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Transportation of a high-current ion beam (HCIB) with various currents was studied in the presence of accom-

panying and additional electron beams' injection in the linear induction accelerator (LIA) section. The investigations 

were carried out by means three-dimensional numerical simulation within the framework of the complete Vlasov-

Maxwell system of equations. The parameters of the system and beams have been optimized in so way, that the ion 

beam quality remains acceptable for a number of important technological applications at the exit of the LIA section. 

PACS: 41.75.-i, 52.40.Mj, 52.58.Hm, 52.59.-f, 52.65.Rr 
 

INTRODUCTION 

Heavy ion fusion, radiation material science, pro-

cessing of constructional and many other materials are 

important technological applications, for the effective 

realization of which heavy ion beams can be used [1, 2]. 

Such beams are able to obtain in LIA. LIA with collec-

tive focusing of a high-current tubular ion beam, pro-

posed in [3, 4], can be used for the above purposes. 

The mechanism charge and current compensation of 

an ion beam by an electron beam in an axisymmetric 

accelerating gap was investigated in [5 - 7]. In paper [7], 

the acceleration of the compensated ion beam (CIB) in 

two magneto-insulated gaps was considered. It was 

shown that the injection of thermal electrons into the 

drift gaps allowed compensating charge of the high-

current ion beam, ensuring its high quality. 

In paper [8], the HCIB transport dynamics in the 

LIA drift gap, where the external magnetic field was 

created by coils, has been studied. Several variants of 

the ion beam charge compensation have been consid-

ered. It is shown that proposed parameters of the ion 

beam compensation allow the ion beam to be the most 

effectively compensated for the charge, leading to the 

basic CIB parameters’ keeping. It is shown that in the 

case of specially chosen parameters for additional elec-

trons’ injection, the ion beam current at the exit from 

the drift gap is practically equal to the initial one, and 

CIB remains monoenergetic. 

The particles dynamics in the LIA section in the 

presence of an external magnetic field has been studied. 

The ion beam current compensation was carried out by 

an electron beam [9]. It is shown that with optimized 

electron injection towards the main electron and ion 

beams, the HCIB current is almost equal to the initial 

one at the exit from the LIA section. At the same time, 

CIB, acquiring energy in the accelerating gap, remains 

monoenergetic. 

In [10], the HCIB dynamics in magneto-isolated and 

drift gaps has been studied. It is shown that at a larger 

drift gap radius, there are practically no losses, both of 

the compensating additional beam electrons, and of the 

HCIB ions. It is shown that, both at a smaller and at a 

larger drift gap radius, even in the absence of opposite 

directed electrons injection, the CIB quality at the exit 

of the system remains acceptable for a lot of technologi-

cal applications. 

In this paper we have investigated the HCIB trans-

portation in the presence of compensating basic electron 

beam and additional electron beam in the LIA experi-

mental model section. The dynamics of the CIB with 

different current has been considered. It is shown that 

with a smaller current of the CIB, its quality at the exit 

from LIA, due to a smaller space charge, is higher than 

in the case of a larger HCIB current. It is shown, that for 

chosen parameters of the HCIB and the additional elec-

tron beam, the ion beam remains suitable for scientific 

research, ion implantation and radiation material science. 

SIMULATIONS RESULTS  

The electron and ion beams transport dynamics has 

been studied numerically by means a powerful 3-

dimensional code KARAT [11]. KARAT is fully elec-

tromagnetic code on the basis of the macroparticles 

method. It is intended for solving non-stationary elec-

trodynamic problems, having complex geometry and 

including dynamics, in the general case, of relativistic 

particles (electrons, ions, neutrals). 

Fig. 1 shows a section through the middle and along 

the investigated section (longitudinal coordinate z), con-

sisting of LIA magneto-isolated and drift gaps. The 

length of the magneto-isolated gap is zm = 0.4 m, the 

length of the drift gap is 0.4 m, the length of the system 

is zs = 0.8 m. The radius of the magneto-isolated gap is 

Rm = 0.5 m, and the drift gap radius is Rd = 0.1 m. The 

axis of the system symmetry is shown in Fig. 1 by 

dashed line, passing through the point x = 0.5 m, 

y = 0.5 m. 

At the beginning of the magneto-isolated gap (see on 

the left, Fig. 1) the ion beam with density nbi ≈ 7·10
17 

m
-3

  

(Izi = 13.2 kA) in the first variant, nbi ≈ 3.6·10
17 

m
-3

 (Izi = 

6.6 kA) in the second case, and the speed Vbi = 0.27 c 

and the main electron beam, compensating the HCIB 

current, with a density of nbe = 2·10
17

 m
-3

 and a velocity 

Vbe = 0.99 c, where c is the speed of light, are injected at 

the initial time. The direction of both beams motion is 

shown in Fig. 1 on the left. The internal beam size rmin = 

0.028 m, outer one rmin = 0.035 m. The beams are axial-
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ly symmetric relatively the dashed straight line only at 

the initial time moment (see Fig. 1). Fig. 1 also shows 

the location of the injection along the radius of the addi-

tional electron beam with the velocity add

ebV = 0.99 c into 

the magneto-insulated gap. The additional electron 

beam injector has a thickness of 0.003 m. The injection 

location has been chosen in the way, that the additional 

electron beam, moving along the corresponding force 

magnetic lines, would fall on the initial cross-section of 

the main electron beam and CIB in the second half of 

magneto-isolated gap and would accompany it to the 

system end.  

The external magnetic field in the magneto-isolated 

gap is created by coils with counter currents and has a 

cusp configuration. Coils, placed in the magneto-

insolated gap have turns, both in the transverse direction 

and in the longitudinal one. In the drift gap, the magnet-

ic field is formed by coils of the same size and radius 

with the same current in them, so the magnetic induc-

tion along the gap practically does not change, and the 

field is uniform. 

 
Fig. 1. Cross-section of the LIA experimental model 

along z by the xz-plane 

The dependence of the longitudinal component of 

the magnetic field induction B0z on the longitudinal co-

ordinate z is show on Fig. 2. The curves in Fig. 2, are 

shown at reference points: x1 = 0.465 m, y1 = 0.515 m, 

x2 = 0.47 m, y2 = 0.505 m, x3 = 0.47 m, y3 = 0.51 m,  

z3= 0.55 m, which are chosen to illustrate various char-

acteristics of the problem at the center, at the outer and 

inner edges of the initial location of the ion and main 

electron beams. 

 
Fig. 2. Dependence of longitudinal component  

of external magnetic field induction on the longitudinal 

coordinate z in different points on x, y 

In the first variant, when the HCIB density is higher, 

the ion beam current along the system remains close to 

the initial one practically to the middle of the drift gap 

(Fig. 3,a). In the second half of the drift gap, because of 

incomplete charge compensation, the HCIB significant-

ly diverges so that part of the particles goes on the walls, 

as a result of that the current strength decreases signifi-

cantly and reaches about 7.5 kA at the exit from the 

section. 

In the second case, the HCIB density is two times 

smaller, so it diverges in the drift gap not as significant-

ly as in the first case, so that the current at the exit from 

the system is close to the initial one – about 6.5 kA (Fig. 

3,b). Thus, at the exit from the section ion beam current 

in the first case decreases almost twofold, and in the 

second one – by 100 A. 

 
Fig. 3. Dependence of the longitudinal component of the 

ion beam current on the longitudinal coordinate z:  

first variant (a); second variant (b) 

The dependence of CIB kinetic energy on the longi-

tudinal coordinate is illustrated on Fig. 4. It is seen, that 

in both cases there are areas of acceleration and deceler-

ation of the ion beam, which are associated with the 

HCIB incomplete charge compensation.  

 
Fig. 4. Dependence of the ion beam kinetic energy  

on the longitudinal coordinate z:  

first variant (a); second variant (b) 
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The minimum of the ion beam kinetic energy has 
appeared at the end of the magneto-isolated gap, where 
the system dimensions are quite different – the radius of 
the magneto-isolated gap is 5 times larger than the drift 
gap radius (Fig. 1). In the case of the higher ion beam 
density, the energy minimum reaches 33.5 MeV 
(Fig. 4,a), whereas in the second one it reaches 
35.4 MeV (Fig. 4,b). At the exit from the system, the 
HCIB has kinetic energy in the first case 34.6 MeV, and 
in the second case it is 35.6 MeV, i.e. the energy losses 
of HCIB are: in the first case about 4%, in the second – 
no more than 2%. 

CONCLUSIONS 

In this paper the dynamics of the high-current ion 
beam transportation in the presence of an external mag-
netic field in the section of LIA with collective focusing 
has been studied. 

Two cases of the HCIB transportation, when its den-
sity is: 1) nbi ≈ 7·10

17
 m

-3
, 2) nbi ≈ 3.6·10

17 
m

-3
 have 

been considered. It is shown that HCIB in both cases 
noticeably slowed down at the end of the magneto-
insolated gap, and then accelerated to practically the 
initial energy, and the HCIB deceleration again occurred 
at the end of the drift gap. It is shown that, at the exit 
from the system, CIB kinetic energy in the first case is 
less than the initial energy (36.2 MeV) by 1.6 MeV, and 
in the second case – by 0.6 MeV. Moreover, HCIB with 
higher density because of incomplete charge compensa-
tion diverges significantly in the transverse direction in 
the second half of the drift gap, losing particles on the 
system walls. Therefore, the HCIB current in the first 
case decreases practically twofold, and in the second 
case it decreases by 2% (in 1.02 times). Thus, in the 
case of HCIB lower density at the chosen parameters of 
the compensating electron beams and the system, the 
ion beam has the current and the energy close to the 
initial ones at the exit from the LIA section. Conse-
quently, HCIB with these parameters remains accepta-
ble for a number of important technological applications. 
It should be noted that, in spite of less acceptable pa-
rameters of ion beam with higher density at the exit 
from the system, it can be used for ion implantation, 
studying and processing structural materials. 
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ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ТРАНСПОРТИРОВКИ СИЛЬНОТОЧНОГО ИОННОГО ПУЧКА  

ПРИ НАЛИЧИИ КОМПЕНСИРУЮЩИХ ЭЛЕКТРОННЫХ ПУЧКОВ В СЕКЦИИ ЛИУ 

В.И. Карась, Е.А. Корнилов, О.В. Мануйленко, В.П. Тараканов, О.В. Федоровская 

Изучена транспортировка сильноточного ионного пучка (СИП) с различными токами при наличии инжекции сопро-
вождающего и дополнительного электронных пучков в секции линейного индукционного ускорителя (ЛИУ). Исследо-
вания проводились с помощью трехмерного численного моделирования в рамках полной системы уравнений Власова-
Максвелла. Параметры системы и пучков оптимизированы таким образом, что на выходе из секции ЛИУ качество ион-
ного пучка остается приемлемым для ряда важных технологических приложений. 

ЧИСЕЛЬНЕ МОДЕЛЮВАННЯ ТРАНСПОРТУВАННЯ СИЛЬНОСТРУМОВОГО ІОННОГО ПУЧКА  

ЗА НАЯВНОСТІ КОМПЕНСУЮЧИХ ЕЛЕКТРОННИХ ПУЧКІВ У СЕКЦІЇ ЛІП 

В.І. Карась, Є.О. Корнілов, О.В. Мануйленко, В.П. Тараканов, О.В. Федорівська 

Вивчено транспортування сильнострумового іонного пучка (СІП) з різними струмами при наявності інжекції супро-
воджуючого та додаткового електронних пучків у секції лінійного індукційного прискорювача (ЛІП). Дослідження про-
водилися за допомогою тривимірного чисельного моделювання в рамках повної системи рівнянь Власова-Максвелла. 
Параметри системи і пучків оптимізовані таким чином, що на виході з секції ЛІП якість іонного пучка залишається при-
йнятною для низки важливих технологічних застосувань. 


