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The results of researches on the wakefield method of high-gradient acceleration of charged particles carried out 

within the framework of the projects “FACET” (SLAC), “BELLA” (LNBL), “AWAKE” (CERN) and in other la-

boratories, including NSC KIPT, are presented. The acceleration of charged particles in a plasma wakefield with 

acceleration rate up to 100 GeV/m excited by an intense electron bunch (PWFA) or by a powerful laser pulse 

(LWFA), and in a dielectric wakefield with acceleration rate up to 1 GeV/m excited by an intense electron bunch 

(DWFA) is considered. 
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INTRODUCTION 

Large Hadron Collider (LHC [1]) and designed and 

planned for construction lepton colliders (CLIC [2] and 

ILC [3]) producing the center-of-mass energy in TeV 

range are destined as the main tool to solve the funda-

mental problems of high energy physics. However, de-

manded further growth in the maximum energy of the 

future colliders has slowed down. 

Present colliders based on conventional methods of 

particles acceleration became costly and time-

consuming and close to the limit of what humanity can 

afford to build even with the joint efforts of many coun-

tries. This forces to explore new methods of accelerat-

ing particles to high energies. 

Radical reduction of the length of linear high energy 

accelerators can be achieved using much higher acceler-

ating fields than the utmost breakdown fields of 

30…100 kV/m, which are used now in conventional 

methods. Therefore increasing the amplitude of acceler-

ating fields becomes a decisive problem for reducing the 

size and cost of high energy accelerators. Such approach 

is the main one in motivation of the research of new 

promising methods of charged particles acceleration 

expanded all over the world. 

1. CONCEPT OF WAKEFIELD 

ACCELERATION  

The first understanding of the end of the path for 

conventional acceleration schemes was stated in [4 - 6], 

where the ideas of new acceleration methods were an-

nounced, including proposal Fainberg [6] to use plasma 

waveguides as accelerating structures. 

Acceleration by collective fields of charge density 

waves excited in plasma radically differs from other 

conventional acceleration schemes by two essential ad-

vantages. Firstly, when using plasma as an accelerating 

structure, there is no danger of microwave breakdown, 

leading in the conventional accelerating structures of 

high energy colliders to the emergence of plasma and 

limitation of the maximal possible acceleration rate. 

Secondly, plasma can support accelerating high-

frequency fields several orders higher than those 

achieved in conventional accelerating structures. Plasma 

of density np can support an electric field 
2

max 4 pE n mc , i.e. 3

max ( / ) ( )pE V сm n сm ,  

where m – mass of electron; e – charge of electron.  

For the currently realized plasma densities, the mag-

nitude of the maximum field Еmax can reach the values 

of 10
7
…10

9
 V/сm. In particular, for the plasma density 

np=10
18

сm
-3 

Еmax=100 GV/m, which is three orders of 

magnitude higher than the one planned in the construct-

ed linear lepton collider CLIC [2]. Later, the idea of 

using space-charge waves in plasma was developed by 

J. Dawson and his colleagues [7, 8] as a wakefield ac-

celeration scheme in which a high-gradient accelerating 

field is the wakefield excited in a plasma by a short 

powerful laser pulse or a short electron bunch with a 

large charge. The accelerating fields Eacc, excited in 

plasma, are determined by the intensity of the external 

exciting factor (driver), namely: Eacc=Emax, where 

=nb/np, when the accelerating field is excited by an 

electron bunch and =vE
2
/c

2
, when it is excited by a 

laser pulse. Here, nb is the density of the bunch; vE is the 

oscillatory velocity, which is gained by plasma electrons 

in the wakefield of the laser wave. 

The progress in the development of lasers with a high 

peak power and the increase in the intensity of electron 

bunches of accelerators based on convential schemes 

made it possible to carry out many conceptual experi-

ments based on the wakefield methods of high-gradient 

acceleration, including laser wakefield concept (LWFA-

Laser WakeField Acceleration) and beam wakefield con-

cept (PWFA-Plasma WakeField Acceleration). 

2. LASER-PLASMA WAKEFIELD 

ACCELERATION CONCEPT (LWFA) 

In the first experiments on laser-plasma wakefield 

acceleration, the acceleration rate was obtained, which 

was much higher than that in conventional accelerators. 

However, the quality of the beam obtained in these ex-

periments is unsatisfactory because of the large energy 

and angular spread. In 2004, experiments were carried 

out independently in different laboratories of the world-

Japan [9], England [10], France [11], USA [12], in 

which accelerated monoenergetic beams with small an-

gular divergence were obtained. The pulse of a powerful 

laser was injected into a supersonic gas jet to create 

plasma and excite in it a wakefield in which plasma 

electrons were accelerated. In [11], a high-quality elec-

tron beam was produced with a divergence of 10 mrad, 

a charge of 0.50.2 nC at energy 17020 MeV. Conse-

quently, the energy of the bunch was 100 mJ, i.e. the 
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transformation ratio of the laser energy to the electron 

beam energy was 10%. 

In all four experiments [9 - 12], high-quality electron 

bunches (normalized emittance of less than 1 mm mrad, 

duration of tens of femtoseconds, charge of the order of 

1 nC) are formed and accelerated with a rate of the or-

der of 100 GeV/m under conditions for which the length 

of acceleration is consistent with the length of the 

dephasing of the beam with the wakefield, and the in-

tensity of the laser is such that the beam load is strong 

enough to prevent a new capture of plasma electrons. 

The problem so far remains the necessity to increase 

substantially the acceleration length to obtain the energy 

of the particles required by high-energy physics. In [13] 

the achieved maximal particle energy for laser-plasma 

wakefield acceleration is 300 MeV. A further increase 

in the acceleration length was achieved when using a 

plasma waveguide formed at a capillary discharge of 

1 cm long, considerably exceeding the Rayleigh length. 

The accelerated beam of 1 GeV was obtained [14]. 

The first experimental demonstration of capture (so-

called self-injection) and acceleration of electrons to 

energy much higher than 1 GeV with a small energy and 

angular spread is presented in [15]. In this experiment, a 

more powerful PW laser was used and the plasma densi-

ty was optimized. PW pulses are injected into plasma of 

much lower density than in previous experiments. It 

allows to overcome the physical barriers prevented the 

acceleration above 1 GeV: a) dephasing the excited 

wakefield and the accelerated electrons, and b) erosion 

of the laser pulse. 

Linearly polarized pulses from a Texas PW laser 

with duration of 150 fs, a wavelength of 1.057 μm, and 

energy of 150 J were focused on an input aperture of 

1.5 mm radius of a gas cell 7 cm long filled with helium 

at a pressure of 1…8 Torr. [16]. It was shown that the 

maximum energy of 2 GeV electron bunches with an 

explicit energy maximum at 2 GeV with energy spread 

of only a few percent (5%) and unprecedented sub-mrad 

angular spread is achieved in a narrow range of plasma 

densities of (4…6)∙10
17

 сm
-3

. In this case the so-called 

bubble-mode (behind the laser pulse a bubble with 

spilled electrons is formed instead of the wake wave) 

and at the same time physical barriers for acceleration 

above 1 GeV are eliminated. Numerical simulation 

shows that with an improvement in the quality of focus-

ing of the laser pulse, it is possible to accelerate the 

plasma electrons to almost 10 GeV even with the avail-

able at present pulse energy. 

Further progress in increasing the maximum energy 

in the laser-plasma wakefield accelerator is expected to 

be realized in the project "BELLA" [17], performed in 

the laboratory of LBNL (USA). For this, the power of 

the laser used should be increased to 1 PW level, which 

will make it possible to create a 10 GeV laser-plasma 

wakefield accelerator as a block for future multimodal 

colliders based on laser drivers. Currently, in LBNL, 

when laser pulses with a peak power of up to 0.3 PW 

are injected in a pre-created plasma waveguide as a 

9 cm length capillary discharge of plasma density 

7∙10
17 

см
-3

, electron bunches with an energy of up to 

4.2 GeV, 6% energy spread, charge of 6 pC and an an-

gular divergence of 0.3 mrad are obtained [18]. 

The scheme of TeV collider, based on LWFA-

modules, accordingly to the project "BELLA" in LBNL 

[19] is shown in Fig. 1. 

 
Fig. 1 

3. BEAM-PLASMA WAKEFIELD 

ACCELERATION CONCEPT (PWFA)  

The first experiments on the wakefield acceleration 

of electrons by plasma waves excited by relativistic 

electron bunches (PWFA) were in fact carried out in 

KIPT [20, 21] when studying the instability of a relativ-

istic electron beam in plasma. The sequence of short 

(less than excited wakefield wave length) bunches of 

relativistic electrons, produced on a linear resonant elec-

tron accelerator (energy 2, 14, and 20 MeV, number of 

bunches up to 610
3
, bunch repetition frequency 

2.705 GHz, charge of each bunch 0.32 nC, its length 

and diameter are 1.7 cm and 1cm, respectively) was 

injected into the plasma of the resonant density (the 

plasma frequency is coincided with the frequency of 

bunch repetition), produced with coaxial plasma gun. 

The maximum increase in the energy of the electrons of 

bunches occurred in the accelerating phases of the ex-

cited wakefields was 4 MeV at a plasma column length 

of 10 cm. This indicated the excitation of a wakefield 

with an amplitude of 40 MV/m Only after the appear-

ance of theoretical papers [7, 8], the above results were 

interpreted as the acceleration of electrons in the fields 

excited in plasma by a sequence of bunches (PFWA) 

[22, 23].  

In KEK (Japan), for wakefields excitation in plasma 

jf density 910
11

 сm
-3

 a sequence of 6 bunches with an 

energy of 250 and 500 MeV and a total charge of 

5…10 nC was used [24]. The maximum energy loss of 

the bunch was 12 MeV at a length of 20 cm, which cor-

responds to electric field strength of 60 MV/m. 

In ANL (USA), for the first time, an experiment was 

performed with a single bunch-driver of a large charge 

which excites the wakefield in plasma and a bunch-

witness of a smaller charge whose energy is changed 

with a variation in the delay of its injection into the 

plasma, that allows to judge the characteristics of the 

excited wakefield [25]. The electron bunch-driver (en-

ergy 21 MeV, charge 4 nC, length and diameter 2.1 mm 

and 1.4 mm, respectively) was injected into plasma of 

density (0.4…7.0)10
13

 сm
-3

 and length of 3.3 cm. Be-

fore the injection point the bunch-witness, which was 

diverted by a magnetic field along a trajectory, the 

length of which was varied by means of moving mag-
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nets, and then, with an adjustable delay, was directed 

behind the bunch-driver. The delay between these 

bunches could vary from 0.2 to 1.0 ns. The measured 

energy of accelerated witness in dependence of the de-

lay, indicated its acceleration in the wakefield of excited 

plasma oscillations with an amplitude of 5.3 MV/m. 

Thus, it can be concluded [26, 27] that the first ex-

periments on multi-bunch excitation of wakefields in 

plasma (multi-bunch PWFA) for high-gradient electron 

acceleration were performed in KIPT, 1972 and KEK, 

1990, and on single bunch excitation of the wakefields 

in plasma (single-bunch PWFA) in ANL, 1988. 

Subsequent experiments to excite the wakefield in a 

meter-long plasma were carried out on a 3 km collider 

of the Stanford Linear Accelerator Center (SLAC) using 

a single electronic bunch with small dimensions and a 

large charge. The high intensity and low emittance the 

electron bunch with an energy of 42 GeV passed 

through a column of lithium vapor; before the head of 

the bunch a completely ionized plasma was created due 

to vapor ionization by coulomb field, in which the 

bunch excited strong plasma wakefield. 

In the experiments at the SLAC (E-157/E-162 [28]), 

the goal was to obtain a high-gradient accelerating 

wakefield when injected into a 1.4-m long plasma and a 

density of 10
14 

сm
-3

 of an electron bunch with an energy 

of 30 GeV and a density more than plasma density. In 

the first experiment [29], a single 28.5 GeV bunch of 

1.810
10

 electrons of the SLAC-accelerator was com-

pressed to a length of 12 μm (40 fs.). The density of 

plasma 10 cm in length was equal to the density of lithi-

um vapor 2.810
17

 atoms / cm
3
. About 7% of the elec-

trons of the tail of the bunch accelerated to energies 

above the initial, on average 2.8 GeV more. The maxi-

mum acceleration of the electrons of the trailing edge of 

the bunch was 4 GeV at a plasma length of 10 cm, i.e. it 

occurred with an accelerating gradient of 40 GV/m. 

This result was, firstly, the first demonstration of the  

1 GeV barrier overcoming for the accelerators based on 

advanced acceleration methods. Secondly, the obtained 

acceleration rate was 40 GeV/m, more than three orders 

of magnitude higher than the rate 30 MeV/m planned 

for the ILC. 

In subsequent experiments [30] with an increased 

plasma length of up to 30 cm, an energy gain of more 

than 10 GeV was measured. 

The practically linear increase in the energy gain on 

the length of the plasma measured at SLAC [29, 30] 

was confirmed by a subsequent experiment with an in-

crease in the plasma length to 85 cm [31]. This experi-

ment allows obtaining a very important result consisting 

in doubling the energy of the tail part of the bunch-

driver by excited plasma wakefields. An electron bunch 

with parameters: energy 42 GeV with a spread of 

1.5 GeV, the number of electrons in the bunch 

1.8310
10

 (charge 2.93 nC), bunch length is 15 μ was 

focused on chamber entrance of 10-μm diameter (so the 

average electron density in the bunch is 1.0310
19 

см
-3

) 

and injected into a column of 85 cm-long lithium vapor 

with a density of neutral particles of 2.7310
17 

сm
-3

. It 

was experimentally shown that an energy gain of more 

than 42 GeV was achieved in a plasma wakefield accel-

erator (PWFA) of 85-cm length, excited by a 42 GeV 

bunch-driver of a SLAC collider. The energy gain of a 

small fraction of the electrons of the injected bunch at a 

less than a meter length is the same as on the 3-km 

length of the SLAC collider using the conventional ac-

celeration method. This is an important step demonstrat-

ing the perspective developing compact plasma wake-

field accelerators for high-energy physics. 

When the length of the column with lithium vapor 

was increased from 85 to 113 cm, the measured maxi-

mum energy was 7111 GeV with less than 3% of the 

bunch electrons, which gained additional energy of 

more than 30 GeV. The reason for this saturation of the 

energy gain is the erosion of the head of the bunch: the 

front of the bunch expands because it is not subjected to 

the focusing force of the ion column. This expansion 

reduces the density of the bunch shifting the ionization 

front back along the bunch. Ultimately, the electric field 

of the bunch falls below the threshold for the formation 

of plasma, stopping the acceleration process before the 

energy of the bunch-driver is depleted. 

Such restriction on the plasma length, which inevi-

tably leads to the necessity of sectioning, is proposed to 

overcome, using relativistic proton bunches (PDPWFA-

proton-driven plasma wakefield acceleration) instead of 

relativistic electron bunches. Due to greater mass of 

proton bunches are less susceptible to emittance erosion 

in strong excited fields [32, 33].  

As for the excitation strong wakefield fields in 

plasma it is necessary to create plasma with a high den-

sity (at nb/np is retained), so the wavelength of the plas-

ma wakefield p=2c/p is much smaller than the 

length a of the proton bunches of present proton accel-

erators ((p a). Proton microbunches (a  p) are sup-

posed to be formed by splitting a long bunch into sever-

al short ones, using self-modulation during beam-

plasma instability [34]. 

At CERN, the AWAKE (Advanced Wakefield Ex-

periment) project is being carried out, aimed at demon-

strating the PDPWFA experimentally using a sequence 

of proton bunches with TeV-band energy as a driver 

[35]. Simulation showed [32] that a proton bunch of the 

type LHC (1 TeV, 10
11

 protons in the bunch) with a 

bunch length of 100 μm can accelerate the incoming 

10 GeV electron beam to an energy of more than 

500 GeV in a 500 m plasma with an average accelerat-

ing gradient of  GeV/m. Recent studies [34] have 

shown that such gradients can be achieved with a long 

modulated proton bunch. It makes possible the experi-

mental study of PDPWFA with existing proton bunches 

at CERN [35]. 

For the AWAKE experiment at CERN, a proton 

beam of an LHC type with an energy of 400 GeV but a 

higher intensity (310
11

 protons in the bunch) is extract-

ed from the CERN SPS accelerator and is directed to the 

plasma cell to excite the plasma wakefield. The proton 

bunch will be focused to the size x,y=200 μ near the 

entrance to a plasma cell of 10 m long with a density 

adjustable in the range 10
14

…10
15

 сm
-3

. When a proton 

bunch with a length z= 12 cm (0.4 ns) enters a plasma 

cell, it undergoes to self-modulation instability. It pro-

duces a sequence of ultrashort proton bunches, which 

can resonantly excite the intense wakefields [34]. 
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The effective length and period of the modulated 

long bunch are determined by the length of the plasma 

wave (for AWAKE, usually p=1 mm). A high-power 

laser pulse (2 TW) propagating coaxially with a proton 

bunch is used to ionize gas in a plasma cell, and also 

generates a seed of self-modulation of the proton bunch. 

An electron bunch with 1.25∙10
9
 electrons injected at an 

energy of 10…20 MeV serves as a witness for the ac-

celeration in the plasma wakefield of proton bunches.  

Further research on new acceleration methods at 

SLAC is planned to be carried out within the framework 

of the FACET program [36] on another beam channel of 

a SLAC collider with 23 GeV electron/positron bunch-

es. Charge of each bunch is 3 nC (10 kA), diameter 10 

μ, duration 50 fs. Experiments are aimed at improving 

the quality of the accelerated bunch (increasing the 

number of electrons in the bunch, reducing the energy 

and angular spread of electrons), for which the initial 

bunch of magnetic systems and / or masks is divided 

into a pair of bunch-driver (for excitation wakefield) 

and bunch-witness (for acceleration in wakefield). 

In [37] it was reported an experiment on the SLAC 

in the framework of the FACET program that was di-

rected on highly effective acceleration of a separate 

bunch-witness, which contains a sufficient charge to 

extract a significant amount of energy from a highgradi-

ent nonlinear plasma wakefield accelerator. In particu-

lar, an acceleration of 74 pC of bunch-witness in an 

accelerating gradient of 4.4 GV/m was obtained. The 

electrons of the this bunch gain an additional energy of 

1.6 GeV with an energy spread of just 0.7% and an en-

ergy transfer efficiency from the wakefield to the bunch 

exceeds 30%. Such acceleration of a separate bunch, 

containing a substantial charge and having a small ener-

gy spread, with a high accelerating gradient and high 

energy transfer efficiency is an important milestone in 

the study of plasma wakefield acceleration for the de-

velopment of the technology and design of compact and 

accessible accelerators. A perspective goal is the devel-

opment of a PWFA as a block for future multi-section 

colliders for high-energy physics. 

 
Fig. 2 

The program "FACET" also includes studies of the 

accelerator scheme using the wakefield excited by 

SLAC collider bunches in dielectric structures, as well 

as the generation of high-power THz radiation. 

Fig. 2 shows the scheme of 1 TeV collider, based on 

PWFA-modules, in the project "FACET" at SLAC [36]. 

4. BEAM-DIELECTRIC WAKEFIELD 

ACCELERATION CONCEPT (DWFA) 

An accelerating structure loaded with a dielectric, in 

which the wakefield is excited by an intense electron 

bunch or a sequence of bunches, is another alternative 

candidate for the development of the future high-

gradient accelerators, which can overcome the accelera-

tion rate threshold for conventional accelerators of 

100 MV/m. As it is shown in theoretical studies [38] 

and recent experiments [39], the maximum accelerating 

field in dielectric structures, limited by electrical break-

down due to tunneling and collision ionization, can ex-

ceed 1 GV/m, i.e. an order of magnitude greater than 

that of conventional metal accelerating structures. 

Demonstration of the breakdown threshold of 13.8 

GV/m in the specific geometry of the dielectric wake-

field accelerator (DWFA) in the THz range [39] is an 

encouraging result for the development of future DWFA 

with an accelerating gradient of the order of GV/m. Die-

lectric structures have a number of advantages due to 

the simplicity of the geometry, the ease of avoiding of 

harmful asymmetric modes, and realization such distri-

bution of the transverse field, which impedes break-

down on the outer metal wall of the structure. Dielectric 

structures are more acceptable due to the advanced 

technology of manufacturing micro-products, dielectric 

uniformity, simpler microwave matching, etc. 

The studies of wakefield excitation in the dielectric 

accelerating structure by a single electron bunch was 

started in ANL (USA) [40]. In the works of the NSC 

KIPT (Ukraine) [41] and the USA [42] the concept of a 

multi-bunch dielectric wakefield accelerator was devel-

oped, based on the excitation of wakefields by a se-

quence of bunches in a dielectric structure with a vacu-

um channel for the transit of bunches. 

The concept of a multi-bank plasma-dielectric wake 

accelerator in which the vacuum channel is filled with 

plasma, that leads to the excitation of an additional 

plasma wakefield, is of promising interest. The presence 

of this field makes it possible to increase the excitation 

efficiency of the longitudinal wakefield and to provide, 

by focusing, the transverse stability of the exciting and 

accelerated bunches. 

The first publications on this subject [43] prompted 

the deployment in the NSC of KIPT of broad theoretical 

and experimental studies [44] of the concept of the 

plasma-dielectric wakefield acceleration, in which the 

electromagnetic properties of plasma-dielectric acceler-

ating structures are elucidated. The longitudinal and 

transverse structure of the excited electromagnetic field 

is investigated. The transverse force acting on the elec-

trons of the bunch-driver is always focusing, and the 

transverse force acting on the particles of the accelerat-

ed bunch-witness is focusing only when the injection 

phase is appropriately selected. 

In the multi-bunch excitation mode, the amplitude of 

the longitudinal wakefield can be increased by summing 

the fields of the radial modes of the dielectric waves 

only at the optimum plasma density, determined by the 

condition ра  2 (р is the plasma frequency, and a is 
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the transit channel radius). Besides it is necessary, by 

varying the parameters of the vacuum dielectric struc-

ture, to preemptively select the frequency of the field to 

be excited in such a way that, when the plasma is filled, 

it ырщгдв coincide with the frequency of bunch repeti-

tion [45]. 

In ANL developed the project [46] of a dielectric 

wakefield collider of only 5 km length for the Higgs 

factory, almost an order of magnitude shorter than the 

planned International Linear Collider ILC [3]. Its 

scheme is shown in Fig. 3. 

 
Fig. 3 

REFERENCES 

1. CERN. 2008. LHC Design Report. Available from 

http://ab-div.web.cern.ch/ab-div/ Publications / 

LHC-DesignReport.html 

2. H. Braun, R. Corsini, T. D'Amico, et al. The CLIC 

RF power source: a novel scheme of two-beam ac-

celeration for electron-positron linear colliders. 

CLIC-Note-364. 1998. 

3. J. Brau, Y. Okada, N. Walker, et al. International 

Linear Collider Reference Design Report. 2007. 

4. V.I. Veksler. Coherent principle of acceleration of 

charged particles // Proc. Symposium CERN, Gene-

va. 1956, v. 1, p. 80-86. 

5. G.J. Budker. Relativistic stabilized electron beam // 

Proc. Symposium CERN, Geneva. 1956, v. 1, p. 68-

75. 

6. Ya.B. Fainberg. The use of plasma wave guides as 

accelerating structures // Proc. Symposium CERN, 

Geneva. 1956, v. 1, p. 84-92. 

7. T. Tajima, J.M. Dawson. Laser electron acceleration 

// Phys. Rev. Letters. 1979, v. 43, № 4, p. 267. 

8. P. Chen, J.M. Dawson, R.T. Katsouleas. Accelera-

tion of electrons by the interaction of a bunched 

electron beam with a plasma // Phys. Rev. Letters. 

1985, v. 54, № 7, p. 692. 

9. K. Koyama, E. Miura, S. Kato, et al. Generation of 

quasi-monoenergetic high-energy electron beam by 

plasma wave // AIP Conf. Proc. 2004, v. 737, p. 528. 

10. S.P.D. Mangles, C.D. Murphy, Z. Najmudin, et al. 

Monoenergetic beams of relativistic electrons from 

intense laser-plasma interactions // Nature. 2004, 

v. 431, p. 535-538. 

11. C.G.R. Geddes, Cs. Toth, van J. Tilborg, W.P. Lee-

mans, et al. High-quality electron beams from a laser 

wakefield accelerator using plasma-channel guiding 

// Nature. 2004, v. 431, p. 538-541. 

12. J. Faure, Y. Glinec, A.Pukhov, V.Malka, et al. A 

laser-plasma accelerator producing monoenergetic 

electron beams // Nature. 2004, v. 431, p. 541-544. 

13. S.P.D. Mangles, B.R. Walton, M. Tzoufras, 

K. Krushelnick, et al. Electron Acceleration in Cavi-

tated Channels Formed by a Petawatt Laser in Low-

Density Plasma // Phys. Rev. Lett. 2005, v. 94, 

245001. 

14. W.P. Leemans, B. Nagler, A.J. Gonsalves, Cs. Toth, 

K. Nakamura, C.G.R. Geddes, E. Esarey, 

C.B. Schroeder, S.M. Hooker. GeV electron beams 

from a centimetre-scale accelerator // Nature Phys. 

2006, v.2, p. 696-699. 

15. Xiaoming Wang, Rafal Zgadzaj, Neil Fazel et al. // 

NATURE COMMUNICATIONS, 2013, p. 1-9; 

www.nature.com/naturecommunications. 

16. M. Dawner. Long pulse PW excitation and dynamic 

imaging on multi-GeV laser-plasma accelerators // 

16
th

 Advanced Accelerator Concepts Workshop 

(AAC2014), San Jose, California, USA, July 13-18, 

2014. 

17. W.P. Leemans. The BErkeley Lab Laser Accelerator 

(BELLA): A 10-GeV laser plasma accelerator. Pro-

gress in laser plasma acceleration and BELLA pro-

ject at LBNL // 14
th

 Advanced Accelerator Concepts 

Workshop (AAC2010), Annapolis, MD, Univ. of 

Maryland, USA, June 13-19, 2010, p. 3-11. 

18. W.P. Leemans, A.J. Gonsalves, H.-S. Mao, et al. 

Multi-GeV electron beams from capillary-discharge-

guided subpetawatt laser pulses in the self-trapping 

regime // Phys. Rev. Lett. 2014, 113(24)245002. 

http://dx.doi.org/10.1103/PhysRevLett.113.245002 

19. Wim Leemans and Eric Esarey. Laser-driven plas-

ma-wave electron accelerators // Physics Today. 

2009, v. 62(3), p. 44-49. 

http://dx.doi.org/10.1063/1.3099645 

20. А.К. Berezin, Ya.B. Fainberg, L.I. Bolotin, et al. 

Experimental studies of the interaction of modulated 

relativistic beams with a plasma // PISMA v JETP. 

1971, v. 13, p. 498-503 (in Russian). 

21. А.К. Berezin, V.А. Kiselev, А.F. Linnik, et al. Col-

lective interaction of a high-energy monoenergetic 

REB with a plasma // Voprosy atomnoj nauki i 

tekhniki. Seriya “Yaderno-phizicheskie issledjvani-

ya”. 1990, № 6(14), p. 115-120 (in Russian). 

22. А.К. Berezin, V.А. Kiselev, А.F. Linnik, et al. Ex-

perimental studies of the excitation of wakefields in 

a plasma by a periodic sequence of bunches of rela-

tivistic particles: Preprint KhFTI. Kharkov, 1991, 

№ 91-45, 10 p. 

23. А.К. Berezin, Ya.B. Fainberg, V.А. Kiselev, et al. 

Excitation of the wakefields in the plasma by the 

pulse of relativistic electrons containing an adjusta-

ble number of short bunches // Phizika plazmy. 

1994, v. 20, № 7-8, p. 663-670 (in Russian). 

24. K. Nakajima. Plasma Wake-Field Accelerator Driv-

en by a Train of Multiple Bunches // Particle Accel-

erators. 1990, v. 32, р. 209-218. 

25. J.B. Rosenzweig, D.B. Cline, B. Cole. Experimental 

Observation of Plasma Wake-Field Acceleration // 

Phys. Rev. Lett. 1988, v. 61(1), p. 98. 

http://ab-div.web.cern.ch/ab-div/
http://proceedings.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&possible1=Miura%2C+E.&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://proceedings.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&possible1=Kato%2C+S.&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://inspirehep.net/record/884944
http://inspirehep.net/record/884944
http://dx.doi.org/10.1103/PhysRevLett.113.245002


ISSN 1562-6016. ВАНТ. 2017. №6(112) 39 

26. E. Esarey, P. Sprangle, J. Krall, et al. Overview of 

plasma-based accelerator concepts // IEEE Trans. 

Plasma Sci. 1996, v. 24, p. 252. 

27. I.N. Onishchenko. Plasma wakefields for particles 

acceleration and HF-generation // Problems of Atom-

ic Science and Technology. Series “Plasma Phys-

ics”. 1999, v. 2, p. 200-205. 

28. P. Muggli, R. Assman, B. Blue, et al. A plasma 

wakefield acceleration experiment // Bull. of the 

APS. 2000, v. 45, № 7, p. 234. 

29. M.J. Hogan, C.D. Barnes, C.E. Clayton, C. Joshi, et 

al. Multi-GeV Energy Gain in a Plasma-Wakefield 

Accelerator // Phys. Rev. Lett. 2005, v. 95, 054802-

1-4.  

30. Patric Muggli, Suzhi Deng, Tom Katsouleas, et al. 

Demonstration of Energy Gain Larger than 10 GeV 

in a Plasma Wakefield Accelerator // Abstract EPAC 

ID:2433-WEOAPA01. 2006. 

31. I. Blumenfeld, C.E. Clayton, F.-J. Decker, et al. En-

ergy doubling of 42 GeV electrons in a metre-scale 

plasma wakefield accelerator // Nature. 2007, v. 445, 

p. 741. 

32. A. Caldwell, K. Lotov, A. Pukhov, and F. Simon, 

Proton-driven plasma wakefield acceleration // Na-

ture Physics. 2009, v. 5(5), p. 363-367. 

33. K.V. Lotov. Simulation of proton driven plasma 

wakefield acceleration // Phys. Rev. ST Accelerators 

and Beams. 2010, v. 13, p. 04130-(1-9). 

34. N. Kumar, A. Pukhov, K. Lotov. Self-Modulation 

Instability of a Long Proton Bunch in Plasmas // 

Phys. Rev. Lett. 2010, v. 104, p. 255003. 

35. C. Bracco, E. Gschwendtner, A. Petrenko, et al. 

Beam studies and experimental facility for the 

AWAKE experiment at CERN // Nucl. Instrum. 

Methods Phys. Res. Sect. 2014, v. A 740, p. 48-53. 

36. M.J. Hogan, T.O. Raubenheimer, A. Seryi, et al. 

Plasma wakefield acceleration experiments at 

FACET // New Journal of Physics. 2010, v. 12, 

055030, p. 19. 

37. M. Litos, E. Adli, W. An, et al. High efficiency ac-

celeration of an electron beam in a plasma wakefield 

accelerator // Nature. 2014, v. 515, p. 92-95. 

38. P. Sprangle, B. Hafizi, R.F. Hubbard. Ionization and 

pulse lethargy effects in inverse Cherenkov accelera-

tors // Phys. Rev. E. 1997, v. 55, № 5, p. 5964-5974. 

39. M.C. Thompson, H. Badakov, A.M. Cook, et al. 

Breakdown Limits on Gigavolt-per-Meter Electron-

Beam-Driven Wakefields in Dielectric Structures. 

Phys. Rev. Lett. 2008, v. 100, p. 214801. 

40. J. Rosenzweig, G. Travish, M. Hogan, P. Muggli. 

High frequency, high gradient dielectric wakefield 

acceleration experiments at SLAC and BNL // Proc. 

of IPAC’10, Kyoto, Japan. 2010, p. 3605-3607. 

41. I.N. Onishchenko, V.A. Kiselev, A.F. Linnik, 

G.V. Sotnikov. Concept of dielectric wakefield ac-

celerator driven by a long sequence of electron 

bunches // Proc. IPAC2013, Shanghai, China 

TUPEA056. 2013, p. 12569-1261. 

42. А.К. Berezin, N.М. Zemlyanskij, V.I. Mirnyj, et al. 

Theoretical studies of the excitation of the wake-

fields of plasma-dielectric slowing media // Ukrain-

skij phizicheskij jurnal. 1992, v. 37, № 7, p. 999-

1003 (in Russian). 

43. G.P. Berezina, K.V. Galaydych, R.R. Kniaziev, et al. 

Concept of plasma-dielectric wakefield accelerator. 

Theory and experiment // Problems of Atomic Sci-

ence and Technology. Series "Plasma Electronics 

and New Methods of Acceleration". 2015, v. 98, 

№ 4, p. 97-104. 

44. R.R. Knyazev, I.N. Onishchenko, G.V. Sotnikov. 

Generation of the wakefields during the filling of the 

dielectric structure by the plasma // JTPh. 2016, 

v. 86, v. 4, p. 34-39. 

45. Eris P. Colby. Present limits and Future Prospects 

for Dielectric Acceleration // 35
th

 Int. Conf. on High 

Energy Physics (ICHEP). Paris, France, July 22-28, 

2010. 

Article received 09.10.2017 

КИЛЬВАТЕРНОЕ УСКОРЕНИЕ. CОСТОЯНИЕ И ПЕРСПЕКТИВЫ (ОБЗОР) 

И.Н. Онищенко, В.И. Приступа  

Представлены результаты исследований кильватерного метода высоко-градиентного ускорения заряжен-

ных частиц, выполненных в рамках проектов «FACET» (SLAC), «BELLA» (LNBL), «AWAKE» (CERN) и в 

других лабораториях, включая ННЦ ХФТИ. Рассмотрено ускорение заряженных частиц в плазменном киль-

ватерном поле до 100 ГэВ/м, возбуждаемом интенсивным электронным сгустком (PWFA) или мощным ла-

зерным импульсом (LWFA); и в диэлектрическом кильватерном поле до 1 ГэВ/м, возбуждаемом интенсив-

ным электронным сгустком (DWFA). 

КІЛЬВАТЕРНE ПРИСКОРЕННЯ. СТАН І ПЕРСПЕКТИВИ (ОГЛЯД) 

І.М. Оніщенко, В.І. Приступа 

Представлено результати досліджень кільватерного методу високо-градієнтного прискорення зарядже-

них частинок, які виконані в рамках проектів «FACET» (SLAC), «BELLA» (LNBL), «AWAKE» (CERN) і в 

інших лабораторіях, включаючи ННЦ ХФТІ. Розглянуто прискорення заряджених частинок у плазмовому 

кільватерному полі до 100 ГеВ/м, збуджуваному інтенсивним електронним згустком (PWFA) або потужним 

лазерним імпульсом (LWFA); та в діелектричному кільватерному полі до 1 ГеВ/м, збуджуваному інтенсив-

ним електронним згустком (DWFA). 


