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The stationary problem of the heat radiative conductance is solved at the so-called grey
approximation in semitransparent media. Using the geometric optics approximation, the
case of small coefficient 6 of the ray reflection from the sample boundary is investigated.
The problem is solved in frameworks of perturbation theory on the reflection coefficient
powers. At first approximation, formulas of temperature stationary distribution are ob-
tained with the asymptotic accuracy in the limit of large value of the material absorption
coefficient.

AHaquTHYECKHN PellleHa 3a7ada O CTAI[MOHAPHOM PacCIIPeJe/IeHUH TeMIIePATYyDPhl B IIUJIMHI-
puueckoM o0pasiie MOJYIPO3PAYHON Cpeabl C YYETOM PAAHUANNOHHO-KOHIYKTHBHOI'O TEILIO-
o0MeHa B YyCJIOBHUAX Majoro Kodh@uIiineHTa OTPaKEHNs TEILJIOBOr0 MB3JYUYEHUs OT IPAHUILI U
CHJILHOTO IIOTJIOIIEHUS H3JYyUYEHUs cpemoii. 3amaua pemiaercs B HPUOJIMKEHUN reoMeTpudec-
KOl ONTHKM M HA OCHOBE 3aKOHA ceporo maiaydeHusi cpemoii. Ilosmyuennl (opMysbl B II€PBOM
MpUOIMMKEHNHN AJIs1 CTAIMOHAPHOrO PACIIPeLeIeHNs TeMIIePATYPbI.

1. Introduction. This work is the continuation of the work [1] according to its idea sense. We develop
the evaluation method for the heat radiative conductance which is based on the analytic solution of the
irradiation conductance problem with the account of boundary conditions. Such a solution permits to
formulate closed evolution equation for the temperature distribution in the sample. Further, the standard
initial boundary problem of mathematical physics arises for the this equation. In this case, it is not
necessary to solve the integral equation for the energy flux as it is done in [2]. The accurate explicit
formula of the energy flux conducted by the irradiation in the layer of semitransparent media is obtained
in [1]. But in the case of the cylindrical sample being studied in the work, we cannot give an accurate
solution of such a problem in the form of the functional on arbitrary temperature distribution in the
sample. Therefore, we use the expansion of the energy flux on reflection coefficient § < 1 powers.
Each term of this expansion is obtained by the solving of the geometric problem of the ray moving
from the irradiation point x’ to observation point x and it takes place some fixed number of reflections
from the sample boundary. This number is equal the reflection coefficient power. At the approximation
under consideration, the contribution to the energy flux P,(x), ¢ = 1,2,3 in the observation point x
is represented as total energy flux of all rays possessing the property pointed out. The corresponding
integral is very complex even in the case when reflections from the boundary are absent, i.e. for the zero
order term of the reflection number expansion. Therefore, we obtain the explicit formula of the energy
flux calculating all integrals on the basis of the saddle-point method using the supposition of the large
media absorption of the irradiation.

164 Functional materials, 14, 2, 2007



A.V.Kolesnikov / Problem of the heat radiative ...

At last, we point out that the expression of the energy flux which irradiating by small media volume
is given by the so-called the grey irradiation model. It has the form of the functional on the temperature
distribution.

2. The evaluation of the energy flux. Let we have the cylinderical sample of semitransparent
media with the adsorption coefficient «. The cylinder has the radius R. We denote by P,(x) the energy

flux of the irradiation in the observation point x in the cylinder. Correspondingly, Plﬂo)(x’) is the flux of
the energy irradiated by the media in the point x’ (further, lower Greek indexes have values 1, 2, 3 and the
convention relative to the summation on repeated indexes is set). Due to the linearity of electromagnetic
field equations, the linear relation between these fluxes is postulated,

Pu(x) = Z—WZ/QW(X,X')P;W(X')CZX’, (1)

where the transfer matriv Q. (x,x’') is calculated by the approximation of geometric optics. It is
represented by p-th component of the energy flux at the point x transported by one ray that is irradiated
with the unit intensity by the small area being at the point x’ and oriented to the v-th direction. The
coefficient o before the integral points out that the irradiation occurs of duration ads along the each
dimension among three of them. The multiply (47)~! corresponds to the averaging on all irradiation
directions. The integration in Eq.(1) is fulfilled on the whole sample with the account of contributions to
the total energy irradiation flux in the point x of all rays which are irradiated by all sample points. We
find the transfer matrix . (x,x’) in the form of the expansion

[ee]

Quu (Xa X/) = Z Qﬂz)/ (Xv X/) ) (2)

=0

where transfer matrices Qﬂl),(x7 x'), 1 =0,1,2,... are defined as contributions into the common transfer
matrix to the point x of all rays irradiated from the point x’ which have had strictly [ reflections from
the sample boundary before they arrive to x and, therefore, they are proportional to 8 where 8 is the
reflection coefficient of the ray from the boundary.

In this work, we calculate the term with [ = 0 only. It is taken into account only such a motion of each
ray when reflections from the boundary do not occur. Since the vector of the energy flux P, (y) transferring

1/2 after

by the ray irradiated from the point x’ is decreased on the value o P(y)ds, P(y) = [P.(y)P.(y)]
it has passed the distance ds from a point y to the point y +nds (n is the unit vector to the ray direction)
and its direction n does not change, then, after the attaining of the point x, this energy flux is equal to
exp(—alx — x’|)P,£O)(x’). Consequently,

QO (x,x') = S exp(—alx — x']). (3)

ny
The direction of the ray spreading is defined by the vector

x —x
n-—

(4)

x — x|
We consider that the irradiation is isotropic at each sample point x’, i.e.
PO(x') =n, PO (x) (5)

where P(©)(x') is the absolute value of the energy flux from the point x’. Thus, on the basis of Eqs.(1),(5),
at the above mentioned approximation, we have

ot
e T gt (6)

[x — x|

aS

T 4r

P,(x) /exp(—a|x — x/|)P(O)(x')

v

Our further problem is the calculation of this integral using the supposition of the large value of the
absorption coefficient. We determine it at the main approximation order evaluating the asymptotics being
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proportional to inverse power ae~1. This asymptotics has the universal form. It is not connected with the
concrete sample geometry. Let us change the integration variable in Eq.(5) x — x’ = y. In a result, we
obtain

O[S Y
Pax) = =5 [ expl=aly) POy + 3L dy (7)
V—x

where V —x is the domain which is occupied by the sample shifted on the vector —x. For the determining
of the asymptotic expansion on the « inverse powers, we change the integration variable due to the rule
ay =y, ]
Y
Pl === [ esp(lyh POty /a+ ) dy ®)
v

aV—x

After that, we expand the integrand on powers o',

1YY

PO(y/a+x) = PO(x) + %“VMP(O)(x) +3 ;Zuz VoV PO) £ ...

After the substitution of this expansion into Eq.(8), we obtain the expression

Pux) = =1 [ exp(=Iyl)x

(0) Y (0) 1YY, (0) Yu

X <P (x) + " V., PP (x) + 5 a2 Vi, Vi, PP (x) + ... |y|dy
at o — oo with the accuracy up to exponentially small terms ~ exp(—aL) where L is the characteristic
sample linear size. In this expansion, the terms with even a~! powers equal to zero,

—Iyl Y _ Y
/e VI 22 gy = 0, /e |Y|yu1yu2—“dy:0
lyl |yl
RS RS
since these integrals presents some tensors of the odd range and they are invariant relative to arbitrary
rotations but they change the sign at the space reflection. Consequently, at the main approximation, the

flux P,(x) is defined by the term proportional to a~1,

1 YoYu 0
Pl = = | [ exnl=ly) 2y | V. PO ). 9)

R3

The integral represents the tensor being invariant relative to rotations and the reflection. Therefore, it is
proportional to the Kronecker symbol,

/e_lylyl,%dy = Ad,, . (10)

R3

Calculating the trace of two equality sides, we obtain

oQ

3A:/e_|3'||y|dy:47T/e_|3'||y|3d|y|:4-3!-71'.
R 0

Consequently, A = 87. Together with Eq.(10), it gives the desired expression of the flux

Pulx) = 29, POx) (11)

at the stated approximation.
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Thus, from the general evolution equation of the temporally changed temperature distribution in the
sample,
0T (x,1)
ot
(¢ is the media specific heat, p is the density and & is thermal conductivity), we find, on the basis of
Eq.(11) that

cp

= kAT (x,t) — VP, (x,1)

oT(x,t 2
cp% = gAT(x,t) + EAP(O)(X,t) .
It is supposed that the flux P(O)(x, t) is temporally changed also since it is the functional on the
temperature distribution.
As it is mentioned in the introduction, we consider that the value of the irradiated energy flux at each

point x is determined at the grey approximation, i.e. we put
PO(x) = oT*(x)
where o is the Stefan-Boltzmann constant. Then, we obtain finally the following evolution equation

cp% = kAT (x,1) + %"AT‘*(x,t). (12)

3. The problem of the stationary distribution in the cylinder. In this part, we solve the
problem connected with the determination of the equilibrium temperature distribution in the cylinder
sample, when the temperature difference at its end-walls is constant and the temperature on its lateral
area is defined by the condition of the gas environment. It follows from Eq.(12) that the stationary
distribution of the temperature 7'(x) is determined by the equation

2
KAT = — =2 AT? (13)
(0%

at the approximation under consideration. Introducing the function

2
W =T+ —2T*, (14)
RO

the problem solution of the distribution 7'(x) determination is reduced to the solution of the equation
AW =0. (15)

Let us formulate boundary conditions for the concrete problem under consideration. We introduce
cylindrical coordinates (r, ¢, z) in the sample by the natural way. Further, we put on the cylinder end-
walls z =0,z=1L

T(rye,0)=T_, T(re, L)=T, Ty>T- (16)

where L is the cylinder length. At the cylinder lateral area at r = R (R is the cylinder radius), we put

z

T(R,p,z)=T- + I

(T4 —T.) (17)
since we consider that it is in the gas environment and there is the equilibrium temperature difference
with T|,z0 = T—, T|,=1, = T4. But we take into account that the gas media does not irradiate and this
distribution satisfy to the equation AT = 0 where it depends on z only. In the consequence with the
boundary conditions (16),(17), the function W satisfy to conditions

2 2
Wi(r,p,0)=W_ =T + in . W, L)= Wy =T, + iTﬁ : (18)
2
W(R, @, 2) = V(z) = TO(z) + ZT70O)(z), (19)
KR

Functional materials, 14, 2, 2007 167



A.V.Kolesnikov / Problem of the heat radiative ...

TONz) =T 4+ —(Ty = 1T-). (20)

At given boundary conditions (18),(19), the solution of Eq.(15) does not depend on ¢, W(r, ¢, z) =
W (r, z). We represent the solution of Eq.(15) in the form

2
W(r,z) = V() + —U(r, 2), (21)
ak
such as
AV =0, AU=0. (22)
On the basis of boundary conditions (18),(19), we find
U(r,0)0=0, U(r,L)=0 (23)
at the cylinder end-walls and
U(R,z) = TO4(z) — T* - %(Tﬁ —TY) (24)

at the lateral area.

Let us notice that the function U(R, z) is positive since T(®)#(2) is the convex function at z > 0 and it
is equal to the linear function (Tf_ —TY)z/L+T* at z = 0, L. Thus, it is necessary to solve the problem
in the cylinder for the function U(r, z), AU = 0 with the boundary conditions (23),(24). We find the
solution in the form

Z an(r)sin —n (25)

satisfying to boundary condition (23). Then, we obtain the system of ordinary second order equations

for the coefficients a,, (r), n € N. The boundary conditions a,,(R), n € N are determined by the expansion

L
2
Zan sm n, = E/U R, z)sin —n dz . (27)
0

Using Eq.(24), we evaluate coefficients «, (R) of the expansion. Calculating the integral in Eq.(27), we

wn(B)= 22 <u>

™ ™

have

12 - ey -2 (B2 - <—1>”>] S )

Now, we may find the formula for the calculation of the function W(r, z). Solutions of Eq.(26) are
expressed by modified Bessel functions. We take into account of boundedness property of the solution
inside the disk {{r, ¢} : r = R}. It is equal to the boundedness of coefficients ay,(r), n € N. Therefore, we
obtain

™
an(r) = anlo (Tr) . (29)
Substituting the boundary condition at » = R, we have
an(R)
An = wn
Io (£ R)
Consequently,
™
o Io —7r
Ulr,z) = Z an(R)% sin ﬂ-L—nz (30)
n=1 Iy (TR)
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where the function Io(x) is defined by the series
_ - (/2
ol = 2 e

Thus, for the obtaining of numerical values, it 1is mnecessary to calculate the relation
™
—r

Iy ( 7 )/Io (FL—nR) < 1 with the given accuracy. Since

‘ an(R) 24
(T2 =T (T2 +12)|  (mn)3’

the term number in the series (30) that is sufficient for the security of the given evaluation accuracy is
(o]

simply determined. For example, at the accuracy 1072, since Z m=3 ~ (n+ 1)_2, it is sufficient to
m=n-+1
put n =9, (n+1)72 < 1072 in the series (30) for the accuracy security.
4. The stationary distribution. The stationary temperature distribution in the sample is
constructed by such a way as it is done in the work [1] when the function W(r, z) is known. It is necessary
to solve the algebraic equation

2 2
Vi lu=r4 074 (31)
aR aR

relative to the function T'(x). It follows from Eq.(14) and Eq.(21). Since the initial equation (13) for the
stationary temperature distribution is obtained up to the accuracy o(a~3) when the parameter a~! is

small, it is necessary to find the desired solution expanding it by the following way
T=T7O4+7M0 47?4 | (32)

up to the same accuracy and the term 7 is given by Eq.(20). We note that the function V' depends on
«a and it has the expansion

2
V=Vot+ =1 (33)
aR
where Vo(z) = T(O)(z) and
V1:Tf+%(Tj—Tf). (34)

From Eq.(31) we obtain equations

for the approximations 71, T2), Therefore, the corresponding terms of the expansion (32) of the desired
stationary temperature distribution are defined by the formulas

2
TW = i(v1 FU-VY.

2
T = 16 (;—K) VeV +U — V.

They give the total solution of the problem at the approximation under consideration.

5. Conclusion. We notice in the conclusion that the construction proposed in this work in the case
of the grey irradiation permits to calculate the stationary temperature distribution in the cylinder sample
for arbitrary approximation order on the reflection coefficient when the absorption coefficient is large. It
is done by the expansion being the double series on powers # and a—'. Moreover, such an expansion may
be always built for the sample of arbitrary form as the Dirichlet boundary problem for the function W is
solved in the domain of R? which presents this sample.
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ITpoGiema pagiamiiiHO-KOH/IYKTUBHOI'O TeILJIOOOMIHY
Yy HAIBIIPO30PUX CePeIOBUIIAX.
Habimkenns masoro koediijieHTa BiAONTTSHA

0.B.Koaecnuxros

AnamiTinaHo po3B’d3aHo NMpobJeMy IIPO CTAIlOHAPHUN PO3IOMJI TEMIEPATYPH Y EIIHIPHIHO-
MY 3pasKy HaIllBIPO30POro CEPEIOBHINA 3 OOJIKOM paaiariiHo-KOH/IY KTHBHOIO TEILTIOOOMIHY B yMOBax
MaJioro KoedillieHTa BIAOUTTSA TEILIOBOTO BUIPOMIHIOBAHHA BIJ IPAHHIN Ta CHJILHOIO IIOTJINHAHHSA BH-
mpoMiHioBaHHA cepenoBuineM. [Ipobiema poss’asyeTbea y HabJIHKEHHI MeOMeTPHYHOI ONTHKH Ta Ha
OCHOBI 3aKOHy cCiporo BHIIpOMiHIOBaHHA cepemoBuiieM. Ouepzkano dopMmynn y nepuiomy HabIHzKeHH
JJI CTAIlOHAPOHOTO PO3IIOJIIIY TEMITEPATYPH.
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