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We receive the first order analytical expression for the scalar potential transversal distribution of finite width
uniform density axisymmetric relativistic charged-particle beam propagating in the unbounded in the longitudinal
direction coaxial drift tube in the strong guide magnetic field, which exhibits nonlinear dependence on the beam
injection current. Ranges of the injection current values that show non-uniqueness of the solutions to the nonlinear
ordinary differential equation describing the transverse distribution of the scalar potential in unbounded coaxial drift

tube are also found numerically.
PACS: 84.30.Jc

INTRODUCTION

There has been recently a humber of articles in the
literature dedicated to analytical estimation of space-
charge limited (SCL) current of a charged-particle beam
transported in unbounded in the direction of the beam
propagation coaxial drift tube [1 - 5]. It turned out that
the question of the scalar potential transverse distribution
is of a paramount importance to such estimates. In pa-
pers [6, 7] the nonlinear ordinary differential equation
(ODE) that describes the scalar potential distribution is
studied for the planar diode and circular cylindrical ge-
ometry analytically and numerically, respectively.

In this paper, we receive the first order (in addition to
the zeros order usually presented in the literature, c.f. [8 -
10]) analytical expression of the scalar potential trans-
verse distribution for finite width relativistic charged-
particle beam transported in the strong guide magnetic
field. The injection current values for which the nonline-
ar ODE provides one, two or no solutions are identified
numerically with the aid of the shooting method as ap-
plied to the boundary-value problem under the investiga-
tion.

1. PROBLEM SETUP

Under the approximations stated above the scalar po-
tential transversal distribution is given by the following
nonlinear ODE and boundary conditions:

0, r<r<r;

1d( de 4

S| r== = ———— 11, n<r<r;

o) A1) | v
, L<r<,;

P(r) = (r,) =0; @
P =0)=¢(r, +0),  o(r, —0) = p(r, +0). (3)
Here r;, r, and r;, r, are the inner and outer radii

of the drift tube and beam, respectively;
1/2
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f = L[yq—‘”] 4)

is the longitudinal dimensionless velocity of the relativ-
istic charged-particle beam; 1, is the injection current
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(for the electrons 1o <0); yj0 = 7oL+ 76 8%) 7 isthe
initial beam dimensionless energy in the longitudinal
motion; B, =v,o/C; g and m, are the particles
charge and mass, respectively. The continuity conditions

for the scalar potential and its first derivatives on the
inner and outer edges of the beam have the form

do(n)| _ de(n) ©)
dr |ri—0 dr ri+0’

do(r)|  _ do(r) ©
dr |ro—0 dr L, +0

We neglect the Larmor rotation of the charged-
particle beam (assuming that it moves along the lines of
a strong longitudinal (guide) magnetic field) and the
beam self-magnetic field because of the same assump-
tion.

2. SCALAR POTENTIAL CALCULATIONS

2.1. FIRST ORDER ANALYTICAL FORMULAS
FOR SCALAR POTENTIAL

It is well-known that for small values of the injec-
tion current 1, the normalized potential
f(p)= qgo(r)/(chz) (o=rlr,;c isthe speed of light
in vacuum) is also small, thus, we can expand the right
hand side of Eq. (1) (see (4)) in powers of f(p) . Then,

to the first order it reads
. 1., 0, p<p<p, Po<pSp;
f(p)+— fl(p)=—{ ; ()
P M, +M.fi(p). P <p<p,;
where the prime “”” denotes d/dp; f;(p) is the first

order approximations to f(p); IA:ch3/q is the Alfvén

current (|1, |=17.05 KA for the electrons); A =(1-1/7)"?
is the initial longitudinal dimensionless beam velocity;
PN, p=ln, p=r0n, Mg :4|0/(|Aﬂuo[P§ _piz]) )
M, =M, /(7,7i5/85) . The dimensionless boundary and
continuity conditions for f;(p) take the form

fi(a) = 1M =0,
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W(p=0)=fi(p+0). fi(p,~0)=fi(p,+0). (8)
dp)|  _ohlp)| )| _ofule)
ap |pi -0 ap |Pi +0 ap |p0 -0 ap |p0 +0

In earlier works [4, 5] we derived analytically the
zeros order (assuming / = /o) scalar potential trans-

verse distribution and with help of it (apparently for the
first time) received the analytical estimate of the SCL
current for a finite width charged-particle beam in the
unbounded coaxial drift tube. The solution to linear in-
homogeneous ODE (7) has the following analytical
form:

CizIn(o/ p1), PSP <P
Cido(WM p) M, +
f.(p)=
+CoYo (WM p)IM; =M My, p < p< p;
Co;llnp’ po <pSl!
©)
where
C.= 1 M,b-M,D, 1 Di(NM, —N,M,)
11—

VC' == ’
\lMl NoDi_NiDo # \lMl Do(NoDi_NiDo)
Ci;l = ﬁ[cn‘h(v M,p) +C2;1V M1Y1(V M, p)],
1

Co;l = _ﬁ[cl;ljl(‘\/ M, p,) + Cz;n/ M1Y1(\) M, p,)]:
1
Here

D,y = Jo(YM,0.0) WM, + 1o In 9,3, (M, 1) M,
Nio :YO(\/Epi,o)/\/Wl—i—pi,o Inpi,oYl(\/Epi,o)/M-

The scalar potential distribution (7) obviously can
attain the extremal value only inside (o, < P, < p,)
the charged-particle beam, which immediately results in
the following transcendental equation for its dimension-
less radial position:

Do‘]l(\/M_lpext;l) - Din (\/M_lpext;l) =0
that needs to be solved numerically.

For the coaxial drift tube geometry and relativistic
electron beam parameters below, the analytical estimate
of the SCL current presented elsewhere (see for details
[4, 5]) gives |17 |=30.28 kA with the corresponding

lim
extremal scalar  potential  value

(10)

normalized
fim(os) =0.52 (ri; =1.4748 cm) while the nonlinear
numerical estimate is |1, |5 1% |=32.89 kA with the

lim
corresponding extremal normalized scalar potential val-
e fi"(pl")=0.76 (r"=14724 cm) for n=1cm,

ext Xt

rp=2cm, r,=125cm, r, =175 cm, ;=2 and B, =0.
In Fig. 1,a numerical solution to Eq. (1) by an itera-
tive method, the zeros and first order analytical solu-
tions for the scalar potential transverse distribution in
the coaxial drift tube for different injection currents 1,

are shown for the stated above relativistic electron beam
parameters. One can see that the first order analytical
solution for the scalar potential distribution provides a
better approximation to the solutions to nonlinear

Eq. (2).
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Dimensionless radial coordinate, p
Fig. 1. Normalized scalar potential, f(p)=qe/(mc?)
(p=r/r,), transverse distribution of relativistic electron
beam for different values of injection current I,
(ri=1cm, r,=2 cm, r;=1.25 cm, r,=1.75 cm, %=2, B.,=0)
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Fig. 2. Dimensionless radial position g, =r.

at which extremal values of the scalar potential distri-

bution are attained in the coaxial drift tube, as a func-
tion of injection current I, for relativistic electron beam
(ri=1cm, r,=2 cm, r;=1.25 cm, r,=1.75 cm, %=2, 5.0=0)

Iy,

This is less essential for smaller injection currents
and becomes more substantial for larger ones. In Fig. 2
we plot the dimensionless radial position p,, =t /T,,
at which extremal values of the scalar potential distribu-
tion are attained in the coaxial drift tube, as a function
of injection current 1, obtained from the numerical so-
lution to nonlinear Eq. (1), the analytical solution
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paa=ralr, ([4 5], ie. derived from the zeros order
scalar potential transverse distribution) and the solution
Peoxa 10 transcendental Eq. (10) (i.e. derived from the

first order scalar potential transverse distribution).

2.2. NON-UNIQUENESS OF SOLUTIONS
FOR THE SCALAR POTENTIAL

It turns out that for nonlinear ODE (1) the unique so-
lution exists only locally in p and only for small injec-

tion currents (see [6, 7]). Also, a standard iterative meth-
od, as applied to the boundary-value problem (1) -(6),
allows us easily find numerically only one solution even
for large injection current values, where, perhaps, would
exist more than one solution. These solutions would
obey the same boundary conditions (Egs. (2) - (3)) on
the drift tube walls. However, they, obviously, would
possess there different values of the one-sided first de-
rivatives. For this reason, we consider instead a substi-
tute Cauchy problem, which is set in correspondence to
the boundary-value problem (7), (8) (or (1) - (6) under
the consideration, in the form

f(p1) =0, f,(pl) = f(; (11)

Here f, is a constant and the task is to find its val-
ue(s), for which the boundary condition f (1) =0 is also
satisfied (this is essentially the shooting method as ap-
plied to the boundary-value problem under the consid-
eration).

In Fig. 3 we present the numerical solutions by the
shooting method to the dimensionless Cauchy problem
(1), (3) - (6), (11) for different injection currents I, and
some values of the initial first derivatives f'(p)=f,
(dash-dotted and dotted curves) as well as the numerical
solution by an iterative method to the boundary-value
problem (1) - (6) (solid curve; p, =0.5). Thus, similar
to the planar diode and circular cylindrical geometry [6,
7], we can distinguish the three ranges of injection cur-
rent. For lower injection currents nonlinear ODE (1)
with boundary conditions (2) possess only one (unique)
solution (this situation is illustrated in Fig. 3,a). This is
also verified through solution to Eqg. (1) by use of the
shooting method (11): it gives the initial first derivative
value f'(p) = fy=1.6255 corresponding to the ful-
fillment of the second boundary condition f(1)=0 in
(2) for | 1, |=14 kA. With a further growth of the injec-
tion current, one obtains the second its range, in which
there are two distinct (non-uniqueness) solutions both
obeying boundary conditions (2) with two different val-
ues for initial first derivatives f'(p,) = f, of the Cau-
chy problem (1), (3) - (6), (11) (see this is shown in
Figs. 3,b,c and 4). For the chosen coaxial drift tube ge-
ometry and the relativistic electron beam parameters
two-fold solution starts appearing at injection current
| 1, [=18 KA. At the beginning of this range of injection
currents this two solutions differ a lot; they become
closer to one another with the increase of the injection
current and at a certain (limiting) value of injection cur-
rent (|1, ]=| 1 |=32.89 kA for the geometry and pa-

rameters under consideration) they merge into a single
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entity (c.f. Fig. 4,b). For the injection currents |, great-
er than this SCL current (1% ) there is no solution to

lim
boundary-value problem (1) - (6) (or, equivalently, to
substitute Cauchy problem (1), (3) - (6), (11).
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Fig. 3. Normalized scalar potential, f(p)=qe/(mc?)
(p=r/r,), transverse distribution of relativistic electron

beam for different values of injection current 1, ob-
tained as the numerical solution to Eq. (1) with the help

of the shooting method (dash-dotted (red) and dotted

(blue) curves) and that of with the help of an iterative

method (solid (black) curve): the drift tube geometry
and relativistic electron beam parameters are as above

Fig. 5 contains the plots of extremal values of nor-
malized scalar potential distribution, f(p,,,), induced
by relativistic electron beam in the unbounded coaxial
drift tube (a); dimensionless radial positions, p,,,, at

which these extremal values of scalar potential distribu-
tion are attained (b); and initial first derivative values,
f'(p,), for the substitute Cauchy problem (11) as func-

tions of injection current 1, for the first and second
types of solutions to nonlinear ODE (1).
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Fig. 4. Normalized scalar potential, f(p)=qp/(m.c?)

(p=rlr,), transverse distribution of relativistic electron
beam in the second range of values of injection current
I, obtained as the numerical solution to Eq. (1) with the

help of the shooting method (dash-dotted (red) and dot-
ted (blue) curves) and that of with the help of an itera-
tive method (solid (black) curve): the drift tube geome-
try and relativistic electron beam parameters
are as above

The first type of solutions exists for all values of the
injection current that render nonlinear ODE (1) solva-
ble. The second type of solutions exhibits a threshold
behavior with respect to the injection current. At the
SCL current value the both types of solutions merge.

CONCLUSIONS

Conducted analytical and numerical investigation
demonstrates that analytical estimate of the radial posi-
tion, at which the scalar potential distribution for a finite
width relativistic charge-particle beam propagating in an
unbounded coaxial drift tube attains its extremum, to the
best of our knowledge presented for the first time in [4,
5] is, in fact, quite accurate (see Fig. 2), which explains
an unexpectedly good precision of the SCL current es-
timates based on it. It is also worth mentioning that al-
ready in the first order (‘consistently’ linear) approxi-
mation (7) to the scalar potential distribution induced by
a relativistic charged-particle beam in an unbounded
coaxial drift tube the extremal radial position, . be-

ext;1?
comes transcendentally dependent (see Eqg. (10)) on the
beam injection current parameter 1,/1,; that diminish-

es its usefulness for possible utilization in analytical
estimations of the SCL current.
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Fig. 5. Extremal values of normalized scalar potential
distribution, f(p,,), induced by relativistic electron

beam in the unbounded coaxial drift tube (a); dimen-
sionless radial positions, p,,,, at which these extremal

values of scalar potential distribution are attained (b);

and initial first derivative values, f'(p,) (0, =05), for

the substitute Cauchy problem (11) as functions of in-

jection current 1, for the first and second types of solu-

tions to nonlinear ODE (1): the drift tube geometry and
relativistic electron beam parameters are as above
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PACYETBI CKAJIAPHOTI'O TIOTEHIIUAJIA PEJATUBUCTCKOTI'O ITYYKA 3APAKEHHBIX
YACTHI] B HEOTPAHUYEHHON KOAKCHUAJIbHON KAMEPE JIPEH®A

Tamvana Ayenko u Koncmanmun Hnvenko

B npuOnmwKeHnN CHIBHOTO BHEIIHETO MArHUTHOTO IIOJISI MOYYCHBI aHAINTHIECKHE BBIPAXKEHHS IEPBOTO I10-
psAKa A CKaIspPHOTO NOTEHIHANa, CO3J4aBaeMOro My4YKOM 3apsDKEHHBIX YacCTHI, KOTOPBIA paclpoCTpaHseTcs B
HEOTpaHMYEHHO! B NMPOAOJIHLHOM HAIpPaBJICHWH KOAKCHAIBHOM KaMepe apeida, yIUThIBaIoONIe HeJIMHEIHOe BIIHA-
HHE TOKAa WHXXEKIWHU Iy4yka. C IMOMOIIBIO YHCIEHHBIX METOJ0B HAaMJCHB! 30HBI 3HAYCHUH TOKA MHXKEKLUHU IydKa
3apsKEHHBIX YACTHULL, PACIPOCTPAHSIOIIETOCsI B HEOTPAHUUEHHOW B IIPOJOJIBHOM HAIPABJICHUU KOAKCHUAIbHOU Ka-
Mepe, COOTBETCTBYIOIIME HAIMYMIO HECKOJBKHX PpEIIeHUI HEIMHEHHOro OOBIKHOBEHHOTO Iu(depeHInaIbHOro
YPaBHEHHUs, KOTOPOE OIMCHIBAET CKAJISIPHBIM IOTEHIIMAT, CO3/JaBAEMBbII IIy4KOM B 3TOM Kamepe.

PO3PAXYHKH CKAJIAPHOI'O TIOTEHUIAJTY PEJATHUBICTCBKOI'O ITYYKA 3APSJKEHUX
YACTHHOK Y HEOBMEXEHI KOAKCIAJIbHII KAMEPI JIPEH®Y

Temsana Auenxo ma Kocmanmun Invenko

VY HaOnMKeHHI CHJIBHOTO 30BHIIIHBOTO MAarHiTHOTO TIOJISI OTPUMAaHO aHAJIITHYHI BUpa3H IMEpIIOro MOPSAKY UL
CKaJIIPHOTO MOTEHIially, [0 CTBOPIOETHCS ITYYKOM 3aps/KEHUX YaCTHHOK, SIKUH PO3IOBCIOKYETECS B HEOOMExXe-
Hill B IOB3IOB)KHROMY HAIIPSIMKY KOaKCiaJIbHIH Kamepi Apeii]y, sSKi BpaxoBYIOTh HENMIHIHAN BIUIUB CTPYMY IHXEK-
il myyka. 3a JOMOMOT0I0 YHCENbHUX METO/[IB 3HAH/IEHO 30HM 3HAYEHb CTPYMY 1HXKEKIII ITydKa 3aps/KEHUX YacTH-
HOK, III0 PO3IOBCIO/IKYETHCS B HEOOMEXKEHIH B ITO30BKHBOMY HAIIPSIMKY KOaKCialbHIA Kamepi, sIKi BiAIOBIJarOTh
HasIBHOCTI JI€KiJIFKOX PIIIeHb HENiHIHHOTO 3BUYaifHOTO TU(epeHIiHHOTO PiBHAHHSA, KOTPE OMUCYE CKAISIPHUH TOTe-
HITiaJI, 0 CTBOPIOE MYYOK Y il KaMepi.
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