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The spring-back phenomenon in rolled copper and aluminum sheets has been studied in
experiment. The time dependences of strain at bending of specimens under permanent load
have been described by power functions with a fractional index. The anisotropy of the
spring-back phenomenon has been revealed. A mathematical model is proposed which
describes the spring-back basing on fractal concepts of the relaxation processes under
external permanent stress.

IKCIepUMEHTAJbHO HCCJIEN0BAHO fABJEHNE YIPYIroro mocjeneiicTBusa B IIPOKATAHHBIX JIKC-
Tax MeOu M AJIOMHUHHA. S3aBUCHMOCTH gedopMaliyd OT BPeMEHH IIPU M3rude o0pasioB IIOf
gelicTBUEM IIOCTOSIHHON HAIPY3KHM OIMCAHBLI CTEIEHHBIMU (PYHKIUAMU C JPOOHBIM MHIEKCOM.
VeranosieHa aHU30TPONMSA SBJICHUSA YIPYroro rociexeiicrsusa. IlpemioeHa maTeMaTuyec-
Kas MOJelb, KOTOPAs OIMCBHIBAET sBJEHHE YIIPYroro ImocJjeieiicTBHs Ha OCHOBe (PPaKTAIb-
HBIX IIPEACTABJICHUN O PEJaKCAIIMOHHBIX IPOIECCaX IIOJ AeMCTBHEM IIOCTOSHHOI'O BHEIIIHEIro
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HAIPAKEeHUS.

The purpose of this work is to study the
influence of the straining ratio on the
spring-back in aluminum and copper and to
establish the fractal nature of the spring-
back phenomenon.

The physical existence region of Hooke
law is extremely limited in real solids [1].
Inelasticity, or a transition into an elasto-
plastic deformation range, is observed at
stresses well below the yield strength of a
material. Therefore, besides of elastic proc-
esses, the effects of the material inelastic
behavior are manifest themselves within
limits of elastic strain. The spring-back is
an example of such inelasticity phenomena.
The spring-back phenomena are of a great
practical importance: the direct spring-back
plays an important role in elements like
springs, membranes, and other elastic ele-
ments being under long-term load [2]. How-
ever, despite the importance of the spring-
back phenomena, their theory is not quite
complete. The mathematical model of creep
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in heterogeneous media based on the fractal
concepts of non-equilibrium processes, was
proposed for the first time in [3] where a rela-
tion between the fractal dimension and An-

drade creep parameters [4, 5] was also estab-

lished.
The rectangular specimens were cut out of

copper and aluminum sheets were used as the
research objects. The specimen axis were po-
sitioned through each 150 between the rolling
direction (RD) and transversal direction (TD)
after rolling to 60 and 80 % deformation in
thickness. The investigations of the direct
spring-back were carried out on a special
testing machine [6]. The relative strain e
was calculated from the experimental deflec-
tion f of the strip having the thickness A
and length [ (distance between the rollers)
according to the formula [6]:
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The measurement error did not exceed
1.5 %. The X-ray diffraction method was
used to examine the crystallographic tex-
ture [7]. The analysis of texture research
results has shown that a texture typical of
rolled FCC metals and alloys was formed in
sheets which can be described mainly as
{110} <112> + {112} <111> [7].

The general strain of a solid body caused
by constant external stress consists of two
components:

£(t) = gg + £1(0). (2)

The experimental time dependences of
the strain g(¢) caused by the action of per-
manent flexion stresses was subjected to
computerized regressive analysis that has
shown that power functions of time with a
fractional index are the best way to describe
the experimental time dependence of strain:

e(t) = gg + ct%. 3)

The dependence & = g(¢) and values of ¢
and o in equation (3) are given in Table and
Figs. 1, 2. It is seen that the spring-back is
anisotropic. The coefficients and power in-
dices in Eq.(3) differ for different direc-
tions of the sheets. Influence of deforma-
tion also takes place. The coefficients of
Eq.(3) as well as shapes of the curves differ
for the different straining ratios.

A model of spring-back is proposed in
what follows. The plasticity arises up not
instantly in the whole solid. Regions which
pass to the plastic state because of the solid
microscopic level heterogeneity are accumu-
lated gradually. According to the modern
views, the micro plastic straining is the re-
sult of little and, as a rule, reversible mo-
tion of dislocations [8, 9]. If the stress ap-
plied to a specimen is constant, a fraction
of dislocations (or other defects and their
clusters) will be favorably oriented for a
sliding (or for a moving). The location of

Table. A spring-back in deformed metals.

other dislocations (or other defects) will be
less favorable. If the stresses applied to a
specimen are constant, dislocations (or
other defects) will be in such state that a
weak stroke only will be needed to onset
their motion. Time fluctuations of thermal
energy will cause motion of dislocations (or
other defects). Hoverer, as dislocations (or
other defects) will move, the process of
thermally activated motion will gradually
become decelerated because of various inter-
nal friction mechanisms. Thus, the strain-
ing speed will gradually go down.

Schematically, the transition into the
micro-plastic state can be described as fol-
lows (Fig. 3a, b, ¢). At first, the single de-
fects of [, linear size arise (zero scale level).
Then the clusters of defects appear of I;
linear size (first scale level), etc. Eventu-
ally, the area of the defects that penetrates
the entire volume of the material will ap-
pear in time at the [, scale level (Fig. 4d).
In this case, the defects will create a self-
similar set (fractal) of a mass M, depending
on the scale as follows:

My ~ 14, (4)

where d; is the fractal dimension of the
specific set.

Let the deformation be consisting of two
parts according to Eq.(1). Thus, g; follows
the applied stress ¢ with infinitesimal delay
according to Hooke law, g5 = 40, in the ex-
amined region. The time-dependent part of
deformation ¢;(¢{) lags behind the applied
stress. Let the law of delay be as follows: if
£" = 5,0 is the maximum achievable strain
value at a fixed o, then at any moment,
€1(¢) increases toward this value at a speed
proportional to s, o — £1(t). Here sy and s,
are the material parameters characterizing
the specific material. In this case, the dif-
ferential equation of relaxation can be writ-
ten, according to [3], as follows:

Aluminium Copper
Angle gy'10° 107 -103 60 % Angle £9'10° 107 o-103
with RD, ° reduction |with RD, °
0 124.7 64.7 522 0 214.7 50.7 444
45 125.8 79.6 429 45 219.8 179.6 327
90 127.9 50.4 467 90 203.1 56.7 429
0 216.9 27.6 488 80 % 0 106.9 49.6 318
45 226.0 8.8 943 | reduction 45 122.5 15.6 669
90 187.1 4.4 910 90 105.5 32.9 458
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Fig. 1. A spring-back in the rolled aluminium. Reduction: 60 % (a), 80 % (b). The numerals
indicate samples cut (1) along the rolling direction (RD), (2) at an angle of 45° to the RD, and (3)
along the transversal direction (TD). The points stand for experimental data, and the lines corre-

spond to relations of the type

€(t) = gy + ct* with coefficients given in the Table.
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Fig. 2. A spring-back in the rolled copper. Reduction: 60 % (a), 80 % (b). The legend is identical

to Fig.1.

dey(t) 1 (5)

dr - ;(sooc - Sl(t)j’

where 1 is the relaxation time. The solution
to this equation, taking (2) into account, is
the following:

e(t) = g9 +&1(t) = [30 +5,(1 - exp(—%))}c.((;)

Now let us consider the non-equilibrium
state of a medium having a fractal nature.

(8)

t
(1] = ml_ia)jtg (t v Sfyd,

where ['(x) is the gamma function, o is the
fractal dimension d;. To solve the equation
(7), we use the Laplace transformation de-

fined as:

Let the non-equilibrium state be defined by < (9)
set of periods of events, where a next event ) = I f(x)exp(-px)dx,

happens after a previous event has hap- 0

pened. In such a case, some periods are ex- L. L

cluded from the continuous series of states. where the original function is

Such a process is produced by the fractal .

state with a preset fractal dimension dy. 1 oo (10)
The relaxation equation written using the f(x) ~on I [(@exp(px)dp, Rep =,
operator of fractional differentiation D%f(x) " oo

is similar to Eq.(5):
[1 + (tD)*[e4(¢) = s,.0, (M

where [10-12]
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where Rep is the real part of complex value p.
The solution of equation (7) for the origi-

nal function g¢(t) is:
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Fig. 3. The path of transition of a heterogeneous material from elastic into plastic state: (a), zero
scale level; (b), first scale level; (c), second scale level; (d), the [ -th scale level.

; o(n+1) a1
oyl
e1(f) = chﬂ% Mo(ni) + 1]

Then

; a(n+l) (12)
» (1

T
6t) = 0 + £1(0) =[50 + 8,5), Trore Ao
n=0

When o =1, then (12) is equivalent to
(6). The spring-back takes place during
much shorter time intervals than relaxation
periods, t <<|t. Therefore, Eq.(12) can be
considered as an expansion in terms of
small (¢/1). If only the first components of
the series (12) (linear approximation) are
taken into account, then the time depend-
ence of strain is as follows:

e(t) =¢gg + aqt* + ..., (13)

where gy = sg-c, a; = s,0(1/7)%/I'(a+1).

Thus, the transition from strictly expo-
nential to anomalous dependence occurs at
the transition from the continuous distrib-
uting (oo = 1) to the fractal distributing of
relaxation periods (0 <o =d;<1) at the
spring-back.

Thus, the anisotropy of spring-back ef-
fect in metals has been revealed. The power
functions of time with a fractional index
are the best way to describe the experimen-
tal time dependence of strain at the spring-
back. The fractal mathematical model of
spring-back in strained metal is proposed.
The differential equation of the fractal re-
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laxation process at a spring-back is derived.
The solution of the differential equation for
relaxation coincides as a first approxima-
tion with the experimental time depend-
ences of the strain, if the relaxation periods
have the fractal distribution. The fractional
index of power dependence characterizes the
fractal dimensionality of relaxation process
at a spring-back.
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CTpykTypHa pejlaKcamia Ta AHH3OTPOIIA NMPYKHOIL
micaamii y merajax

B.B.Ycoe, B.B.Hosixoe, H.M . .lllkamynaxk,
A.H.Timenxkos, JJ.B.Mamaii

BukonaHo eKcHepuMeHTaJIbHI JOCIiIKeHHs ABUINA IIPYMKHOL micaagil y mpoKaTaHUX JIKC-
Tax Migi 1 axromimio. 3axemmocrti mgedopwmarii Bixm uvacy mpu BuruHi 3paskiB mig giero
IOCTiMiHOrO HABAHTAMKEHHS OINMCAHO CTyINeHeBMMM (PYHKI[isMu 3 ApoboBuM immexcom. Bera-
HOBJIEHO aHIiBOTPOIiI0 sSBUINA MPYKHOI Imiciasmii. 3alIpoIIOHOBAHO MaTeMaTHUUYHY MO/IEJb, SKa
ONMCy€ SIBUILE IPYKHOI micasmil Ha OCHOBI )paKTaIbHUX YABJEHBb IIPO PeJIaKCAIiiHI mpoile-
CcU IIijx Ii€ro IMOCTIHOIrO 30BHIIIHBOI'O HAIIPY KEHHS.
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