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A destructuration law considering both isotropic destructuration and frictional destructura-
tion was suggested to simulate the loss of structure of natural soft clay during plastic straining. 
The term isotropic destructuration was used to address the reduction of the bounding surface, 
and frictional destructuration addresses the decrease of the critical state stress ratio as a reflec-
tion of reduction of internal friction angle. A structured bounding surface model was formulated 
by incorporating the proposed destructuration law into the framework of bounding surface con-
stitutive model theory. The proposed model was validated on Osaka clay through undrained 
triaxial compression test and one-dimensional compression test. The influences of model param-
eters and bounding surface on the performance of the proposed model were also investigated. It 
is proved by the good agreement between predictions and experiments that the proposed model 
can well capture the structured behaviors of natural soft clay.
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Для моделирования изменения структуры естественной мягкой глины при пластической 
деформации предложен метод деструктурирования с учетом изотропной деструктуры 
и фрикционной деструктуры. Структурная модель ограничивающей поверхности была 
сформулирована, применяя закон реструктурирования в рамках теории ограничивающих 
поверхностных конститутивных моделей. Предложенная модель была проверена на глине 
Осаки с помощью недренированного теста на трехосный компрессионный тест и одномерного 
теста на сжатие. Исследованы влияние параметров модели и ограничивающей поверхности 
на характеристики предложенной модели. Подтверждением хорошего согласования 
между прогнозами и экспериментами является то, что предлагаемая модель может хорошо 
фиксировать структурированное поведение естественной мягкой глины.

Утворення моделі структурованої граничної поверхні відповідно до руйну-
вання природної глини. Yunliang Cui, Changguang Qi, Xinquan Wang, Shiming Zhang. 
    Для моделювання зміни структури природної м’якої глини при пластичній деформації 
запропоновано  метод  деструктурування з урахуванням ізотропної деструктури і 
фрикційної деструктури. Структурна  модель обмеженої поверхні була сформульована, 
застосовуючи закон реструктурування в рамках теорії поверхневих конститутивних моделей. 
Запропонована модель була перевірена на глині ​​Осаки за допомогою недренірованого тесту 
на тривісний компресійний тест і одновимірного тесту на стиск. Досліджено вплив параметрів 
моделі і обмеженої поверхні на характеристики запропонованої моделі. Підтвердженням 
згоди між прогнозами і експериментами є те, що пропонована модель може добре фіксувати 
структуровану поведінку природною м’якої глини.

I. Introduction 
Structure is common in natural soft clay, 

which is often defined as the fabric and bond-
ing of soil particles. The progressive loss of soil 
structure during plastic straining is always 

called “disturbance”[1], “degradation”[2] or 
“destructuration”[3]. The term destructuration 
is used in this paper to describe this kind of 
loss of structure. The destructuration leads to 
additional compression and strain softening 
of natural structured (or intact) clay which is 
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much different from the remoulded soil in stress-
strain relationship. Experimental results[4, 
5] indicate that the stress-strain relationship 
curve of natural clay has a softening after peak 
stress in triaxial compression with low confin-
ing pressure, and the compression rate of one-
dimensional compression becomes faster when 
the compression pressure exceeds the structure 
yielding stress. It is well known that the well-
established Modified Cam-Clay Model, which 
is based on remoulded soils, cannot capture the 
structured behaviors of natural soft clay. Some 
more advanced constitutive models[1, 2, 6] had 
been proposed to overcome this limitation. The 
pioneer introduction of bounding surface concept 
was initiated by Dafalias and Popov[7, 8] for met-
als’ constitutive model. Dafalias[9] then extended 
and applied the bounding surface model to soils. 
AI-tabbaa and Wood[10] set a kinematic harden-
ing yield surface, called ‘bubble surface’, inside 
the bounding surface to formulate a bubble mod-
el for soil. Based on the bubble model, Rouainia 
and Wood[11] presented a structured bounding 
surface model, using the structure surface as the 
bounding surface and incorporating a structure 
measure of the bounding surface. The structure 
measure allows the size of the bounding surface to 
decay with plastic straining, so that the proposed 
model can describe the loss of structure. With the 
similar method, Kavvadas and Amorosi[12] also 
proposed a model for structured soils which al-
lows the external bond strength envelope (BSE) 
to shrink with the kinematic hardening of the in-
ternal plastic yield envelope (PYE). Some other 
researchers have done further research on such 
kind of structured bounding surface model and 
verified it with laboratory tests[13, 14]. Maranha 
and Vieira[15] implemented a “bubble” bounding 
surface model for structured soils, formulated 
by Kavvadas and Belokas[16] in finite element 
software FLAC to evaluate the influence of the 
initial plastic anisotropy in the excavation of a 
tunnel. Belokas and Kavvadas[17] also developed 
an incremental plasticity constitutive Model for 
Structured Soils to describe the effects of struc-
tured soils, such as high initial stiffness, dilatan-
cy, peak strength and the evolution anisotropy. 
Overall, the various structured bounding surface 
models are based on the similar bounding surface 
framework, and mainly differ in the precise form 
of destructuration laws adopted. Therefore, it is 
of great importance to do research on destruc-
turation law. It is seen in the above models that 
the destructuration laws only take the reduction 
of bounding surface into considered which can be 
defined as isotropic destructuration. However, 
some studies and experiments[3-5] show that 
natural structured clay has a higher internal 
friction angle than the corresponding remoulded 
clay. The friction angle of natural clay decreases 

due to loss of structure. This is also demonstrated 
by the fact that the intact failure line lying above 
the post-rupture failure envelope. Because the 
critical state stress ratio is only related with the 
internal friction angle, the critical state stress ra-
tio also decreases due to the reduction of friction 
angle. The frictional destructuration is defined to 
address the decrease of the critical state stress ra-
tio as a reflection of reduction of internal friction 
angle. Taiebat et al.[3] suggested a destructura-
tion law to address both isotropic and frictional 
destructuration and applied it on SANICLAY 
model. The frictional destructuration is proved to 
have significant effect on the loss of structure[3]. 
This study proposed a simple bounding surface 
model incorporating the destructuration law with 
some modifications. The proposed model can be 
seen as a simplified model of the existing struc-
tured bounding surface models[11-14], because it 
neglected some complex properties of soil, such 
as the kinematic hardening and anisotropy but 
considered the frictional destructuration. The 
performance of the proposed model is verified by 
typical experimental results on intact samples of 
natural soft clays.

2. Bounding surface model  
framework

2.1.General Elastic Stress-strain Relationship
It is the same as the Modified Cam-Clay 

model to calculate elastic stain with the follow-
ing hypo-elastic stress-strain relationship:
	   µ Гij

e e
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e= ×C  	 (1)

where µij
e  is the incremental elastic strain, Гij

e  
is the incremental elastic stress, and Ce  is the 
elastic flexibility matrix. A dot (‘·’) operator de-
notes the matrix-vector and the matrix-matrix 
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where ν  is the Poisson’s ratio and E  is the 
elastic modulus which can be presented as� 
E p e= - +3 1 2 1 0( )( ) /ν κ .����������   ��������� In this equation, e0  
is the initial void ratio and κ  is the slope of the 
swelling line in a volumetric strain-logarithmic 
mean stress plane. p  is the mean effective 
stress, recalling that p = + +( ) /σ σ σ1 2 3 3  in 
principal stress space.

2.2. Bounding Surface Function and Map-
ping Rule 

It is considered for simplicity that the bound-
ing surface has the same elliptical shape with 
the Modified Cam-Clay model.
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	  F p p p q Mc= - +* *2 2 2/  	 (3)
In Eq. (3), p  and q  are the mean effective 
stress and the generalized shear effective stress 
of the mapping point on the bounding surface 
of the current stress point, respectively. pc

*  is 
the intersection point of the bounding surface 
and the axial of p , which denotes the size of 
the bounding surface. M*  is the critical state 
stress ratio that is the slope of the critical state 
line. In this paper, pc

*  and M*  are the struc-
ture parameters related with plastic strain, 
which will be presented in detail later.

A radial mapping rule is adopted. The zero 
point in the stress space is taken as the map-
ping center. So the stress of the mapping point 
on the bounding surface is given by
	  Г Гij ijb=  	 (4)
where b  is the measure of the distance between 
the loading surface and the bounding surface, 
assuming that b = -( )δ δ δ0 0/  and b ³ 1 .

A schematic view of bounding surface model 
can be seen in Fig���� .���  1.

According to the associated flow rule, the 
bounding surface is taken as the plastic poten-
tial surface, so the incremental plastic strain 
can be written as
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where Kp  is the plastic modulus at the map-
ping point on the bounding surface and Kp  is 
the plastic modulus at the current stress point.

As is known, M  is a constant and pc  is a 
hardening parameter in the Modified Cam-Clay 
model. This study changes M  to M*  and pc  to 
pc

*  by means of adding destructuration factors 
which will be presented in detail in next sec-
tion. The destructuration factors added to M  
and pc  involve plastic strains to form an evolu-
tion law. pc

*  and M*  will be both considered as 
internal variables in this model. Therefore, the 
consistency condition on the bounding surface 
should be written as
¶
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Substituting Eq. (5) into Eq. (6), the plastic 
modulus on the bounding surface is obtained by
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The plastic modulus Kp  can be obtained by 
interpolating according to the distance between 
the current stress point and the mapping point. 
On one hand, it is assumed that the interpo-
lation modulus is zero when b = 1 , that is to 
say Kp  = Kp  when the current stress reaches 

the bounding surface. On the other hand, when 
the current stress point is very close to the zero 
stress point ( b = ¥  ), the plastic modulus Kp  
= ¥ .Then it is possible to take a reasonable 
interpolation formula to obtain Kp  at any cur-
rent stress point. According to the proposal of 
Dafalias and Herrmann[9], the following inter-
polation formula is adopted:

	  Kp  = Kp  + ζ ψP
F
p

F
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where ζ  and ψ  are interpolation parameters, 
reflecting the impact of the stress level on the 
modulus. Their values can be determined based 
on experimental curve fitting.

According to the associated flow rule, the 
plastic flexibility matrix can be presented as

	  C p ij kl
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3. Formulation of structured  
bounding surface model

The basic framework of bounding surface 
model has been given above. In order to make 
the presented bounding surface model to con-
sider the structure of soil, a reasonable struc-
tured hardening law will be introduced into the 
model. The hardening law used herein should 
combine hardening and softening. It is a com-
mon way to introduce a structure softening fac-
tor into the hardening parameter pc  to consid-
er the destructuraion of the soil structure. This 
method allows the structured bounding surface 
to expand or shrink with plastic straining with-
out changing of shape. This kind of destructur-
ation is isotropic. However, there is a reduction 
of internal friction angle during the progressive 
loss of structure, reflected by the reduction of 
the critical state stress ratio, which is demon-
strated by the bigger internal friction angle of 
the natural clay than that of the remoulded. It 
is named the frictinal destructuraion. In order 

Fig. 1. Schematic view of bounding surface 
model.
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to consider the two kind of destructuration, two 
structured factors, that are isotropic destructur-
aion factor Si  and frictional destructuraion fac-
tor Sf , are incorporated in the proposed bound-
ing surface model. A convenient approach is to 
revise pc  and M  by Si  and Sf . Hence, pc

*  and 
M*  can be written as following:
	  p S pc i c

* =  	 (10)

	  M S Mf
* =  	 (11)

where pc  contains a volumetric hardening rule 
controlled by the incremental plastic volumet-
ric strain εv

p  as the Modified Cam-Clay Model, 
which can be shown as
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 	 (12)

 M  is the critical state stress ratio which can 
be derived by M c c= -6 3sin / ( sin )ϕ ϕ . ϕc  is 
the critical state internal friction angle of re-
moulded soil. Assuming that Si  and Sf  are 
controlled by plastic strain, pc

*  and M*  can be 
rewritten in incremental form as following:

	   

p S p S pc i c i c
* = +  	 (13)

	   M S Mf
* =  	 (14)

In Eq. (13), Si  is assumed to be negative for 
softening while pc  is positive for hardening, 
so S pi c

  is the hardening part while S pi c  is 
the softening part. During the initial stage of 
the plastic straining, the size of bounding sur-
face expands due to more hardening produced 
than softening. With more plastic stain occur-
ring, the softening rate will become faster than 
hardening rate, leading to the shrinkage of the 
bounding surface. In Eq. (14), Sf  is also as-
sumed to be negative due to the frictional de-
structuration, causing to the reduction of M*

. In this way, the critical state stress ratio of 
natural clay decreases progressively to be that 
of the remoulded soil with the loss of the struc-
ture. Thus an evolution equation for the Si  and 
Sf  must be established. Taiebat et al.[3] has 
proposed an specific form of the evolution equa-
tion which reads
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As noted by Taiebat et al.[3], the above form 
is not the unique form for the evolution for the 
Si  and Sf , other forms can also be used. This 
study modified the above form and proposed an 
exponential form which reads
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In Eq. (17) and Eq. (18), λ  and κ  are the 
slopes of the compression line and the swelling 
line in a volumetric strain-logarithmic mean 
stress plane, respectively. Both of mi  and mf  
are material constants, which control the speed 
of the destructuration. The greater mi  and mf  
are, the faster the destructuration are, there-
fore the faster the structured clay comes to the 
remoulded state. Since the main effect to be 
taken into account is the damage caused to the 
structure by both volumetric plastic strain εv

p  
and deviatoric plastic strain εq

p , the destruc-
turation strain rate εd

p , which is a coupling 
internal variable, will be assumed to have the 
following form, as seen in literatures[11, 14].
	    ε β ε βεd

p
v
p

q
p= - +( )1 2 2  	 (19)

where β  is a material constant distributing 
the effect of volumetric and deviatoric plastic 
strain rates to the value of εd

p . β  could be set 
to 0.5 as a default value. The form of Eq. (19) 
suggests that for β  =0 the destructuration is 
totally volumetric, while the destructuration 
is only controlled by deviatoric plastic strain 
when β  =1.

Substituting Eqs. (17), (18) and (19) into 
Eqs. (13) and (14), one can obtain the incre-
mental expression of pc

*  and M* . Substitut-
ing the destructuration laws Eqs. (12), (13) and 
(14) into Eq. (7), one can obtain Kp , the plastic 
modulus at the bounding surface.
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Table 1: Parameters of the model for Osaka clay

λ κ ν M  Si0  Sf0 mi mf β ζ ψ

0.154 0.02 0.25 1.279 6.9 1.102 1.2 1.2 0.5 18.0 0.5
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The plastic modulus at the current stress point, 
that is� Kp , can be derived by substituting  
Eq. (20) into Eq. (8). Therefore, the plastic flex-
ibility matrix Cp  can be obtained by Eq. (9).

4. Parameters determination and 
model verification

Parameters of the proposed model can be 
determined in following ways: To begin with, 
λ , κ  and the initial isotropic structure param-
eter Si0  are determined by one-dimensional 
compression test. Critical state stress ratio M , 
Poisson’s ratio v  and initial frictional structure 
parameter Sf0  are determined by triaxial com-
pression test. Then, the adaptive parameter 
µ  is determined by true trixial test. Finally, 
the material constants mi , mf , ς  and ψ  are 
determined by fitting the stress-strain curve of 
trixial compression.

For Osaka Clay[4], the values of parameters 
λ , κ  were obtained from an isotropic consolida-
tion test[4], which gives λ  =0.355/2.303=0.154, 
κ  =0.0477/2.303=0.02. Si0  and Sf0  are used 
to denote the initial value of Si  and Sf , re-
spectively, which reflect the initial degree of 
the structure of natural soil. Si0  can be de-
termined by one-dimensional compression 
tests on natural soil and the corresponding 
remoulded soil. Its value is equal to the ratio 
of py  to p0  where py  is the structure yield-
ing pressure on the compression line of natu-
ral soil and p0  is the pressure on the compres-
sion line of the remoulded soil corresponding 
to the same void ratio with py . The concept 
of structure yielding pressure py  is based on 
the assumption that structure begins to loose 
when compression pressure exceeds py  and no 
structure loss occurs if compression pressure is 
less than py . As seen in Figure 5, the value 
of Si0  for Osaka clay is determined by Si0  = 
p py / 0  =94.1/13.7=6.9. Sf0  can be determined 

by trixial compression tests on natural soil and 
the corresponding remoulded soil. Its value is 
equal to the ratio of M*  to M . M*  and M  
are the critical state stress ratios of natural soil 
and the remoulded soil, respectively. As shown 
in reference[4], M* .= 1 41 , effective internal 
frictional angle of remoulded soil ϕ ' .= 31 8

. Then M =
-

=
6

3
1 279

sin

sin
.

'

'

ϕ
ϕ

, and the value 
of Sf0  for Osaka clay is determined by Sf0  = 
M M* /  =1.102. The adaptive parameter µ  
can be derived by comparing the predictions of 
the adaptive criterion with the experimental 
results from true triaxial test. mi  and mf  are 

used to control the isotropic destructuration rate 
and the frictional destructuration rate, respec-
tively. Given that the isotropic destructuration 
and the frictional destructuration proceed at the 
same rate, their values can be assumed to be the 
same. The values of mi  and mf  for Osaka clay 
is determined to be mi  = mf  =1.2 by fitting the 
stress-strain curve of trixial compression test. 
β  controls the relative contributions of εv

p  and 
εq

p  to the incremental destructuraion plastic 
strain εd

p , so its value can be determined as β  
=0.5 in default before further study. ς  and ψ  
are used for modulus interpolation between the 
bounding surface and the current stress point. 
Their values can be determined by fitting the 
stress-strain curve of trixial compression. In 
this way, the values of ς  and ψ  for Osaka clay 
are determined as ς = 18.0 and ψ  =0.5. 

The triaxial compression test performed on 
sample TS5-2 of Osaka clay[4] is used herein to 
verify the model’s capabilities. In this test, the 
sample was compressed under undrained con-
dition after isotropic consolidation. The initial 
stress state is σ σ σ1 2 3 78 4= = = .  kPa, The 
initial void ratio of the specimen is e0 1 9= . . 
The optimized parameters used in these simu-
lations are listed in Table 1. These optimized 
parameters are described as the reference pa-
rameters. Figure 2 gives the simulation stress-
strain curve and the test stress-strain curve of 
the consolidated undrained triaxial compression 
test. Figure 3 shows the comparison of the simu-
lation stress path and the test stress path. A good 
agreement of simulation curves with experimen-
tal curves can be seen in Figure 2 and Figure 3. 
This demonstrates that the proposed model is ca-
pable of modeling the peak strength and strain 
softening of natural soft clay under the condition 
of consolidated undrained triaxial compression.

The best way to validate the capabilities of 
the model is to validate it with a parameters-
independent test. Parameters-independent test 
refers to a set of tests which have not been used 
to determine parameters. As a parameters-in-
dependent test, test TS5-3[4] is simulated by 
taking the same parameters with test TS5-2. 
Test TS5-3 was also performed with consoli-
dated undrained triaxial compression. The con-
solidation stress is σ σ σ1 2 3 39 2= = = .  kPa, 
which is much lower than that of test TS5-2. 
The comparisons of predictions and experi-
ments of TS5-3 can be seen in Figure 3 and 
Figure 4. As shown in Figure 3 and Figure 4, 
the predictions and experiments of test TS5-
3 show worse agreement compared with test 
TS5-2. However, the agreement is good enough 
for engineering calculations. Modified Cam-
clay model was also used to simulate test TS5-
3 to be compared with the structured bounding 
surface model in this work. The parameters 
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of Modified Cam-clay model λ , κ , v  and M  
have the same values with the proposed model, 
which are shown in Table 1. As seen in Figure 
4, the comparisons indicate that Modified Cam-
clay model is not able to predict the experimen-
tal stress-strain curve and the proposed model 
can give a better agreement. Modified Cam-
clay model predicts a much lower strength due 
to neglecting the structure of soil. 

A general indication of the influences of the 
fitting parameters on the response in the test 
is also shown in Figure 2. Such a study pro-
vides assistance in the search for the optimized 
parameters to match experimental observa-
tions. The consequences can be summarized as 
follows: Reducing mi  and mf  reduces the rate 
of destructuration, and hence raises the peak 
strength because destructuration occurs more 
slowly. Reducing ς  reduces the plastic modu-
lus and hence smoothes the peak. ψ  has the 
similar influence with ς . Increasing ψ  leads to 
a higher and sharper peak of the stress-strain 
relationship.

The oedometer test was performed to get 
the one-dimensional compression results. The 
initial void ratio of the specimen is e0 1 9= . . 
It was first consolidated by vertical pressure 
σv kPa' .= 4 9  to be at the state of e = 1 8. , and 
then loaded stage by stage. The model param-
eters are the same with those of the triaxial 
compression test, which are shown in Table 1. 
Figure 5 shows the comparison between the 
simulation curve and the experimental curve. 
It can be seen that the proposed model can well 
capture the structured characteristics that the 
compression of natural clay become faster when 
the pressure exceed the structure yield stress.

This work introduces the destructuration 
law into a bounding surface model instead 
of a simple yield surface model, although the 
bounding surface theory makes the model com-
plex. Inorder to show the importance of using 
the bounding surface, this study repeats some 

simulations of undrained triaxial compression 
tests of Osaka clay without the use of bound-
ing surface and compares the new simulations 
with the one with the bounding surface. The 
change of bounding surface model to a regular 
yield surface model is done by modifying the 
formula of plastic modulus which uses bound-
ing surface as yield surface, namely, b  =1 in  
Eq. (8). As seen in Figure 6, the comparisons 
show that the simulations with bounding sur-
face are much better than the ones without 
bounding surface. Thus, from a practical per-
spective, using the bounding surface in the pro-
posed model is important. Besides, the use of 
bounding surface brings the advantage of sim-
ulating cyclic loading which cannot be properly 
done by the model with regular yield surface. 
This is also one of the reasons to use bounding 
surface in this work, which will be discussed 
more in further study.

4. Conclusions
Both isotropic destructuration and frictional 

destructuration of natural clay can be consid-
ered by adopting the suggested destructuration 
law in bounding surface constitutive model.

Fig. 2. Comparisons of prediction and experi-
mental stress-strain curves of test TS5-2.

Fig. 3. Comparisons of prediction and experi-
mental stress paths of Osaka clay.

Fig. 4. Comparisons of prediction and experi-
mental stress-strain curves of test TS5-3.
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Isotropic destructuration was used to ad-
dress the reduction of the bounding surface, 
and frictional destructuration addresses the 
decrease of the critical state stress ratio as a 
reflection of reduction of internal friction angle. 
The Isotropic destructuration and frictional 
destructuration laws were proposed by incor-
porating isotropic destructuraion factor Si  and 
frictional destructuraion factor Sf  to revise 
isotropic hardening parameter pc  and critical 
state stress ratio M . The evolution law for the 
Si  and Sf  has an exponential form.

By simulating undrained triaxial test and 
one dimensional compression test on Osaka 
clay, it is proved that the formulated bounding 
surface model in this study can well capture the 
structured behaviors of natural soft clay. This 
model is capable of modeling the peak strength 
and strain softening of natural soft clay under 
the condition of consolidated undrained triaxial 
compression, and it can well reflect the struc-
tured characteristics that the compression of 
natural clay become faster when the pressure 
exceed the structure yield stress.

This bounding surface model can be changed 
to be a regular yield surface model by modify-
ing the formula of plastic modulus. However, 
the simulations of experiments of the model 
with bounding surface are much better than 
the ones without bounding surface. 
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