
ISSN 1562-6016. ВАНТ. 2017. №6(112) 58 

BEAM DYNAMICS  

ELECTRON FLOW DYNAMICS IN RESISTIVE GAP 

A. Pashchenko, V. Ostroushko 

National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine 

E-mail: ostroushko-v@kipt.kharkov.ua 

It is considered the evolution of electron flow in the short-circuited gap with taking into account of the braking 

force proportional to velocity. The linear analysis of the stationary states stability is made. For the states with a 

small instability increment it is considered the nonlinear evolution of perturbation. The numerical simulations of the 

transitions from the unstable modes to the stable ones with the removing of the charge surplus from the gap are car-

ried out. 
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INTRODUCTION 

There are many works devoted to study of electron 

flow dynamics in the flat vacuum diode. In [1], the clas-

sification of the self-sustained states of one-stream flow 

with study of their stability is presented. Before, the 

electron flow stability in the short-circuited diode was 

considered in the paper [2]. In it, the equation for the 

increments of perturbation development was obtained 

and the dependence of the increments on the flow pa-

rameters was built. The results of the paper [2] also 

were presented in the monograph [3]. In [4], the transi-

tion from unstable to stable stationary state correspond-

ing to the same entrance current was studied. An exter-

nal field accelerating the electrons, as a rule, makes the 

flow more stable [5]. In the model considered in the 

paper [2] the electron motion is completely determined 

by electrostatic forces. In the paper [6], the stationary 

states of one-stream flow and their linear stability were 

studied with taking into account of collisions through 

effective braking force proportional to electron velocity. 

In the present work, this study is supplemented with the 

numerical simulations of the stationary state instability 

development and consideration of the process in the 

case of small instability increment.  

1. MODEL EQUATIONS  

Let us consider one-dimensional electron flow under 

the electrostatic forces and the braking force propor-

tional to electron velocity with the ratio 
0  of relevant 

acceleration to velocity (
0 0  ). To write the dimen-

sionless equations, let us denote by 
0e  the elementary 

charge (
0 0e  ), by 

0m  the electron mass, by 
0  elec-

tric constant, by 0j  the current density at entrance and 

let us take the following units: the gap width 0z  for 

length, the entrance velocity 0v  for velocity, the ratios 

0 0 0t z v , 0 0 0 0( )n j e v , and 2

0 0 0 0 0( ) ( )E m v e z  for 

time, electron density, and field strength, respectively. It 

is assumed that 0z   for entrance, so, 1z   for exit. 

The equations in the dimensionless Euler variables have 

the form  

( ) 0t zn nv   , t zv v v E v      ,  

z E qn   ,    (1) 

where 
0 0 0( )z v  , 2 2 2 1

0 0 0 0 0 0( )q e n z m v  , the quanti-

ties v , n , and E  are dependent on the variables ( , )z t , 

  is partial derivative, its index indicates the variable, 

with respect to which the derivative is taken. Parameter 

q  is proportional to the entrance electron current and 

the flow dynamic may be effectively controlled by it. It 

is expedient to use Lagrange variables to simplify the 

equations solving. Let 
e ( , )z t  and 

e ( , )v t  be coordi-

nate and velocity at the time t  of the electron, which 

has come in gap at the time   ( t  ). Let 
e ( , )n t  and 

e ( , )E t  be electron density and field strength in the 

point 
e ( , )z z t  at the time t . It is assumed that during 

the considered stage of the process all electrons are 

moving in positive z  direction and 
e ( , )z t  monoto-

nously decreases with   increase, that is, electrons do 

not outrun one another, though the distance between 

them may be changed. An electron motion in Lagrange 

variables obeys to the equations  

e e( ) 0t n z   ,    (2) 

e et z v  ,    (3) 

e e etv E v    ,   (4) 

in which the quantities 
ez , 

ev , 
en  and 

eE  are depend-

ent on the variables ( , )t . From (1), assuming that 

ez z , one gets the equalities  

e e e e( , ) ( , ) ( , ) ( , ) ( , )zE t E z t z t qn t z t            .  (5) 

From (2), (3) and (5), with taking into account of 

e ( , ) 0z t t  , 
e ( , ) 1v t t  , and 

e ( , ) 1n t t  , it follows  

e e e[ ( , ) ( , )] ( , ) 0tz t v t z          ,  

e e[ ( , )] ( , ) 1tz t v        ,  

e e e e[ ( , ) ( , )] 1tn z n t z t         ,  (6) 

e ( , )E t q   .    (7) 

Integration of (7) gives the equality 

e e0( , ) ( ) ( )E t E t t q    ,  (8) 

where e0 e( ) ( , )E t E t t . The equality (8) is deduced in 

the assumption that electrons do not outrun one another, 

and so, e ( , )z t   is negative and ( , )n z t  is bounded 

positive, in connection with (6), anywhere in the gap.  

For 1,2,3,m  , let us define the functions 

1

0
( ) ( 1) exp( ) ( ) !

mm k

m k
e x x x k




     
  . For them the 
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equalities 
1( ) ( )x m me x e x  , 

1( ) exp( )xe x x   , and 

(0) 0me   take place. The integration of (4) and (3), 

with the field strength from (8), gives the equalities  

( )

e e0

( ) 2

2

( , ) ( )

( )

t
t

t

v t d e E

e q e t

 



 

  

  



 

  

  


,  

1

e 1 e0

1 3

1 3

( , ) ( ) ( )

( ) ( )

t

z t d e t E

e t q e t


    

     



 

   

   


.  (9) 

For the electron, which goes out from the gap at time 

t , let us denote by ( )T t  the time during which it moves 

through the gap. That is, this electron has come in the 

gap at the time ( )t T t  and the equality holds. 

e ( ( ), ) 1z t T t t  .   (10) 

At the given time instant t  the gap is filled with 

electrons, which came into the gap after the time instant 

( )t T t , and so, as the entrance current density and the 

gap width are unit, the dimensionless electron density 

averaged over the gap is equal to ( )T t . If the applied 

voltage value ( )V t  is given then the condition should 

be imposed. 
( )

e e( , ) ( , ) ( )
t T t

t
d E t z t V t  



   .  (11) 

From (10) and (11) with substitution of (8) and (9) 

one can get the equations  
( )

1

1 e0
0

1 3

1 3

( ) ( )

( ( )) ( ( )) 1

T t

d e E t

e T t q e T t

  

   



 

  

  


,  (12) 

2 4

e0 4

2

2

( )
1

1 e0
0

( ) ( ) ( ( ))

[ ( ) ( ( ))]

( )[ ( ) ] ( )
T t

E t V t q e T t

q T t e T t

q d e T t E t

 

 

   







   

  

   .  (13) 

Also, substitution of (8) to (11) and integration by 

parts with taking into account of (10) gives the equality  

0
( )

( ) [1 ( , )] ( )
t

e e
t T t

E t q d z t V t 


    .  (14) 

The flow may be stationary under stationary external 

conditions. If the gap is short-circuited ( ( ) 0V t  ), and 

if the quantities 
e0E  and T  are independent on t  then 

the equations (12) and (13) are reduced to the equalities  
2 3

e0 2 3 1( ) ( ) ( )E e T qe T e T        ,  (15) 

3

e0 3

2 2 2

2 4

[ ( )]

[ ( )] ( )

E qe T

q T e T q e T

  

   

 

      (16) 

(the last equality is written in [6] with the incorrect last 

sign). Excluding e0E  from (15) and (16), one can obtain 

the equality  
2 4 2

3 2 4

2 2

2 2

3 1

1

[ ( ) ( ) ( )]

{ ( )[ ( )]

( )[ ( ) 2 ]}

[ ( )] 0,

q e T e T e T

q e T T e T

e T e T

e T

   

   

  

  





 

  

  

      (17) 

which gives q  for the given   and T . If   is fixed 

and q  and 
e0E  are connected through the equalities 

(15), (16) then the derivatives of q  and 
e0E  with re-

spect to T  are connected by the equalities  

2 3

2 e0 3 e1( ) ( )T Te T E e T q v        , (18) 

3

3 e0[ ( ) 1]q T TC q q e T E     ,   (19) 

in which 4

4 e0( )qC q e T E q    and 
e1v  is the sta-

tionary value of the exit velocity 
e ( ( ), )v t T t t .  

The stationary mode may be unstable. Let us consid-

er development of small perturbation caused by the 

short-time non-zero applied voltage ( )V t . Denoting the 

perturbations with prime, from (12) and (13), in linear 

approximation, one can obtain the equations  

1

e1 1 e0
0

( ) ( ) ( ) ( )
T

T t v d e E t      ,  (20) 

e0

1

1 e0
0

( ) ( )

( )( ) ( )
T

E t V t

q d e T E t    

  

   .  (21) 

Assuming absence of perturbations at 0t  , apply-

ing Laplace transformation to the equations (20) and 

(21), denoting the transforms with tilde, as in the exam-

ple 
0

( ) '( )tf dte f t


  , and defining the functions  

1 1

2 2

1 1

( , ) ( )

( ) ( ) ( )

EF b x bx b x

b x e b x x e x

 

 

  

    ,  

1 1 1

1 1( , ) ( ) [ ( ) ( )]x

TF b x b x x e x e b e b      ,  

2 1( ) ( , ) 1ED qT F T T     ,  

one can obtain the equations  
1

e0 ( ) [ ( )] ( )E D V   , 

1 2

e1 e0( ) ( , ) ( )TT v T F T T E    .  

The equation for the increment   of self-consistent 

linear perturbation development has the form  

( ) 0D   .   (22) 

Instability of stationary state is characterized by the 

inequality Re( ) 0  . If   is fixed and q  and   are 

connected through the equation (22) then for the deriva-

tives with respect to T  one gets the equality  
1

2

1

1

2

( , ) ( , )

2 ( , ) ( , )

( , ) 0,

E T E T

E E

E

TF T T q F T T q

T F T T F T T

F T T

    

    

  





   

  

    (23) 

where 1 2 1 2( , ) ( ) ( , )Ej j EF x x x F x x    ( 1,2j  ).  

In the case of small value of instability increment, 

the initial evolution of perturbation is slow. For the sta-

tionary state, in which 0T q  , the equations (18), (19) 

are reduced to the form 2

2 e0 e1( ) Te T E v    , 

3

3 e0[ ( ) 1] 0Tq e T E      and give 
e0 0T E  ,  

3

3( ) 1q e T   .    (24) 

Then the equation (22) has the root 0  , and for it, 

from (23) it follows 0T b   , where 

1 2

3 4 2[ ( ) 2 ( )] ( )b Te T e T e T       . Also, with use 

of (24) one can get the equality  

3 4 2 3[ ( ) ( )] ( ) ( )Te T e T e T e T       .  (25) 

Let us denote 
cq , 

cT , and 
cE  the values of q , T , 

and 
e0E  in this stationary critical state of indifferent 

equilibrium. For the given   they may be found from 

(25), (24), and (15). For the states near to this state one 
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gets 1 2

c c e1 c(2 ) ( )qq q C q v T T   , 
c( )b T T   , 

e0 c EE E a  , where 2

c e1 2 c( ) ( )Ea T T v e T    and 

the values of 
qC , 

e1v , and b  should be taken for the 

critical state. The quantity 
Ea  is negative for the stable 

states and positive for the unstable ones. Let 
0 ( )eE t  and 

( )T t  be the differences of 
0 ( )eE t  and ( )T t  with their 

stationary values. As the case of slow time evolution is 

considered, the integrals in (12) and (13) may be esti-

mated with use of the approximate equality 

0 0 0( ) ( ) ( )e e t eE t E t E t     . From (14) with 

( ) 0V t  , assuming that (10) is kept, taking into account 

the summands up to the products and squares of pertur-

bations, and denoting  

0 0( ) (2 | |) | |e EE t E t a ,  (26) 

one comes to the approximate equation  
2

0 0 0( ) 2sign( ) ( ) ( )t EE t a E t E t   . 

In the cases 0Ea   its solution has the form  

1

0 0 0 0( ) 2 (0){ (0) [2 (0)]exp( 2 )}E t E E E t    . 

It corresponds to one obtained in [7] for the case 0  .  

2. STATIONARY STATES AND EVOLUTION 

OF PERTURBATIONS  

The characteristics of the electron flow are essential-

ly dependent on the braking coefficient   value. The 

transitions between one-stream and two-stream modes 

are controlled by the parameter q  value. In the case 

0   (studied in [2]), for 8 9q   the flow is one-

stream with symmetric distribution of electron density, 

velocity, field strength and potential with respect to the 

middle of the gap. If the parameter q  increases (for 

example, with aid of entrance electron current slow in-

crease), but remains less than 16 9  then one-stream 

mode remains stable. If q  becomes greater than 16 9 , 

then the stationary one-stream mode disappears through 

the following instability: the increase of the electron 

charge in the gap decelerates electrons more and leads 

to the further charge increase. As a result, inside the 

gap, virtual cathode (the point with zero field strength 

and zero electron velocity) is formed, and some part of 

electron flow is rejected from it. If the parameter q  

decreases after formation of virtual cathode then for 

(8 9,16 9)q  the flow mode remains two-stream. And 

only if q  becomes less than 8 9  then two-stream mode 

disappears, and the surplus of space charge goes away 

from the gap and forms the current pulse.  

If 0   then the distributions of the electron ve-

locity and density, field strength and potential is non-

symmetric with respect to the middle of the gap for any 

q  value. In particular, the point of zero field strength is 

shifted downstream. Such its position follows from the 

stationary mode equations: 1nv  , zv v E v    , 

z E qn   , and z E    , where   is potential. 

From them, it follows 2( 2)z v v   , 

2( 2) zE E E E q v       , and 1z E   . Let 

sz  be the coordinate of the zero strength point, let the 

points z  and z  be connected by the relationships 

sz z z    and ( ) ( )z z   , and let the lower in-

dexes   and   will be used for the values of the quan-

tities in the points z  and z , respectively. Integration 

of the equality 2( 2)z v v    from z  to z  gives 

the inequalities 2 2v v   and 0v v   , and then the 

inequalities 2 2( ) ( ) 0E E        hold. Their integra-

tion yields 2 2E E  , 0 E E    , and as 

1z E   , one gets 0 ( ) ( )z z        , 

s s0 z z z z     . Taking 0z  , 1z   leads to 

s1 2 1z  .  

In the Fig. 1, the correspondence between the value 

of dimensionless velocity in the point of zero field 

strength, 
sv , and the value of parameter q  is shown for 

the different braking coefficient   values. The curves 

with greater   in the interval (0,1)   give smaller q  

values for the same 
sv  values, as both the space charge 

field and the braking force decelerate electrons.  

0,0 0,5 1,0
0

1

v
s

q

 
Fig. 1. Dimensionless entrance current q  versus 

the flow velocity in the point of zero field strength 
sv ,  

for the different values of braking coefficient  :  

0 (upper curve), 0.5, 0.8, 0.95, 1.05, 1.2, and 1.30685  

If 1   then the stationary modes with too small q  

values are impossible, as without aid of the space charge 

field, under the action of the braking force only, accord-

ing to the equation 
zv v v   , electron has to stop at 

the point 1z  , which is situated inside the gap (as 

1  ), and such stopping cannot take place in a sta-

tionary mode. The smallest q  value corresponds to zero 

value of 
sv .  

For any  , the point of q  maximum corresponds to 

zero increment and divides the curve on the parts corre-

sponding to stable and unstable stationary modes. The 

parts of curves, which go out from the maximum to the 

left, and come to the line s 0v  , correspond to the un-

stable modes. The parts of curves, which first go out 

from the maximum to the right, and eventually come to 
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the line 0q   (if (0,1)  ) or to the line 
s 0v   (if 

1  ), correspond to the stable stationary modes.  

But at some   value (near to 1.30685) the point of 

q  maximum (with q  value near to 4.8710


) comes to 

the line 
s 0v   and all one-stream modes possible for 

this and greater   values are stable. For such   values 

the curve on the plot q  versus 
sv  gives two values of q  

for 
s 0v  , and for any q  between them there is one 

value of 
sv . But if   becomes equal to some another 

number (near to 1.36111) then both points of the curve 

at 
s 0v   meet each other at q  near to 1.3310


, and for 

the greater   values one-stream modes are impossible.  

At the large q  values the cause of impossibility of 

one-stream mode existence is too large decelerating 

force of the space charge field in the part of the gap 

nearer to entrance. At the small q  values and 1  , the 

cause of impossibility of one-stream mode existence is 

insufficiently large accelerating force of the space 

charge field in the part of the gap nearer to exit, so that 

such force cannot overcome the braking force and it is 

incapable to push all the flow through this part of the 

gap. In the two-stream mode only the part of input flow 

passes the whole gap, and the electrostatic field may be 

capable to push some part of input flow through the 

whole gap if the space charge of the rejected part of 

flow is large enough.  

0 4 8
0,0

0,4

0,8

1,2

1,6

T

q

 
Fig. 2. Dimensionless entrance current q  versus 

the time T  of electron motion inside the gap,  

for the different   values:  

0 (left curve), 0.5, 0.796812, 0.95, 1.05, and 1.2  

In the Fig. 2 the connection between the dimension-

less entrance current q  and the time T  of electron mo-

tion inside the gap is drawn with the solid curves corre-

sponding to the different fixed   values. As it is men-

tioned above, the dimensionless electron density aver-

aged over the gap is equal to T , and so, the difference 

between T  values for two intersections of a solid curve 

with a line of constant q  corresponds to the charge sur-

plus, which is removing from the gap during the transi-

tion from the unstable stationary state to the stable one. 

The dash curve connects the points with infinite T q  on 

the different solid curves. Such points correspond to 

zero determinant of the linear equation system (18), (19) 

and zero discriminant of the square equation (17). The 

ends of the solid and dash curves at 0q   are related to 

the limit 0sv  . The dash curve comes to the line 

0q   at 2T   and the corresponding   is the root of 

the equation 1 exp( 2 )     (approximately, 

0.796812).  

The transitions from unstable to stable stationary 

state corresponding to the same entrance current are 

accompanied with the removing of the charge surplus 

from the gap [4]. The calculations for development of 

perturbations after short-time small voltage application 

were carried out. At the linear stage the perturbations 

grow as exponents and the process characteristics for 

the same sign of the applied voltage coincide after the 

corresponding time shift. At the nonlinear stage the pro-

cess development character depends on the sign of the 

applied voltage. Namely, if the applied field accelerates 

electrons then the transition may go as one-stream, but 

if the initial perturbation is decelerating then one-stream 

mode is destroyed.  
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Fig. 3. Reduced strength perturbation at entrance ver-

sus reduced time in transition from unstable to stable 

stationary state after accelerating pulse application 
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Fig. 4. Dependences of reciprocal density on coordinate 

at the stage of one-stream flow after application  

of decelerating pulse  

In the Fig. 3 it is shown the dependence of the re-

duced strength perturbation at entrance on the reduced 

time in transition from unstable to stable stationary state 

after accelerating pulse application. The reduction is 

made with linear transformations of time and strength 

similar to ones used in the definition of the function 

0 ( )E t  (26) in the case 0Ea  . The curves correspond to 

the following values of (  , q ): (0, 0.889), (0.6, 0.449), 
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(0, 1.333), (0.6, 0.61), (1.2, 0.1007), (1.2, 0.1075), 

(0, 1.776), (0.6, 0.786) (from left to right). Relevant 

instability increments are approximately equal to 1.099, 

0.602, 0.894, 0.502, 0.0991, 0.0738, 0.0715, and 

0.0297, respectively. The right curves are very near to 

one corresponding to 
0 ( )E t  dependence. Comparatively 

large decrease rates of the left curves are connected with 

large perturbation dumping decrements in the corre-

sponding stable states.  

In the Fig. 4 the dependences of reciprocal density 

1 ( , )n z t  on coordinate z  at the stage of perturbation 

development after application of decelerating pulse 

when the flow remains one-stream are shown. There are 

taken the following (  , q ) in order of minimums from 

left to right: (0, 1.776), (0, 1.333), (0.6, 0.61), 

(0, 0.889), (0.6, 0.449), (1.2, 0.1007). The pairs 

(0, 1.776) and (0.6, 0.61) are presented by series, in 

which the curves with the lowest minimum correspond, 

respectively, to time lags 0.1 and 0.2 before the one-

stream flow violation, and for each next curve this lag is 

doubled, except the last curves in series (7
th

 and 6
th

, 

respectively), which correspond to the unstable station-

ary states. For the both series, the point of maximum 

density moves against the flow. The other pairs are pre-

sented by the distributions just before the one-stream 

flow violation. For greater   and smaller q  the point 

of the violation is nearer to exit.  

CONCLUSIONS 

The electron flow in the short-circuited gap is con-

sidered with taking into account of the braking force 

proportional to velocity. Explicit solution of the equa-

tions is obtained with use of Lagrange variables, which 

gives comparatively simple expression for electric field, 

at the stage of the process, when electrons do not outrun 

one another, though the distance between them may be 

changed. Appearing of braking force and increase of 

braking coefficient leads to changes of the input current 

intervals, in which stationary states are stable or unsta-

ble. For small braking coefficient, the flow with suffi-

ciently small input current is stable, in some interval of 

input current the stable and unstable one-stream flows 

may exist, and for sufficiently large input current one-

stream flow is impossible. Also, the one-stream flow is 

impossible in the case when input current is very small 

and the braking coefficient is so large, that in absence of 

the electric forces electron stops inside the gap. But for 

small input current values sufficient for one-stream flow 

existence the flow is stable. The unstable one-stream 

flows disappear at some sufficiently large value of brak-

ing coefficient. And for the braking coefficient values 

greater then some still greater threshold value, one-

stream flow is impossible.  

The numerical simulations for the case when two 

stationary one-stream modes correspond to the same 

entrance current value and the unstable mode is per-

turbed by the short-time small voltage application show 

that the transition from the unstable to stable mode may 

go in the frames of one-stream flow if the voltage direc-

tion corresponds to electron acceleration. The decelerat-

ing direction leads to appearance of two-stream flow.  
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ДИНАМИКА ПОТОКА ЭЛЕКТРОНОВ В ПРОМЕЖУТКЕ С СОПРОТИВЛЕНИЕМ 

А. Пащенко, В. Остроушко 

Рассмотрена эволюция потока электронов в короткозамкнутом промежутке с учетом тормозящей силы, 

пропорциональной скорости. Выполнен линейный анализ устойчивости стационарных состояний. Для со-

стояний с малым инкрементом неустойчивости рассмотрена нелинейная эволюция возмущения. Выполнено 

численное моделирование переходов от неустойчивого состояния к устойчивому с удалением избыточного 

заряда из промежутка.  

ДИНАМІКА ПОТОКУ ЕЛЕКТРОНІВ У ПРОМІЖКУ З ОПОРОМ 

А. Пащенко, В. Остроушко 

Розглянуто еволюцію потоку електронів у короткозамкненому проміжку з урахуванням гальмівної сили, 

пропорційної до швидкості. Виконано лінійний аналіз стійкості стаціонарних станів. Для станів з малим ін-

крементом нестійкості розглянуто нелінійну еволюцію збурення. Виконано числове моделювання переходів 

від нестійкого стану до стійкого з видаленням надлишкового заряду з проміжку.  


