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A single-electron tunneling transistor (SET) with a non-equilibrium mode population in one of the
leads is analyzed theoretically. We model transport through a dot coupled to a channel, both formed by
gates from the two-dimensional electron gas of a GaAs,/AlGaAs heterostructure. The non-equilibrium
mode population, which is induced by coherent THz-pumping in the channel, produces empty states
below the Fermi level for electrons to tunnel into. A photocurrent arises, which is periodically saw-tooth
peaked with respect to the voltage on a central gate. For intense THz-fields the peaks display plateaus

that reflect the energy dependence of the mode population. We also predict a high-gain V, /V

out

transfer-characteristic, similar to that of a current biased SET.

PACS: 73.23.Hk

1. Introduction

Charging effects are becoming increasingly im-
portant in transport experiments, as fabrication
technology for nano-scale systems develops. These
effects appear in different kinds of circuits that
have one thing in common — they all incorporate a
small semi-isolated island in which the number of
electrons is strongly quantized [1-3]. At low driv-
ing voltage, fluctuations of the charge on this island
are suppressed due to Coulomb interaction, except
if the electrostatic potential of the island is care-
fully tuned [4]. This Coulomb blockade mechanism
is utilized in the Single Electron Transistor (SET),
to modulate the conductance through the island by
varying the potential on a nearby gate elec-
trode [5].

When alternating fields are introduced in SETSs
and related systems, interesting effects arise, and
large amount of physical information can be gained.
By applying MHz-signals to one or several gates,
one can generate precise currents in the pA-range
[6—8], and by monitoring the reflection of a micro-
wave signal from the SET, one can follow charge
fluctuations with high accuracy [9]. In these exam-
ples the alternating field acts in a quasi-static way,
but if the frequency is raised further, then high-fre-
quency effects appear. For example, if a microwave
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signal in the range 10-75 GHz is fed to the gate of
a planar semiconductor SET, both photon assisted
tunneling across the barriers and photo-excitations
inside the island, can be observed [10].

So far, no special attention has been paid to
utilizing ac-fields for inducing a non-equilibrium
electron distribution inside the leads of a SET. Such
a distribution can clearly open new ways of tunnel-
ing into and out of the island. In a metallic lead of
typical dimensions this will have a negligible effect
because of strong screening and poor size-quantiza-
tion. However, in a quasi one-dimensional conduc-
tor, such as a split-gate channel in the two-dimen-
sional electron gas (2DEG) of a GaAs/AlGaAs
heterostructure, the situation is different. Recent
transport experiments employing THz-fields touch
upon this issue [11,12].

In this work we consider, theoretically, how the
performance of a SET will be influenced by the
application of an electric THz-field in one of the
leads. The important new ingredient is a non-equi-
librium mode-population, which results in a pho-
tocurrent generation in the SET. For intense THz-
fields we find a short-circuit current that reveals
information about the non-equilibrium distribution
function in the lead. Considering instead weak
THz-fields in an open-circuit configuration, we find
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aV, /V_ .. transfer characteristic similar to that of

the current biased SET.

2. Theory

The system under consideration is described in
Fig. 1. We choose to have a gated-2DEG realization
in mind when modeling the system. Such a reali-
zation allows both Coulomb-blockade effects and
ballistic motion over many electron wave-
lengths [13,14]. When applying a negative voltage
to the gates, the electrons are confined to a dot and
a channel, plus to reservoirs on the two sides. We
shall refer to the channel-side reservoir as the col-
lector and to the reservoir on the other side as
emitter. The emitter is grounded to a back-gate and
the collector is also grounded but via a load resistor
R, . Our aim is to calculate the current I through,
or the voltage V across this load resistor, as a
function of the electrostatic potential on the dot,
which can be tuned via the voltage Vg. We use the
standard approach, ignore co-tunneling and calcu-
late the current from a master equation [15,16].
The influence of discrete states in the dot will be
ignored in order to highlight the influence of THz-
pumping [17]. We take the band-bottom in the
emitter as our reference of energy.

As long as the width of the channel varies slowly
on the scale of the electron wavelength, elastic
scattering between transverse modes may be ig-
nored [18]. The resulting mode-potentials are
sketched in the lower part of Fig. 1. We choose the
width of the channel such that only the lowest
mode enters the channel. However, by the applica-
tion of a coherent electric THz-field of strength E,
across the channel, we excite higher modes inside
the channel, provided that the angular frequency w

Emitter ., Collector

Emitter Collector

Fig. 1. Sketch of the model system and the corresponding en-
ergy diagram. A coherent electric THz-field, polarized across
the collector-channel induces a non-equilibrium mode popula-
tion.
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is chosen to match the mode-potential separation
there fairly well.

We consider a situation in which, even if higher
modes are brought to life by absorption of a number
of energy-quanta %iw from the THz-field, only the
lowest mode is involved in the tunneling process.
This is realistic for a split-gate induced tunneling
barrier. If Ziw matches the mode potential separation
inside the channel, the kinetic energy in an excited
mode will be the same as in the lowest mode.
However, at the end of the channel, where the
transverse confinement is made stronger by separate
split-gates, the kinetic energies will differ. The
stronger confinement leads to a larger mode poten-
tial separation, as indicated in Fig. 1. Conse-
quently, the kinetic energies decrease more in ex-
cited modes. For this reason it is realistic to assume
a suppressed tunneling for excited modes.

Population of collector modes

We assume a parabolic confining potential in the
channel [19]. Introducing the parameter Ups which
describes a lifting of the bottom of the well, and Q,
which describes how narrow the channel is, we
write

1
Uly)=U, + 2 mQ%y? | (1

where m" is the effective mass and y is the trans-
verse coordinate. The problem of finding the popu-
lation of different modes in a pumped straight
parabolic channel has been addressed previously
[20]. It was shown that if the deviation from
perfect parabolicity is sufficiently large we can
forget about coupling to higher modes. We assume
that this is the case and confine our interest to the
lowest two modes. It is then straightforward to find
an analytical solution.

Starting from the following expression (in which
e >0 is the elementary charge) for the Kkinetic
energy K (E) in mode n:

K,(E)=E +eV- UO—%—%Eh‘Q+(n—1)h'm,
0 ‘0
(2)

using the known expression [20] for the coupling
energy V :

- 1,2
v = eE nQ O 3)
@ 2w %mmg ’

and assuming that |7Z(w - Q)| << K,(E), K,(E) and
that V<< hiw we get for the population &(E) of
the lowest mode at the end of the channel
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&) =1 -ysin? [g(E)L]. (4)
Here
VZE [ﬁ(w Q)DE
(5)
5 (o - Q)D nv, do’’
E = ’
q(E) = q(E) m 4K(E) D %K(E)EE
D RE)D
e =0" "0
0
_ K (E) + K,(E)
K(E)=——"— >~

2 )

There is a strong similarity between Eq. (4) and
Rabi’s formula for the time developments of a
two-level system. Rabi’s formula describes popula-
tion oscillations in time in a two-level system, while
our Eq.(4) describes population oscillations be-
tween transverse modes, as a function of the spatial
coordinate along the channel. The wave-vector of
oscillation along the channel is given by ¢(E) and
the resonance strength by y.

Master equation approach

By E, (E, N) we denote the energy, relative to
the bottom of the well in the dot, of an electron
that has tunneled into the dot starting from an
energy E, when the number of electrons on the dot
increases from N -1 to N. If an electron is to
tunnel out of the dot into a lead at energy E,
thereby decreasing the number of electrons from N
to N -1, it must start at this very same energy
E, (E, N). We use the following capacitance model
for relating E; (E, N) to E:

pi Cg C,
Ed(E,N):E—NC—Z+eVgC—Z+eVC—Z+const.
(6)

Here Cs is the total capacitance of the dot; C  is the
capacitance between the gate electrodes and the
dot; C, is the capacitance between the collector and
the dot. The electrostatic potential of the dot can be
continuously tuned via the gate potential V and it
is dependent also on the electrostatic potential V in
the collector. In addition there are contributions to
the potential energy on the dot from the point
contact gates and from the rest of the surroundings,
in particular from random offset charges. We treat
this as an unknown constant in Eq. (6). It corre-
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sponds to a shift in V , which we shall not try to
determine.

We assume that the electrons inside the dot,
after each tunneling event, quickly thermalize to a
Fermi—Dirac distribution with a temperature T
given by the surrounding and with a chemical
potential P(N) given by the number of electrons
inside the dot. It then makes sense to introduce
P(N), the probability for having N electrons on the
dot. Furthermore, we can use f [E; — u(N)] for the
probability of finding an electron in a single-elec-
tron energy-level E, , given that there are N elec-
trons on the dot, where

fla) = [e*/*T + 171, (7

By assuming that kT >> AF we are allowed to use
a continuum description in the dot, and we take the
density of states there, p, , to be constant. More-
over, we assume that AE << 62/ Cs and therefore
ignore the variation of P(N) with N For simplicity
we assume that p is so large (> E, - U) that its
actual value has no influence other than adding to
the constant in Eq. (6).

The probability distribution P(N) is found from
the following balance equation:

PN)[W, ,(N+1)+W_ _ (N+1)]=

=PN+D)[W, (N+1)+W, (N+1)] (8)
plus the normalization condition
SPON) = 1. ©)
N

In Eq. (9) we have used the following definitions of
the total tunneling rates: by W, _ , (N) we denote
the rate at which electrons tunnel from the emitter
into the dot when there are N — 1 electrons on the
dot to start with and thus N electrons on the dot in
the final state; by W, __ (N) we denote the rate for
the reversed process, in which electrons leave the
dot when there are N electrons on it to start with;
we denote the corresponding collector rates by
4 (N) and W, (N).

The current I, as defined in Fig. 1, can be found
by summing the rates for tunneling out of and into
the emitter:

120 3 PV, N+ -

W, .(N)]. (10)

Tunneling rates

The barriers are formed by split gates and the
voltage on these gates is held constant. We crudely
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choose to ignore the dependence of the barriers on
both the photovoltage V and the number of elec-
trons on the dot N. We start from golden-rule
expressions for the tunneling rates. By I (E) we
denote the rate at which electrons leave the emitter
at an absolute energy E and tunnel into the dot.
The same rate is used for the reverse process. By
I,(E) we denote the corresponding tunneling rates
from and into the collector,

21

r,(E) = IMe/C(E)I 2p, . (11)
Here M (E) and M (E) are tunneling matrix ele-
ments which are given by some overlap integral
between initial and final states. Since we are not
interested in the details in these matrix elements we
choose to describe tunneling by a resistance R, for
the emitter barrier and a resistance R, for the
collector barrier. Both resistances are defined at the
Fermi-level.

However, the tunneling resistances R, and R,
are energy dependent. In our case this dependence
must be modeled because the pumping mechanism
will depopulate the collector and allow for tunnel-
ing far below E. We assume an exponential decay
in the tunneling rates when the energy is lowered
and we introduce a tunneling-decay scale E; for
this purpose. The following form is used for the
matrix elements:

Short-circuit current , nA

E;= 0.2meV E;= 0.5meV E.= 1.0meV

300 V/em 300\//cm %300 Vo
—T T T

0.05 nA separation 0.1nA separation
295 V/fem 295 V/fem

0.1nA separation
295 Vfom _|

Vg,mV

Fig. 2. Short-circuit current —I(Vg) for three different values of
the tunneling-decay scale £ . Each curve corresponds to a par-
ticular value of the field strength E. For clarity the curves are

separated by a constant offset.
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lielEE R/ Ey

2me’p 0

NP
d e/cRe/c

M, (E)|? =

where p,, is the density of states in the emit-
ter /collector, which we take to be constant. With
this choice all densities of states cancel and we
instead introduce the tunneling resistances, which
can be measured in an experiment by opening one
point contact at a time.

The total rates are given by sums of partial rates
associated with the different energies. Turning to a
continuum description we get

(29

W, (N) :J'pe fE - E) x

xT(E){1 -f[E, (E,N) -] }dE

(29

Wi )= [ o, 1y (G, N) - 1)
0

xT (E) [1 - f(E - EPIE,

(13)

(29

W, (N) :J'pc fE +eV - Ep) E(E) x

U, +7Q/2 eV

xT (E) {1 = [E, (E, N) - ] }dE,

(o)

Wi W)= [ 0 [ LE; (B M) -ul %

U, +7Q/2 - eV

x T (E) [1 = f(E + eV - EpE(E)]dE.

3. Short-circuit current

When R; =0 we know that V' =0 and we can
find the current from Eq. (10). In our numerical
calculations we vary three important experimental
variables, Vg, E and E; . For the rest of the
parameters we use the following realistic Values
R,=R, =200 kQ, Cs =100 aF, C_=0.4Cs
=0.1 K, E = 14 meV, Uy =10 me¥/, 0 = 4 iy
and L = 2.5 pm. We assume that the frequency, or
equivalently the voltage on the gates that form the
channel, is tuned to resonance, i.e., [i(w - Q)| <<
<< 2V, [see yin Eq. (5)].
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With our definition in Fig. 1 the current I is
negative. In order to avoid confusion in our expla-
nations we shall always plot —I. In Fig. 2 we plot
=1, as a function of V , for a set of field strengths
E ranging from 0 to 5(]00 V /cm for three different
values of the tunneling-decay scale E,: 0.2, 0.5,
and 1.0 meV. Upon increasing Vg, at some point
—I increases abruptly and then decays more slowly,
until the next point of increase. For large E,
plateays are seen on the decaying side, especially
when E is large.

We explain this behavior in Fig. 3. An enlarge-
ment of one of the curves is shown to the left, the
one with £, =0.5 meV and E = 600 V/cm. In the
right part we illustrate the population of both
charge-states and lead-states, corresponding to the
cross-hair point on the current curve. Because of the
pumping, depopulation appears in the collector
which means that not all levels below the Fermi-
level are occupied. Such depopulation enables tun-
neling out of the dot.

Increasing V _ corresponds to lowering all
charge-states in the dot. The dramatic increase in
—I occurs when a charge state falls below E, in the
emitter so that there is a way to fill the dot. To
start with the inflow from the emitter limits =/, and
therefore —I rises in proportion to the lowering of
this charge state.

After the top, the outflow will limit —=I. The slow
decay of the current is understandable since the
outflow takes place at many different energies and
we must thus bring the charge-state far down in
order to shut —I off completely. The tunneling-
decay scale E. determines this decay rate.

Also, the plateaus in the decay can be understood
from the population diagram. The first plateau
appears when the charge state passes the first popu-
lation maxima as shown to the right in Fig. 3. Since
the charge-state is occupied most of the time, the
outflow rate from this charge-state limits the —I.
But at the population maxima there are no empty
states to tunnel into, which means that the outflow
is insensitive to a change in V_ there. The reason
why the plateau is not perfectly flat, is that as we
pass a population peak there is an increasing back-
flow from the collector, which tends to reduce the
net flow.

As we continue increase V_ and thus lower the
charge-states, —I drops when we pass population
minima and is steady when we pass a population
maximum in a repetitive manner. The steps get
smaller and smaller as the energy-period of popula-
tion oscillations decreases.
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Fig. 3. Short-circuit current —I(Vg) for the £, =0.5 meV and
E= 600 V/cm (a) and population diagram corresponding to
the cross-hair point (b). The energy dependence in the popula-
tion of collector levels gives rise to plateaus in —I(Vg). Note
that a population peak is aligned with a charge state for this
particular choice of Vg .

4. Voltage gain

In this section we deal with photovoltaic effects.
We now assume the collector load R; to be in the
MQ-range, allowing a significant negative collec-
tor-potential V to build up relative to the grounded
emitter. The load R;, which simulates either a
voltmeter or the input of another transistor, is
varied in order to demonstrate the driving capabil-
ity of the device. We must now solve for the
particular value of V that gives rise to a current [
given by Eq. (10) that fulfills V/I =R, .

We make two assumptions about the system that
must be fulfilled in an experiment, if the voltage
swing is not to be limited. First, we assume that the
mode spectrum in the channel is robust to changes
in the channel-gate potential. If it is not, the system
is brought out of resonance as V changes, which
makes the pumping ineffective. In the Appendix we
elaborate a bit more on this point. Second, we
assume that the tunneling barriers are relatively
high and thin and allow for tunneling far below the
top. To this end we set E;=0.5 meV and
R,=R,=1MQ. The high values of the tunneling
resistances assure that the charge-states are well
quantized even when V rises. A promising tech-
nique for achieving high barriers is Inplane gat-
ing [21].

Figure 4 shows the transfer characteristic
-V(V ), for E =40 V/cm, when Cg =0.4Cs and
C,=0.1Cs . Note that we plot -V, which is posi-
tive, in order to avoid confusion in the explana-
tions. The result is not very sensitive to a variation
of E. Each curve corresponds to a particular value
of R; . The voltage gain, which can be read off as
the steepest slope of a curve, is ideally Cg /C, . This
can be understood from Fig. 5,¢, where we analyze
the rising edge for the case R; = 1000 MQ.

Fizika Nizkikh Temperatur, 1999, v. 25, No 3



Photocurrent generation in single electron tunneling transistors

1000

Vg, mV

Fif. 4. Transfer-characteristic, when 1; =40 V /cm, for diffe-
rent values of the load resistance. For R; = 1000 MQ the volt-
age gain exceeds 3, but it smaller for smaller R, .

Let us for the moment put 7=0, R, = and
ignore all but one charge-state. When this charge
state is exactly leveled with E , in the emitter the
current is blocked since there can be no flow be-
tween the emitter and the charge-state. However,
when V g1 slightly raised the charge-state is lower-
ed via capacitive coupling. Now electrons start to
flow from the emitter into the charge-state. The
flow from the charge-state into the collector is
already made possible due to the depopulation in
the collector. Since the collector is an isolated
region, such a flow will accumulate electrons on the
collector, and accordingly its electrostatic potential
V will become more negative. Because the dot is
also coupled capacitively to the collector, the de-
crease in V tends to lift the charge-state back again.
This accumulation stops when the charge-state
again is leveled with E ., . This way the electrostatic
potential of the dot is regulated to be constant, and
from Eq.(6) it is then clear that ovV,/ov, =
=-C s C, . In reality there will be corrections to
this simple description that reduces the voltage
gain. An estimation of the maximum slope of the
R, =1000 MQ curve in Fig. 4 indicates that the
gain is about 3.3 and not exactly 4.

The falling edge in —V(Vg) is governed by a
different mechanism. As illustrated in Fig. 5,0,
a strong back-flow sets in when E, in the collector
tries to rise above the next higher charge-state. This
back-flow drains the collector of electrons, and E
in the collector is thus bound to follow the higher
charge-state on its way down. By a consideration
similar to that for the rising edge we find a slope:

av,/av,=-C,/(Cs - C,).
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Fig. 5. Level diagrams for two different points on the transfer-
characteristic for R, = 1000 MQ. In a) the mechanism behind
the rising edge of —V is illustrated. A charge state is aligned
with E in the emitter. When Vg is raised slightly the charge
state is lowered via C_ and V starts to decrease. This decrease
in V tends to lift the charge state back again via C, . Ideally
the gain is Cg/CC. In b) the mechanism behind the falling

edge of -V is illustrated. Here £ in the collector has reached a

higher charge state. Now a lowering of the charge states is al-
lowed.

3. Discussion

An interesting aspect of our findings is that not
only Fermi-level properties are probed. The pla-
teaus in the short-circuit current, reflect the energy
dependence of the mode-population. If a plateau
can be observed for some energy below the Fermi-
level, then we know that a single particle descrip-
tion without phase-breaking works well at that
energy. The influence of phase breaking is most
pronounced for slow electrons since they spend
more time inside the channel. Therefore, we expect
the smallest plateaus in the short-circuit current to
disappear first. There is room for future work on
how to account for phase-breaking.

The photovoltage result of section 4 seems less
sensitive to the details in the depopulation and it
requires a comparatively small field-strength of the
THz-field [11]. Photovoltage generation relies in
principle only on there being depopulated states in
the collector for electrons to tunnel out to. Even
though the precise energy-dependence of the de-
population determines the current-driving capabil-
ity, it does not have much influence on the open-cir-
cuit voltage.

The transfer characteristic for large R; in Fig. 4
is very similar to that of the current biased SET
with a large load resistance [22]. In particular it
has the same voltage gain, and the underlying
mechanisms are similar. This kind of transfer char-
acteristic seems attractive from the application per-
spective since it allows for poor precision in fabrica-
tion of cascaded devices for logic applications. It
has good gain, large voltage-swing and shows a
saturation-like behavior. Such properties in combi-
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nation make the precise value of the Vg—threshold,
within limits, irrelevant.

A pumped SET has the potential of giving a very
simple circuit architecture. Each device works as a
tiny voltage-controlled battery, which takes its en-
ergy from the THz-field. There is thus no need for
power-lines on a chip. Nor do we need clock-signal
lines since in principle we can synchronize the
devices by modulating the frequency of the THz-
field. A similar vision has been presented for devices
consisting of chains of islands [23].

Future research on material science and fabrica-
tion technology may bring other ways of realizing a
pumped SET than the one we have in mind. The key
ingredient is a channel, adiabatically connected to
reservoirs, in which the electrons preserve their
coherence for 50 wavelengths or so. It would be
advantageous to define the boundaries of the device
without metallic gate electrodes, using for example
etching and regrowth techniques, focused ion-beam
implantation or perhaps — many years from now —
by tailoring a carbon nanotube [3,24,25].

Conclusions

We have analyzed the influence of THz-pumping
in one of the leads of a SET. THz-induced depopu-
lation opens the possibility for electrons to leave the
dot below the Fermi-level allowing a photocurrent
to flow. As the gate voltage is changed, the charge
state in the dot acts as a probe of the energy
dependence of this depopulation. From the applica-
tion perspective we present a new way of obtaining
voltage-gain from a SET.

Appendix

If the walls of the channel move as the electro-
static potential in the collector changes relative to
that in the channel-gates, it may result in a limited
output voltage swing. From Eq. (7) we find that
the system is brought out of resonance if the mode-
spacing Q changes by more than 2V . In a typical
experiment [26] it takes a change in the split-gate
voltage of about 100 mV to go from the threshold
of mode 1 to the threshold of mode 2. Assuming a
parabolic potential and considering the worst case,
in which U, does not change at all, we find that
this corresponds to a 40% change in the mode-spac-
ing 7Q . From this we conclude that if the mode-
spacing is allowed to change only by an amount
2V then the voltage swing must not exceed
—V oy = (100 mV) 2V _/0.40 2Q. With our choice

max

of parameters in section 4, we get: -V . ==3 mV.

Thus, we can not rule out such an influence in a
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gated-2DEG realization of the system. To get good
performance it may be necessary to look for a
different fabrication technique, for example an
etching and regrowth technique [24].
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