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Distributions of both magnetization and stray fields near singularities of a permanent
magnet with high uniaxial anisotropy have been studied. On the basis of calculations it is
shown that in magnets with high magnetic anisotropy, strong stray fields H > 4nMs
occurring near the edge of a magnet do not practically result in deviation of magnetization
from easy axis if the quality factor of the magnetic material g = K/(2nMS?%) is g > 10.
In such magnet systems, the distribution of magnetization is close to homogeneous, and it
is possible to use the method of "magnetic charges” for calculations of stray fields. It is
shown that the stray field near an edge of a magnet takes finite values, and the presence
of a singularity at the dependence of the tangent component of the stray field H =
Ms-In(a/r) at r - 0 is related to macroscopic characteristics generally accepted in mag-
netism, namely the surface density of "magnetic charges” o.

Keywords: permanent magnet, easy axis of magnetization, stray fields, high anisotropy,
"magnetic charges”, galvanomagnetic sensor, magnetic dipole, bismuth film.

Wsyueno pacmpejesieHrie HAMATHUYEHHOCTH M IOJeH paccedHrsi BOJIMSM CHUHIYJIAPHBIX TOUYEK
MarauTa ¢ OOJIBIIION OJHOOCHOU aHusoTponreii. Ha ocHOBaHMYN IIPOBEIEHHBIX PACUETOB IOKA3AHO, UTO
B MAr"HuTax ¢ OOJIBIIION MATHWTHON AHM30TPOIIMEH BO3HUKAIOIIME BOJM3M Kpas MarHuTa CHJIbHBIE
nouist paccesnus H > 4nMs, IpakTUYECKH He IIPUBOAAT K OTKJIOHEHWIO HAMATHWYEHHOCTH OT JIErKOI
ocH, eciy (GAKTOpP KauecTsa Berlecrsa MarHuta g = K/(2nMS2) Gonbire g > 10. B takux cucreMax
MATHUTOB PacIpene/eHle HaMaruyeHHOCTH OJIM3KO K OJHOPOJHOMY I IIPU Pacyére II0Jell paccesHus
MOX{HO HCIIOJIB30BATh METOJ  MAIHUTHBIX 3apsamoB . ITokasaHo, uTo IIoJe paccesHus BONIM3H Kpas
MarHUTa HMeeT KOHEYHbIe B3HAUEHUS, 4 HAIMYME CHUHIYJISPHOCTH HA 3ABUCHUMOCTH KacaTeJbHOM
KOMIIOHEHTHI IIoJiA paccesrna H_ = Ms-+In(a/r) npu r — 0 cBA3aHO ¢ IPUHATOH B MATHETHI3ME
MAKPOCKOIIMYECKON XAPAKTEPUCTUKOM O — IIOBEPXHOCTHAA ILIOTHOCTh MATHUTHBIX 3aPSI0B .

Oco6auBocTi po3momiiay moJieB po3ciloBaHHA Ta HAMArHideHOCTi MOGJIM3Y CHHTYISPHUX
Touok marmity. B.M. Camoganos, [[.I1. Benosopos, A.I. Pasnirx, A.C. Aceea.

Busueno poamozgin HamardiueHocTi i mosiiB posciroBaHHa m0o6IM3Y CUHIYJISPHHUX TOYOK MArHiTy 3
BEJIMKOI0 OJHOOCHOI aHisorporiero. Ha ocHOBI mpoBemeHX po3paxyHKIiB IIOKa3aHO, I[0 Y Mardirax
3 BEJIMKOIO MOTHITHOIO aHI3OTPOIIEI0 CUIIbHI mosid poscitoBanusa H > 4nMs, 1110 BUHUKAIOTE IO0JI3Y
Kpam MAarHiTy, HPaKTUYHO He MPUBOAATE 10 BiIXWIEHHS HaMarHiueHoOCTi Bix Jjerkoi oci, sKIimo
darxTop fKocTi peuoBuHK MarHity g = K/(2nMS?) 6inem g > 10. V rakux cucreMax MarHiTis
posrmomis HaMarHiveHocTi GIM3BKMIL 10 OJHOPIZHOIO i IIpM PO3PaXyHKY IIOJIB PO3CIIOBAHHA MOXKHA
BUKOPHCTOBYBATA MeTOJ MarHiTHmx sapaznis . IloxasaHo, Mo IIoJie PosCiOBaHHS IOOAHN3Y KPAXO
Mar"iTy mMae KiHieBi sHaUeHHS, a HASBHICTbL CHHTY/ISPHOCTI HA 3aJI€KHOCTI JOTUUYHOI KOMIIOHEHTH
nossa poscirosarma H = Ms-«In(a/r) mpu r — 0 mos’AsaHa 3 IPUHHATOI y MArHETU3Mi MaKpoO-
CKOIIUHOW XAPAKTEPUCTUKOIO G — TIOBEPXHEBa MIILHICTL  MATHITHUX 3apsIiB .
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1. Introduction

In previous works [1-8], the possibility
for existence of strong magnetic fields in
magnet systems with giant magnetic anisot-
ropy was grounded. Existence of such fields
was established relatively recently using
various experimental methods [9-12]. It
should be noted that in [7] authors call
magnetic field strong when its strength is
higher than saturation induction of mag-
netic material H > 4nMs. Earlier, the possi-
bility of existence of such fields was not
been foreseen, therefore these were not been
searched for. Discovery of strong fields and
conditions of their existence extends possi-
bilities for application of various systems of
permanent magnets. So, for example, strong
stray fields induced by this kind of magnets
are also notable for high gradients dH/dr,
and the product H(dH/dr) is comparable
with the value achieved in superconducting
magnets with dysprosium cores at helium
temperatures. The parameter H(dH/dr) is
very important for biological investigations
because it characterizes the degree of force
action of magnetic fields on such systems
[13]. A possibility to obtain large localized
fields in very narrow space allows us to use
similar film systems in the technique of
magnetic recording of information onto
high-coercive carriers [14,15]. Strong mag-
netic fields in permanent magnets are caused
by presence of giant magnetic anisotropy in
them. As material for such magnets various
compounds based on rare-earth elements and
also Co-Pt, Fe-Pt, etc. alloys can be used. Large
magnetic fields created by these magnets may
be applied as an instrument to effect on various
physical and biological objects.

One of the distinctive features of strong
stray fields is the existence of singular
points and lines on the calculated depend-
ence of field strength H on the distance r
between the singular point of the magnet
and the observation point where the field
strength tends to infinity when decreasing r
to zero. High values of strength parameter
H(dH/dr) are achieved exactly near singu-
lar points and lines.

As further we’ll be discussing the ques-
tions concerning singularity, we present the
results of calculations of stray fields occur-
ring near a single homogeneously magnet-
ized magnet in the shape of a parallelepiped
(Fig.1) [1]. Note that appearing of strong
stray fields follows from solutions of other
magneto-static problems as well [2,4,5,7].
Under calculations of the stray fields,
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Fig. 1. Permanent magnet as parallelepiped
(EA — easy axis of magnetization; a — charac-
teristic size of the magnet).

authors of [1] applied the method of "mag-
netic charges”™ with density 6 = AM (M is
magnetization); which occurrence follows
from the continuity condition of the induec-
tion component normal to surface. Under
homogeneous magnetization of a magnet
(Fig.1), charges with density 6 = tMs (o is
density of magnetic poles) occur at paral-
lelepiped faces parallel to XOY plane. If the
size of the magnet along OY axis is assumed
to be large and its bottom face is considered to
be at a massive soft magnetic core or at infin-
ity, the calculated dependence of the stray
field tangential component H_ on the distance
from the magnet edge r = (x2 + 22)0-5 << ¢
will be of the form [7]:

H_ =2Ms-In(a/x) = 2Ms-In(a/r), (1)

where a is a characteristic size of the magnet.

It is seen from (1) that at r —» 0, the
stray field tangential component tends to
become infinite. All the points positioned at
some edges of the magnet are singular. De-
pendence (1) was obtained under the as-
sumption of homogeneous magnetization of
the magnet, i.e. large demagnetization
fields Hy,, occurred did not practically
cause any deviation of magnetization from
easy axis (EA). To obtain answer on the
question about magnetization distribution
near the magnet edge, the authors [1] have
solved a variational problem. Calculations
showed absence of any deviation of magneti-
zation from EA even near the edge of the
magnet. This unexpected result was ex-
plained that H,_ increase near the magnet
edge is compensated by enlarging the ex-
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change field due to magnetization deviation
from EA near singular points. As a conse-
quence, the distribution of magnetization
should remain homogeneous even at the
magnet edge.

But it follows from the continuity condi-
tion for the stray field tangential compo-
nent H, that the demagnetization field Hy,,
in the subsurface layer of the magnet (at 2z < 0
and small r) is also characterized by the
relation (1), i.e. H; Hy, = H,. Such
large demagnetization field in the magnet
subsurface layer is directed perpendicular
to EA and may lead to deviation (twisting)
of the magnetization vector from EA in the
magnet points close to its edges (axis 0Y).
Evidently, real distribution of magnetiza-
tion in materials with large but finite
uniaxial anisotropy field should not be
strictly homogeneous. Appearance of the
magnetization inhomogeneity will result in
decreasing the stray field strength near the
magnet edges. Therefore, data on magneti-
zation distribution in the vicinity of magnet
singular points are of principal importance.
The range of issues related to singularity of
H_ dependence requires detailed discussion.
As the stray field may not be infinitely
large for physical reasons, it is important to
know what limited wvalues it may have at
the most corner point.

Stray fields can be calculated, if the
magnetization direction near these singular
points is known. The data obtained in [1] on
the homogeneous character of magnetiza-
tion distribution near singular points of
magnets with high anisotropy raise doubts.
Therefore, such calculation is necessary be-
cause it will allow determining the degree
of the magnetization deviation from the ho-
mogeneous distribution. The following prob-
lems were put in the work:

To find the distribution of magnetization
in the magnet near a singular point and
determine the limiting angle 0., of mag-
netization deviation from EA in this point.

To find limiting values of stray field near
the singular points.

2. Peculiarities of stray fields
near singular points

As it is seen from (1) near edges of a
magnet in the shape of a parallelepiped,
both demagnetization and stray fields take
large values H > 4nMs. In this connection,
the question raises about the field strength
near a corner point at distances equal to
several interatomic ones. It is extraordinary
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Fig. 2. Field strength Hy dependence on dis-
tance from magnets in z direction measured
with Bi film sensor. The inset shows the
scheme of used magnets.

difficult to measure the field strength at
the distance from an edge in several crystal-
line lattice parameters. In previous works
[7-10], measurements of these fields were
averaged because of finite sizes of applied
sensors in the form of narrow stripes with
dpin = 14 um and 100 um.

In the present work, measurements of
stray fields near magnet singular points
were carried out using Bi film magneto-re-
sistive sensors. The measurements were per-
formed for a system of two Nd-Fe-B mag-
nets connected by a soft magnetic core. The
field H, over the double magnet system is
twice higher than over a single one; that
provided higher precision of measurements.
As sensors, thin Bi films in the form of
narrow strips with width 150 ym and length
3 mm were used. Measured values of field
strength Hx at different distances from the
magnet are given in Fig.2. These data pro-
vides an additional verification for exist-
ence of strong stray fields.

It is necessary to note that a homogene-
ously magnetized magnet is a metastable sys-
tem because a multi-domain state is more en-
ergetically favorable. However, transition
into the equilibrium multi-domain state is
connected with overcoming the potential bar-
rier A® ~ H, caused by large coercive force
H_, of the magnet material. In the modern
high-energetic magnets, the coercive force
under magnetization along EA is caused by
the field of the inverse magnetization nuclei
and their growth in the inverse field. This
achieves values H, = 10 — 80 kOe [16]. The
homogeneously magnetized state should be
considered as a local minimum. Magnetiza-
tion of the magnet by the field Hy,, directed
perpendicular to EA occurs reversibly and
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without hysteresis. Therefore for such
quasi-equilibrium system, directions of
magnetic moments u can be found from the
condition of free energy minimum.

Under determination of directions for
magnetization vectors near singular points
of the magnet in the shape of a parallelepi-
ped we considered it as a cubic lattice in
which sites atoms with magnetic moments u
are positioned (Fig.3). The choice of the
magnet shape was related with that the
largest stray fields are achieved near an
edge of the charged surface [12].

It was assumed the size of the magnet
along OY axis was large; thus the position
of magnetization vector at each site was
characterized only by the angle ¢;;(x,2).
Easy magnetization axis is parallel to OZ
one. In the system shown in Fig.3, the de-
viation from EA takes place through action
of the tangential component of demagneti-
zation field Hy,,. The H, component of the
demagnetization field is close to zero at the
edge of the magnet (x = 0); in the center of
the magnet H, < 2nMs is usually less than
coercive force and therefore it does not
change the magnetic state. The component
Hy = 0 due to large length of the magnet
along OY. As a result of H,, action, the
magnetization near the edge of the magnet
(OY axis) deviates from EA (twists). Anisot-
ropy field H, and exchange field H, coun-
teract the magnetization twisting; and as a
result of three different field types interac-
tion, some equilibrium state of magnetic
moments U occurs. As we are preferentially
interested in the magnetization distribution
near the edge of the parallelepiped, the co-
ordinate origin is chosen at the magnet edge
in the corner point of Fig.3. The size of the
area where the magnetization twisting takes
place was determined arbitrary by selecting
the numbers N and M of magnetic dipoles
in the lattice along X and Z axes respec-
tively. Under calculations we have taken
N =M =100, 1000, and 10 000. Vector
at the left lower corner of the lattice (i = &
= 0) was assumed to be directed parallel to
EA, i.e. ¢ = 0. The expression for free en-
ergy W of the lattice under consideration
includes anisotropy energy W, = 2K sing,?,
exchange energy Wgp = A 2[¢;, — (Pi,kfl]z’
and magnetic field energy WH_= 2-(Hj,uy),
where K ; and A, are respectively anisotropy
and exchange energies per atom. Angles
®; ;> and the angle 6, corresponding to
the corner point (x = 0, z = 0) were the
calculated parameters. As in all rest lattice
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Fig. 3. The scheme of 2D cubic lattice in
which sites atoms with magnetic moment
are arranged.

sites the angle ¢;; < 0,,,,; by the value of
this angle one can evaluate the degree of
the magnetization deviation from the homo-
geneous distribution. If 6,,,, angle is small,
the contribution of bulk charges occurring
in areas with twisted magnetization
(divM # 0) into stray fields can be ignored
and only surface charges could be taken
into account under calculations. In this
case, the problem connected with stray field
calculations becomes much simpler. At high
values of the uniaxial anisotropy constant K
and the exchange constant A, the angle of
magnetization deviation from EA will be
small, therefore sing = ¢ may be taken.

In this extreme-value problem for W(¢; ;)
function, the number of unknown parame-
ters S are equal to the number of atoms
within the twisted layer, i.e. S = NM = N2.
It is difficult to find the extreme value of
this function; therefore the assumption was
taken that under increasing the i,k coordi-
nates, W; vector rotates by the same angle
A@. Then in lattice sites with i, kB coordi-
nates the angle ¢;, = A@(i + k), and the
expression for free energy becomes

N
M
W=K; 21 [ + B)AQ)2 + Ay N-M-A¢? -
1

N M )
- 21 (H; M)
1

The most difficult part of the computa-
tion is precise determination of magnetic
field energy Wy because this energy de-
pends in a complicated manner on the mag-
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Table 1. Calculated values of limit angle 6

max

between the magnetization vector and easy axis in

a magnet shaped as parallelepiped under various values of anisotropy and exchange constants.

N | N=M K, erg/at A, erg/at H, Oe x = A, rad Opax = (N + M)A, deg
1 100 10714 10718 40 000 3.40-10¢ 6.80-1072 = 3.9°
2 1000 10714 10718 80 000 3.42-107° 6.84-1072 = 4°
3 10000 10714 10718 80 000 3.43-1076 6.86-1072 = 4.1°
4 100 10715 10718 40 000 1.69-1078 3.38-101 = 18.8°
5 1000 10715 10718 40 000 1.71-107* 3.42-1071 = 19.6°
6 | 10 000 10715 10718 40 000 1.72-107° 8.48-1071 = 19.7
7 | 10 000 10715 10718 80 000 3.43-107° 6.86-1071 = 39.5°
8 | 10 000 10715 10718 60 000 2.57-107° 5.14.107! = 29.5°
9 106 10715 10713 60 000 2.57-1077 5.14-1071 = 29, 5°
10 100 10715 10714 40 000 1.70-1078 8.42-1071 = 19.5°
11 | 10000 10715 10714 40 000 1.72-107° 3.43-1071 = 19.7

Table 2. Different values of the angle 0,

X

calculated under various magnitudes of the field Hy

and the uniaxial anisotropy field Hy.

H, kOe 20 100 140 160 180 200 240 280 320 360 400

0, .. deg >45 22 16 14 12 | 11.5 | 9.5 8.2 7.2 6.4 5.8
(Hy = 80 kOe)

0., deg >45 13.7 | 10.1 8.9 7.9 7.18 | 6.01 5.1 4.5 4.0 3.6
(Hy = 50 kOe)

0,0, deg >45 9.6 7.1 6.26 5.57 5 4.2 3.6 3.17 | 2.82 | 2.54
(Hy = 35 kOe)

netization direction in the whole magnet. To
simplify the calculations, we assumed the
stray field component H,, within the lat-
tice to be constant and deliberately over-
stated, for example, Hy,, = H;, = 60 kOe.
Under calculations, we took the following
values of material constants: K, is anisot-
ropy constant per atom (K; = 10714 — 10715
erg/at); A, is the exchange constant per atom
(4, =10713-10714 erg/at); u is atomic magnetic
moment (U = 10720 erg/Oe). For selection of
these constants we used macroscopic values
of corresponding constants for materials.

Results of 6, calculations carried out
for various values of uniaxial anisotropy
fields Hp, and field values H = 4.10% Oe,
H = 6-1040e, and H = 8-10%0e are given in
Table 1 and Table 2. The taken values of
field strengths approximately correspond to
values of the maximum demagnetization
field created by a single magnet, a system
of two magnets [7] and some complex sys-
tem of Halbach cylinder type [5], respec-
tively.
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It is seen from Tables 1 and 2 that in
magnets with giant magnetic anisotropy,
the deviation of magnetization vector from
EA is not zero as it follows from [1], and
the angle 6,,, is several degrees. So, at
Hy > 200 kOe (K > 1-108 erg/cm3), maxi-
mum angle of | vector deviation from EA
does not exceed 0,,, < 10°. If the angle
Opax = 10°, density of charges near a singu-
lar point is o = 0.985MS. That is less than
2% lower than pole density limiting value
which is achieved under homogeneous mag-
netization (c = Mg). At that, the density of
bulk charges is small and is in the range oy,
~ Ap+Ms ~ 1074 — 1076Ms. It should be
noted that the actual value of 0, will be a bit
lower because the assumed field strength values
Hy = 85, Hy = 50 and Hy = 80 kOe for this
single-magnet system are overstated while the
exchange constant value Aj, 10714 erg/at
being understated.

Note, that 0y values calculated by Stoner-
Wohlfart formula sin 6, = H/H,, [17] obtained
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under assumption of homogeneous rotation
of the magnetization vector are 6, = 5.7
and 11.4 in the fields H = 40 kOe and 80 kOe
respectively while H,, = 400 kOe. As it was
expected, 6, > 0,,. due to absence of ex-
change interaction.

From the data given in Tables 1 and 2 it
is seen that the angle 0,,,, is small, there-
fore, the density of surface magnetic poles
6 = AM ~ Ms remains practically constant
over the face surface; consequently, H (x) =
A2Mln(a/x) = 2cln{a/x) dependence will
characterize the field in the vicinity of the
singular point. At that, the singularity re-
mains under any finite poles density and is
related with a macroscopic parameter - sur-
face charge density o, i.e. with presence of
charges in infinitely thin layer. In this fact,
the limitation of the macroscopic approach
becomes apparent under calculation of stray
fields at magnet singular points. Notice,
that such singularity of electricity field
strength is characteristic for a point elec-
tric charge as it follows from Coulomb law.
As strong stray fields represent some edge
effect, one can consider that in a homogene-
ously polarized parallelepiped-shape dielec-
tric, the dependence of electrical field
strength on distance r will be similar to (1).

At comparable Mg values, the limiting
field value should be higher in the SmCog
magnet system in comparison with Nd-Fe-B
one. In these, uniaxial anisotropy fields,
H,, are 400 and 80 kOe, respectively. From
data of Tables 1 and 2 it is seen that in
magnets with Hp < 80 kOe and magnetiza-
tion values Mg ~ 1000 gauss, 0,,, angle
may be large. In this case, magnetization
distribution can not be considered homoge-
neous, and in order to determine the limit-
ing field one should make more precise cal-
culation of stray field strength taking into
account bulk charges.

Thus, the fulfilled evaluation calcula-
tions of stray fields near singular points of
magnets and its appropriate analysis allow
us to conclude that large demagnetization
fields in these points does not practically
results in the magnetization vector devia-
tion from EA. Analysis of data from Tables
1 and 2 indicates the magnetization distri-
bution in high-energetic magnets to be al-
most homogeneous provided that the quality
factor g of magnetic material (g =
K/(27£MSZ)) is higher than 10. In this case,
stray fields will be related to surface mag-
netic charges which density can be found
for a specified surface. These facts substan-
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tially simplify calculations of fields, and in
some cases, allow to obtain analytical ex-
pressions for stray field strength.

One may be confronted with certain dif-
ficulties when -calculating a stray field
strength component H, near an edge of a
magnet at the distance equal to a dipole
lattice period. With the distance R equals to
several lattice periods and higher, the field
H, can be found from the expression (3)
[18] or (1):

3(WR)R 3
OIS

where R is the distance between a dipole
with magnetic moment u and an observation
point; i, B, | are dipole coordinates.

The stray field at the corner point can be
presented as a sum of fields - one created by
a magnet dipole in the lattice corner H; and
another is the field of rest of dipoles of the
magnet H,;. Because of uncertainty of R
values, the equation (3) is can not be used
for calculation of H; field strength at the
corner point. The reason is that electron
spin magnetic moment is not localized at a
certain point of an atom, and its position
is characterized by some state function.
However, the fact that the electron spin
magnetic moment W is distributed with den-
sity p(x,y,2), over V area gives the opportu-
nity to conclude that the stray field in the
corner point possesses finite values. Indeed,
the integral H ~ Ju-p(x.y,2)dv/R3 converges,
consequently, there is no singularity in any
point of a magnet. Calculation of this inte-
gral is an independent problem. Thus, in the
geometrical corner of the magnet, the field

H, is finite but its exact value is unknown.

3. Conclusion

In order to summarize the results of our
work it is necessary to note that according
to (1), the most wvalue of stray field
strength for permanent magnets with size,
for example, a = 10 em and magnetization
MS = 1000 gauss can not exceed Hy =
H_ .. = 380 kOe even at the distance
r=10"7 ecm. For the system of two such
magnets with soft magnetic core, the limit
field will be twice higher. In Halbach cylin-
der [5,6] and in other complex systems of
many magnets [8] with giant magnetic an-
isotropy (Sm-Co0), the limiting field may
achieve H .. = 100 kOe.
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