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CONTACT STRENGTH OF TWO ELASTIC HALF-SPACES
WITH A CIRCULAR RECESS
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The paper presents the analysis of the stress-and-strain state of a contacting couple consis-
ting of two isotropic semi-infinite solids one of which has a small surface recess. Based on
the classical criteria of fracture, namely the criterion of maximal principle stresses and cri-
terion of maximal shear stresses, the regions of the most possible crack initial and plastic
zones formation have been found. The brittle cracking can be induced by both tensile and
compressive stresses arising at the interface. For some shape of the recess, considered as
an example, the analysis reveals that the fracture starts from the contacting solids boundary.
Key words: contact problem, conforming boundaries, local fault of contact, contact
strength, criterion of maximal principle stresses, criterion of maximal shear stresses.

The paper is a continuation of our previous study [1] concerning the problem of
frictionless contact of two compressed elastic half-spaces provided one of them
possesses a small circular surface recess. The aim of this work is to examine the
behavior of the contacting solids from the point of view of contact fracture mechanics.
Strength analysis is carried out by using the closed-form solution obtained in [1] for a
special form of the recess and by employing some classical fracture criteria.

The knowledge of the solutions (especially analytical ones) to contact problems
serves as a ground for the investigation of strength, durability and fatigue of contacting
couples. The majority of works of contacting joints on strength utilizes the sol utions
obtained within the framework of a theory of Hertzian contact. But these solutions are
useful only for contact of solids with mismatching surfaces (see a classification by
Johnson [2]). Extensive literature on the subject is discussed in the book by Kolesnikov
and Morozov [3]. On the contrary, the contact interaction of bodies with conformable
surfaces has been investigated much less. The contact strength of solids with recesses
has been analyzed in [4]. Approaches employing this kind of interaction take into
account the existence of imperfections (recesses, pits, protrusions, concavities, etc.) of
surfaces related to their small deviations from aflat onto local parts. Such perturbations
lead to the local absence of contact, so the intercontact gaps are created. The problem
under study belongs to the class of non-classical contact problems involving contact
interactions of solids with conformed surfaces.

Description of the problem. This paper dedls with an axisymmetric problem of
eagtic contact of two different isotropic dastic semi-infinite solids one of which (denoted
by 1, see Fig. 1) possesses alocal surface recess occupying a circular region of radius b. In
the cylindrical co-ordinate system, introduced in such away asit isshownin Fig. 1, the
profile of the surface recessis described by agiven function f(r).

The solids are pressed to each other by normal uniform forces p at infinity. Since
the initial relieves of the surfaces are mismatched, their contact isimperfect and during
the interaction an intersurface gap is formed. It is assumed that the region of the gap is
circular of an unknown a priori radius a.
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A method to solve the above problem
was presented in [1]. It represents the dis-
placements and stresses in the contacting
coupl e through the unknown function of the

interface gap height h(r) = f (r) +u{ (r,0) -
-u$(r,0), r <a. It was shown that the per-

turbed problem with the following boundary
conditions

'I . .

| z=+¥: s,0=0,s,0=0, )
t ] 1 to “
z=0: sW=0, o<r<y¥, )
Fig. 1. Contact of two half-spaces
with allowance for intersurface gap. s,W=s,?  o<r<y, (3)
| —intersurface gap;

Il —initial relief of boundaries. s, @ =p, 0<r<a, (%)
u, - u,@ =f(r), a<r<y¥, (5)

can be reduced to the dual integral eguations for the Hankel transform of the gap height
¥

H(X)= ¢y h(r)Jo(xr)dr -
0

¥ ¥
@<2H(X)Jo(xr)dx:—ﬁp+ @sz(x)Jo(xr)dx, 0<r<a, (6)
0 0
¥
OHX) Jo(xr)dx =0, a<r<¥. (7
0
¥
Notation here is the same as in [1]. In particular, F(x) = ¢y f(r)Jo(xr)dr, J (3 are
0
the Bessel functions of the first kind of order k, m =m/(1- n;), M = nTlerr;Z , and

m, n; stand for shear modulus and Poisson’ s ratio of the body denoted by i =1,2.

The solution to equations (6)—(7) can be determined from the sequence of the
relations:
a

H(x) =x"tep(r)sinxrdr , (8)
0
2"
o) =2 o)/ r?-r2ar, ©)
Po
where — P
g(r) = V+0>< F(X) Jo(xr)dx.
0
Now we recall the formulas for non-vanishing components of stress tensor:
sOr,2) ¥
212309 = 7 0x3(F(X) - H(x))e X33, (xr)dx, (10)
0 1
0) ¥
S22 = 02 [(1+x] 2D(F () - H()]e A3p(xr)dx, (1)
0

W (.2 .2 = [ x12D(FE) - H()]e 0, e
0
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- Ex[(l— 2n; - x|z)(F(X) - H(x)]e X'Z'@dx, (12)
0
0)

Saa(h2) _ 2n; i‘)xz(F(x) - H(x))e g (xr)dx +

M 0 (13)

¥x - X|z| Jl(XI’)

+0x[(L- 2n; - x| z(F(x)- H(xX)]e de.
0

To complete the problem solution, it is necessary to determine the radius of the
gap a from the condition of smooth closing of the gap [1]:

o(a) =0. 14
Now it is further assumed that the shape of theinitial recessisgiven as
f(r)=hy@- r2/b?)*2 (O£r£b, hy=f(0)=h). (15)
For this case, the Hankel transform F(x) of f(r) is[5]
F(x) = hyb?2%¥2G(5/ 2)(xb)” ®'2) 35, (xb) . (16)
Then from (9) it is found that
o(r)=-2/p[p/M - 3phy/4b(- r?/b?)]r (17)
and equation (14) yields the following val ue of the radius of the gap a:
a=b,/1- 4pb/(3pM hy) . (18)

From this expression we can easily find the threshold value of external pressure
for which the gap is completely closed (i.e. 8=0): Pyresnoid = M 3phy/4b.

Moreover, using the results expressed by equations (16)—(18) and (8) we can de-
termine the stress distribution given by (10)—(13). After calculating the corresponding
integrals [5, 6] the complete stress field in elementary functions is obtained in the follo-
wing form:

()
# = z% ( 3b2Int1(r, z,b) +9Int,(r,zb) +3a2Int1(r,z,a) - 9Int, (r, z, a)) , (19)

s(ziz)(r,z) _
M
= p+%(—3b2Int3(r,z,b)+9Int4(r,z,b)+z(—3b2Int5(r,z,b)+9Int6(r,z,b))+ (20)

+3a2Int3(r,z,a)— 9Int4(r,z,a)+z(3a2Int5(r,z,a)— 9Int6(r,z,a))),

()
W:%(a- 2ni)(- 3b2Int7(r,z,b)+9Int8(r,z,b))+
+z(- 3b2Int9(r,z,b)+9Int10(r,z,b))+(1- 2ni)(3a2Int7(r,z,a)- 9Int8(r,z,a))+
+z(3a2Int9(r,z,a)- 9Intlo(r,z,a)))+%(- 3b2Int3(r,z,b)+9Int4(r,z,b)+ (21)
+z(- 3b2Int5(r,z,b)+9Int6(r,z,b))+3a2Int3(r,z,a)- 9Int,(r,za)+

+z(3a2|nt5(r,z,a)- 9Int6(r,z,a))),
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0
ﬁﬂl\? :%((1- 2ni)(- 3b2Int; (r,z,b) +9Int8(r,z,b))+

+z(- 3b2|nt9(r,2,b)+9|nt10(r!2,b))+(1' 2ni)(3a2|nt7(r,z,a)- 9Int8(r,z,a))+ 22)

+z(3a2|ntg(r,2,a)' 9|ntlo(r,z,a)))+

+2n, b&( 3b2Int3(r z,b) +9Int,(r,z, b)+3a2Int3(r z,a) - 9Int,(r,z a))

where Int, (r,z,b) (k =1,10) stands for the integrals given by formulas:

¥
Inty(r,z,b) = e~ sin(xb) Iy (xr)dx =

0
bcos —arctgaeidb— zsnaaarctgaeiw
&2 &2 - b2 +12 gy €2 &2 - b2 +12 gy
r (22 - b2 +12)2 + (220)°
0, z=0, reEb;

———, z=0,r>b;
rr2 - b?

¥
Inty(r,2,b) = ¢ _xz SiN(xb) - xbcos(xb)

0

Jy(xr)dx =

ae 6
arcsi 2b =zl 0

g\/(b+r) +z +\/(b- r? +z°
z=0, TrEb;

Int(r,z,b) = O e SN(xD)

I\)|'O

O

Q

i
i
i
i
i
———Jp(xr)dx=§
i
i
Z, z=0,r>b;

i Sf

¥ e Sin(xb) - xbcos(xb)

Int,(r,zb)= Oe Jo(xr)dx =
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ib
:.:6)Int3(r,z,b)db, yAN0

-I.o
1 2 2
::,p(Zb ! ), z=0, rE£b;
i 8
:1 E)\/rz— +(2b2—r )arcsmaEbo_o, z=0, r>b;
L 48 I og
t
¥
Ints(r, z,b) = g™ sin(xb) Jo(xr)dx =
0
: 2bz 210
:\/8\/(b+r) + 2 +(b- 1)2+ 2 bz\/(b+r) +22\(b- 12+ 2
i
: 1 z=0, r<b;
i b? - r?
i
%O, z=0, r>b;

ib
i ¢pints(r,zb)db, z! O

¥ io
Intg(r,z,b) = Oexzsm(xb) XbCOS(Xb)J o(xr)dx = :
i
ivb?-r?, z=0, reEb;
{o, z=0, r>b
It Zb)_% Xzsm(xb) (x0)
7 ¢ 2 .

b+ 2\/_9\/\/(2 B2 +12)2 44202 - (- WP +12) +
e

+b\/\/(22- b2+l'2)2+422b2 +(22- b2+r2)92+
(27}

gfb+\N(z b2 +12)2 + 42202 - (2 - b2+r2)?
§\/§z+\/\/(z b2+r) +422b2+(z b? +r? )ﬂ

+= arctg

E, z=0, r<b;
4

z=0, r>b;

_xz SN(xb) - xbcos(xb) Jq(xr) dx
r

¥
Intg(r,z,b) = Oe
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ib
i cpint;(r,zb)db, zt 0;

16
I 2 2
—}—p(ﬂ'b ! ), z=0, rEb;
L2
:ia%szﬂ Wr2- b2 +(4b%r? - r)arcsm 2., z=0,r>b;
j 161 2 8

Intg(r,2,b) = oeXzsm(xb) Jl(rxr)d

iz?’ ﬁ\/\/(zz- b? +12)2 + 42207 - (2 - b2+r2)g, 21 0,

i
I
I
=¥ 1 ,  2=0, r<b
i b++/b? - r2
I'b
T—, z=0, r>b;
fr2
Intyo(r,z,b) = Oe xz Sin(xb) - );bcos(xb) Jl(rxr) dx
X

0

ib
Plntg(r,zb)db, z1 O

|
T
-I.O
:H;?bz-r%b\/bz-rzg. 2=0, rEb,
.|.3 ']
|
|

Contact strength. The obtained closed-form solution can be useful for analyzing
the assessment of the contacting couple strength. To estimate the strength of a system
of two mated elastic half-spaces allowing for unevenness of their boundaries, let us use
the classical criteria of fracture: the criterion of maximal principle stresses and the
criterion of maximal shear stresses[7].

Fig. 2. Principle stress, 10° %57 . | — compressive stress zone; |1 —tensile stress zone.
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Fig. 3. Principle stress, 10° 5.

At first the stress fields in contacting bodies are analyzed. Without loss of gene-
rality the state of solid 2, regarding solid 1 as a counterpart in the contacting couple is
studied. Figs. 24 represent the distributions of the principle stresses sy, S, S3(S1> S2>
> s3). The numerical analysis has been carried out for various parameters, accounting
different values of external load, however the given figures show the results for the
threshold external pressure piesnala- It is motivated by the distinguished features of the
stress state in this case. All the calculations were performed for the dimensionless
variables: a=a/b, T =r/b, Z=z/b, p=p/m, S=s/M.
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Fig. 4. Principle stress, 10° 3.

It is worth noting from Fig. 2 that
there are zones within the contacting
couple under compression where the stress
s, becomes tensile. This effect is caused
by the existence of the local geometric
excitation in one of the surfaces of conju-
gate solids. The stress s, is negligibly small
in the whole solid except of the defect
vicinity. The principle stress s3 is com-
pressive within the whole body. By obser- 4 |
ving principle stresses in Figs. 24 it is 0 0.5 1 1.5
possible to see that all quantities s4, S, S3
reach their extreme values at the contact
interface z= 0. That is why let us turn to

2
Fig. 5. Normal contact stress distribution
S, at the contact interface.
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a complete analysis of stresses on this plane.

The maximal compressive stresses. Fig. 5 shows the distributions of contact nor-
mal stresses at the boundary z = O for five cases of the radius of the gap. The contact
pressure reaches its maximum exactly at 7 =1, i.e. r =b. According to the criteria of
maximal principle stresses it is concluded that cracking of materials caused by com-
pressive stresses initiates in the vicinity of the recess edge.

The maximal tensile stresses. Fig. 6 demonstrates distributions of radial s,, and

circular Sy, stresses at the contact interface. It is seen that the stresses s, and s

are: (i) tensile, (ii) constant and (iii) equal to each other within the gap faces, deter-
mined using the applied pressure and mechanical properties of the solids as follows:

sﬂ)(r,O):sg()l(r,O) =(1+2n,)p/2,0<r<a.

2 I
0 (K5 I I3 F Y 3 1 1.3

1
g
r-#

=il

Fig. 6. Distribution of stresses 5, and Sq at the contact interface.

Thus, the cracking can be initiated by tensile stresses. The most dangerous region
is the gap. Moreover, the possibilities of cracks initiating along radial and circular
directions are equal.

The maximal shear stresses. The distribution of maximal shear stress t 4 .

defined as t . =(S1- S3)/2 ispresentedin Fig. 7. As one can see, the extreme value

arises in the interface plane z=0 at T =1. So, according to the criterion of maximal
shear stresses, which usually is used for assessment of plastic zones initiating, the most
dangerous zone is the vicinity of the recess edge.
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Fig. 7. Maximal shear stress, 10° K nax -
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CONCLUSIONS

The found closed-form solution to the contact problem serves as a theoretical
basis for the analysis of strength of the contacting couple with a small surface recess.
The analysis has been carried out by utilizing classical fracture criteria, namely the
criterion of maximal principle stresses and the criterion of maximal shear stresses.

The cracking of the material of the mated solids can be caused both by compres-
sive and tensile stresses. In aformer case the most possibl e region where the cracks can
be initiated is the vicinity of the recess edge. The compressive stresses reach their
extreme value at the contact interface at the edge of the recess. On the other hand, due
to the defect of geometrical surface structure the tensile stresses within the solids arose.
The stresses s, and Sqq, being tensile in the vicinity of the gap, reach their maximum
value at the gap faces, where they are constant and equal to each other. The magnitude
of the maximum tensile stress depends on Poisson’s ratio of the material and is in the
range from 50% to 100% of the applied load at infinity. Two directions of cracking
along theradial and circular co-ordinate lines are equally possible.

According to the criterion of the maximal shear stresses the most possible region
where plastic zones can be initiated is the vicinity of the recess edge.

PE3FOME. TlpoaHaii30BaHO HamnpyKeHO-Ae(hOPMOBAHUM CTaH KOHTaKTHOI HapH 3 JBOX
130TpPONHUX MiBOE3MEXHUX T, OJHE 3 SKUX Ma€ Majly IIagky BUIMKY. Ha mincraBi kiaacuuHMX
KpUTEPiiB pylHYBaHHS, a caMe, KPUTEpil0 MAKCUMAaJIbHUX I'OJOBHUX HAIPYXXEHb Ta KPUTEPIiO
MaKCHMaJIbHUX JOTUYHUX HAIIPYXEHb BU3HAUCHO HAMBIpOTiAHIII 001acTi 3apOKEHHS TPILLMH
Ta 0071aCTi NOSIBU INIACTUYHUX 30H. BCTaHOBIIEHO, 1110 KpUXKE pYHHYBaHHS MoXe OyTH iHiLiHo-
BaHE HaNPYXEHHSIMU PO3TATY, 110 BUHUKAIOTh B TiJ1aX BHACIJOK IIOBEPXHEBOI HEOIHOPIHOCT,
a TaKOX BHACIIJIOK HAIIPYXKEHb CTUCKY. 1 po3riisiHyTOl y poOoTi (hopMU BUIMKU MaKCUMAaJIbHI
3HAQUEHHS 'OJIOBHUX HANpPY)KEHb Ta MAKCUMAJIbHUX JOTUYHUX HANpPYKEHb JIOCSATalOThCs Ha IIO-
BEPXHi KOHTaKTY, 1110 CBIAYUTH PO OBEPXHEBE PyHHYBaHHS Ti.

PE3FOME. 1lpoaHanu3upoBaH HaNpsHKEHHO-IePOpMUPYEMOE COCTOSIHME KOHTAKTHOI mHa-
PBI U3 ABYX U30TPOINHBIX NOTYOECKOHEUHBIX TEN, OJHO U3 KOTOPBIX UMEET JIOKAIBHYIO ITIaJIKyI0
BbIEMKY. Ha OCHOBaHMHU KJIacCHYECKHMX KPUTEPUEB pa3pyLICHHs, a UMEHHO, KPUTEPUM MaKCH-
MaJIbHBIX TJIaBHBIX HANPSDKEHMH M MaKCHMAaJIbHBIX KacaTelIbHBIX HAIPSHKEHUH, ONpENeseHbI
Haubosee BEpOSITHbIE O0JIACTH 3apOXICHUS TPEIUH U O0NaCTH MOSABJIECHUS IUIACTUYHBIX 30H.
YCTaHOBIIEHO, YTO XPYIKOE Pa3pYLICHUE MOXET ObITh BBI3BAHO KaK CKUMAIOLIMMM HampsbKe-
HUSMH, TaK M PacTATMBAIOIIMMM HaNpsDKEHUSIMHU, KOTOPbIE BO3HHUKAIOT BCIEICTBUE JedekTa
reOMETPUYECKONH MTOBEPXHOCTHOH CTPYKTYyphI. [y paccMOTpeHHOH B paboTe GopMbl BEIEMKHU
MaKCHMaJIbHbIE 3HAYEHUS ITIaBHBIX HAIPSOHKEHUI M MAaKCUMAJIbHBIX KacaTEJIbHBIX HAIPsKEHUN
JIOCTUTaloTCsl Ha MOBEPXHOCTH KOHTAKTa, YTO CBUAETEILCTBYET O MPOLECCE NMOBEPXHOCTHOIO
paspylIeHus TEIl.
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