ CH@ + al60Hl] + 1+ CHJ _ ai60Hi] M
wo 2m W 2m 2muwyg

Let us analyze propagation of the interrelated spin waves and the dispersion relations (52), (59). As
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the direction of order parameter vector I, is defined by the angles ¢ and ¢ :
L =Lysinfcose -8, + Ly sindsineg- ey, +Lgcos-é, (62)

where Ly = 2M, then the interrelated oscillation of I vector which is consisting of 6 and ¢ angle
oscillations has a periodic character in time and space only if the ratio of frequencies and wave vec-
tors are the ratios of integers m, n, M, N:

Q. m

T (63)
)

K _

- N (64)

In this case the interrelated oscillation of antiferromagnetism vector has the frequency ¢! and
the wave vector ® that are equal to:

2
2

O=_—¢ 27, (65)
M m

_ e K 66

" N n ©6)

If the relation (61) is satisfied then taking on account the dispersion relations (52), (59) of sepa-
rate oscillations it is possible to find the restrictions for the wave vectors «; , K for which the rela-
tion (60) is satisfied for temporary periodicity of the interrelated oscillation:

-1
2 2 9 22 5 9
i f_gly 4T +a"6°Hi]+ I —a"SOHi] A
o 0 Zm Wo 2w 2Ty
m
M- . 6D
2 9 9 S e
+ [+ C%] G‘SOH’] + [+ CH“P] _ %60*’%] ‘ch%] _YH
“o 2m ) 2m 2muwy Wy
o _ R
N K

It is also the ratio of integers or in other words the rational number.

If the relations (61), (62) are not satisfied then the interrelated nonlinear oscillation is not clear-
ly periodic. It means that that the antiferromagnetism vector never has initial direction in the fixed
point of an antiferromagnet and it is impossible to find a wavelength of interrelated oscillation for
which the antiferromagnetism vector distribution has a spatially periodic change.

Summarizing the results it is worthy to mention that the solutions (3), (56) describe the non-
linear spin wave propagation of order parameter with great amplitude in an antiferromagnet. The
results of this work extend the theoretical foundation of functional properties of antiferromagnets
and can be useful for invention of spin wave devices.
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Heniniliai cHiHOBI XBWJII y aHTH(EepOMarHeTHKaX
3 OTHOOCHOI0 MATHITHOIO aHI30TPOIi€0 Y MArHiTHOMY MOJi

O.10.I'opob6eybw

ITokasano, mo y antudepoMarHeTukax 3 OJHOOCHOIO MArHITHOIO aHisoTpomieo B
30BHIIIHPOMY MArHiTHOMY IIOJIi MOMKYTb POBIIOBCIOMKYyBaTUC HesaiHiiiui crmimosi xBuiai, Taki,
110 OJHOYACHO Bifi0yBAIOTHLCSA KOJHMBAHHSA 3 BEJIMKOK aMILIiTYZOI0 IIOJSPHOrO Ta a3WUMYTAJb-
HOr'0 KYTiB BeKTOpa aHTH(epoMarHeTusmMy, TOOTO MOJKE€ POBIIOBCIOIKYBAaTHCS HeJIiHiliHA
XBUJSA, II0 € TOYHMM [AUHAMIUYHMM TPUBUMIPHMM po3B’sa3koM piBHaHb Jlangay-Jlipmuisa
nas aHTA(epoMarHeTuKy. SHaAAeHO 3aKOHHU AKCcIepcili KOJMBAaHBb IOJSIPHOIO Ta a3MMYTaJb-
HOro KyTiB BeKTopa aHTu(epoMarHerusmy. 30KpPeMa y IOBrOXBUJILOBOMY HAOJIMMKEHHI IJs
KOJIMBaHb IIOJSPHOIO KyTa 3aKOH [guciepcii KoamBaHb asHMMyTAJLHOIO KyTa CIiBHazae 3
BioMmuMm saxkoHoM jgucrnepcii cmiHoBux XBWJIb y aHTHU(EpOMarLHerukax y HaOIMIKeHHi, B
SAKOMY MHOJISPHUM KYT € KOoHCTaHTOol. KpiM TOro, HOBMH THII CIHiHOBMX XBUJb, OTPUMAaHUKN y
maHiili poboTi, xapaKTepu3yeEThCA MOMKJIMUBICTIO (DOPMYBAHHS CTPYKTYPH (PPOHTY HA IIHPOKO-
My KJaci rapMOHiuHMX ABOBUMIpHUX (PYHKI[iH, (popMU KOJMBAHHS, a TAKOK MOMKJIMUBICTIO
IBOYACTOTHOI Ta aMILIITyIHOI MOIYJISIlii.

Functional materials, 14, 4, 2007 535



