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For the electron flow in the short-circuited diode filled with gas, with taking into account the braking force proportional

to velocity, the stationary modes and their linear perturbations are considered. The equation for increment of

perturbation amplitude increase is obtained. The ranges of braking coefficient values are found, in which existence

of stable or unstable stationary modes is possible.

PACS: 41.85.Ar

1. INTRODUCTION

In many types of electron sources, there are parts
in which an electron multiplication is practically ab-
sent and the electron motion is mainly determined
by space charge, similarly to one in diode. Electron
flow stability in the short-circuited diode was consid-
ered in the paper [1]. In it, the equation for the in-
crements of perturbation development was obtained
and the dependence of the increments on the flow pa-
rameters was built. The results of the paper [1] also
were presented in the monograph [2]. An external
field accelerating the electrons, as a rule, strengthens
the flow stability [3]. In the model considered in the
paper [1], electron motion is completely determined
with electrostatic forces. In the present work, colli-
sions are taken into account through effective braking
force proportional to electron velocity. In the section
2, the considered model is described and the equa-
tions for the parameters of stationary modes and for
the increments of perturbation development are ob-
tained. In the section 3, the dependence of the main
instability increment on the parameters of stationary
mode is studied.

2. MODEL AND SOLUTION

Let us consider one-dimensional electron flow un-
der the electrostatic forces and the braking force pro-
portional to electron velocity with the ratio 3y of rel-
evant acceleration to velocity (8y > 0). To write the
dimensionless equations, let us denote by ey the ele-
mentary charge (eg > 0), by myg electron mass, by &
electric constant, by jo current density in stationary
mode and let us take the following units: the diode
gap width zg for length, the entrance velocity vy for
velocity, the ratios to = z9/vo, no = jo/(eovo), and
Eo = (mov3)/(egzo) for time, electron density, and
field strength, respectively. It is assumed that z =0
for entrance, so, z = 1 for exit. The equations in the
dimensionless Euler variables have the form

Ogn + 0, (nv) =0, (1)

0w +v0,v = —FE — Bo,

aZE1 = —qn, (2)

where (= (B8oz0)/v0, q= e%nozg(somov2)_1, the

quantities v, n, and E are dependent on the vari-
ables (z,t), 0 is partial derivative, its index indicates
the variable, with respect to which the derivative is
taken. Parameter g is proportional to the entrance
electron current. An operation mode of the diode
may be effectively controlled by its value. It is ex-
pedient to use Lagrange variables to simplify the
equations solving. Let z.(7,t) and ve(7,t) are co-
ordinate and velocity at the time ¢ of the electron
which has come in gap at the time 7 (7 <t). Let
ne(7,t) and E.(7,t) are electron density and field
strength in the point z = z,(7,t) at the time ¢. It is
assumed that during the considered stage of the pro-
cess all electrons are moving in positive z direction
and z(7,t) monotonously decreases with 7 increase.
So, at this stage, the relative disposition of electrons
in flow is not changed, electrons do not outrun one
another, though the distance between them may be
changed. An electron motion in Lagrange variables
is described with the equations

Ot (neOrze) = 0,
atze = Ve,

Opve = —Ee — P,

in which the quantities z., vs, ne, and F, are de-
pendent on the variables (7,t). The equation (3)
may be obtained from (1) and (4) with taking into
account the equalities

Ot (NeOrze) = (Oen + v9.n)0r 2o+
+n0,v0; 26 = Or20[0en + 0, (nv)],
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in which it is assumed that the partial derivatives
are concerned to the dependence on (7,t) for the
quantities with the index ‘e’ and to the dependence
on (z,t) for the quantities without indexes, and the
equality z = 2z, is held. In the same assumptions,
from (2) and (3), one can get the equalities

0:Fe =0,FE0; 2 = —qne0rze = (6)
= —q[ne(7,t)0r 20 (T, t)]t=r-

From (4) and (6), taking into account that
ze(t,t) =0, ve(t,t) =1, ne(t,t) =1, one can obtain
the equalities

[0r26(7, 1) + ve(T, )]t=7 = Or2e(7,T) = 0,
[0r26(T, 1) t=r = —Vo(T,T) = —1,
O-Ee(1,1) = q. (7)

Integration of (7) gives the equality

Ee(Ta t) = EeO (t) + (T - t)Qa (8)

where Eqo(t) = Eo(t,t). The possibility to obtain
the explicit expression (8) for the field strength is
connected with the considered stage of the process,
at which relative disposition of electrons in flow is
not changed, electrons do not outrun one another,
though the distance between them may be changed.
For m =1,2,3,..., let us define the functions

k=0

em(@) = (~1)™ [e—w _ Zm_l(—m)k/k!} :

The integration of (5) and (4), with the field strength
from (8), gives the equalities

Ve(T, ) *f d§€B(§ Eeo(§)+
+e87=t) 4 g8 2y (Bt — BT),
ze(r,t) = — [LdEpT ey (Bt = BOEo@)+ ()
+B " er (Bt — BT) +af~ 63(515—57)~

For the electron, which goes out from the gap at
time ¢, let us denote by T'(¢) the time during which it
moves through the gap. That is, it has come in the
gap at the time ¢ — T'(t) and the equality

st —T(t),t) =1 (10)

should be held. For the field strength the condition
t—T(t)
/ AT Eo(T,t)0r20(T,1) = =V (1) (11)
t

should be imposed. In it V(¢) is applied voltage.

From (11) and (10) taking into account (8) and (9),
one can get the equations

Eeolt) = —V(t) — ¢?B8~ 4ea(BT(t))+
+q[T(t) — B~2ex(BT(1))]+ (12)
+q [ deB1er (BE)T(t) — €] Euo(t — €),
— [y dep=ter () Euolt — ©)+ (13)

+B e (BT (1)) + qB3es(BT(t)) = 1.

Diode can operate in stationary mode under sta-
tionary external conditions. In the case of short-
circuited diode (V' (t) = 0), for the quantities Fo9 and
T independent on ¢, the equations (12) and (13) give
the equalities

EeoBex(BT) =

= qes(BT) + 1 (BT) — B°,

EoofB[B° — qes(BT)] =
= qB?[B*T — e2(BT)] + q*ea(BT).

Excluding Feg from them, one can obtain the equality

B e3(BT) — ea(BT)es(BT)|+
+qB7*{ea(BT)[B*T — ea(BT)]+
+e3(BT)[er(BT) — 26]}+
+8[8 —e1(BT)] =0

which gives ¢ for the given 8 and T'.

The stationary mode may be unstable. Let us
consider development of small perturbation caused by
the short-time non-zero applied voltage V'(t). Denot-
ing the perturbations with prime, from (12) and (13),
in linear approximation, one can obtain the equations

Eeo(t) + V(1) =

= g5 [T dee (BT - OBt —6), Y

T'(t) = (varB) " [y déer(BE)EL(t—¢€),  (15)

where wve; is the value of exit velocity (that is,
ve(t — T'(t),t)) in the stationary mode. Assuming ab-
sence of perturbations at ¢t < 0, let us apply Laplace
transformation to the equations (14) and (15). De-
noting the_ transforms with tilde, according to the

example f(x = [, dte™"f'(t), and defining the
functions
Fg(b, ) =br 1(b+x) 1+
+(b+a)Per(b+ ) — 2 2ei(2),

Pr(b,z) = (b+2)"!
x[r7ley(x) — e b tey

)],
D(k) = qT*B~ ' Fp(BT,xT) — 1 (16)
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one can obtain the equations

Ee(k) = [D(r)] 7'V (%),
T(k) = v T2 Fp(BT, kT) Eeo(k),

and the equation for the increment x of self-consistent
perturbation development may be written in the form
D(k) = 0. Instability of the stationary mode is char-
acterized by positiveness of real part of the increment.

3. STABLE AND UNSTABLE MODES

In the cases of the braking force presence (5 > 0)
and absence (8 = 0), the characteristics of the short-
circuited diode are essentially different. The transi-
tions between one-stream and two-stream modes is
controlled by the value of the parameter ¢q. In the
case § =0, for ¢ < 8/9, there is one-stream mode,
with symmetric distribution of electron density, ve-
locity, field strength and potential with respect to
the middle of the gap. For small ¢ the difference
between the values of potential in the gap and its
boundary value is small. If ¢ increases, but remains
less than 16/9, then one-stream mode remains stable,
electron velocity in the point of zero field strength
vg remains greater than half of the entrance velocity
(vs > 1/2 in the dimensionless units), and maximum
of electron density (in the same point) remains less
than double density at entrance. If ¢ becomes greater
than 16/9, then the stationary one-stream mode dis-
appears, as the increase of the electron charge in the
gap decelerates electrons more and leads to the fur-
ther charge increase. As a result, inside the gap, vir-
tual cathode (the point with zero field strength and
zero electron velocity) is formed, and some part of
electron flow is rejected from it. But if the param-
eter ¢ is decreased after formation of virtual cath-
ode (for example, due to entrance electron current
decrease) then for ¢€(8/9,16/9) the flow mode re-
mains two-stream. Although existence of the sym-
metric one-stream mode with the minimum velocity
value smaller than half of the entrance velocity does
not contradict to the stationary equations, the linear
analysis of the non-stationary equations carried out
in [1] shows the instability of such mode. When ¢ be-
come less than 8/9 two-stream mode disappears, and
the space charge, the value of which is excessive for
one-stream mode, goes away from the gap and forms
the current pulse. In the Fig.1, the correspondence
between the value of dimensionless velocity vg in the
point of zero field strength and the value of parame-
ter g is shown for the different braking coefficient 3
values. In [1], for 5 =0, it is shown that the points
to right from the curve maximum, with greater vy
values, correspond to the stable one-stream modes,
whereas the points to left correspond to the unstable
ones.

Appearance of braking force makes the distribu-
tions of electron velocity and density, field strength
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and potential non-symmetric with respect to the mid-
dle of the gap for any entrance electron density. In
the Fig.1 the curves with greater § in the interval
B€(0,1) give smaller ¢ values for the same vy val-
ues, as both the space charge field and the braking
force decelerate electrons. Also, in the case 5 > 0 the
arbitrary small 1 — vg values are impossible even for
arbitrary small ¢ values (that is, the velocity in the
point of zero field strength cannot approach the en-
trance velocity value), and the greater the S value,
the smaller the limit value vgy of vg at ¢g—0. For
near to 0, the limit value vsyo of the derivative 0,vs
at g—0 is negative, whereas for 8 near to 1, it is
positive, and for the limit transition {5 < 1,6—1}
one can get vgo—rexp(—1), vsqo—+00. The equality
vsq0 = 0 takes place at 8 near to 0.974589. For the
smaller 3 values at any vs value (from zero to maxi-
mum possible for the given (), there is only one cor-
responding g value, whereas for greater 8 values the
interval of vy values appears (near to the maximum
possible vy value), in which for any vs there are two
values of q.

0 v 1
Fig.1. Dimensionless entrance current q
versus the value vs of flow velocity in the point
of zero field strength, for different values of
braking coefficient B: 0 (upper curve), 0.2, 0.5,
0.8, 1, 1.1, 1.2, 1.30685

If 8 > 1 then the stationary modes with too small
q values are impossible, as without aid of the space
charge field, under the action of the braking force
only, according to the equation vd,v = — v, electron
has to stop at the point z = 1/8, which is situated in-
side the gap (as 8 > 1), and such stopping contradicts
to the mode stationarity. The smallest g value corre-
sponds to zero value of vs. The quantity vs increases
monotonously up to its maximum with increase of ¢
from its minimum value.

Stability or instability of the stationary mode is
determined by negativeness or positiveness of real
part of the increment x, which is the root of the equa-
tion D(k) = 0 with D(x) defined in (16). The results
of study are somewhat similar to ones obtained in [1]
for the case § = 0. In the Fig.1, for 5€(0, 1), the parts
of curves, which go out from the maximum to the left,
and come to the line vy = 0, correspond to the unsta-



ble stationary modes, and the parts of curves, which
go out from the maximum to the right, and come
to the line ¢ = 0, correspond to the stable station-
ary modes. Similarly, in the case when the difference
B — 1 is positive, but sufficiently small, the parts of
curves, which go out from the maximum to the left,
and come to the line vs = 0 with the greater of the
two possible values of g, correspond to the unsta-
ble stationary modes, and the parts of curves, which
first go out from the maximum to the right, but then
turn clockwise and come to the line v = 0 with the
smaller of the two possible values of ¢, correspond to
the stable stationary modes.

It is natural that the point of ¢ maximum on the
curve of correspondence between ¢ and some charac-
teristic of the stationary mode divides the curve on
the parts related to the stable and unstable modes.
For the given 3, the parameter ¢ remains the unique
one in the dimensionless equations, but in the consid-
ered system there are two possible stationary modes
for some values of ¢ and there are characteristic quan-
tities, which are different for the different modes. The
quantity vs is one of them. The stationary distribu-
tions of v, n, and E are the functions of the Euler
variable z and they are dependent on vs as on pa-
rameter. Even for the point of the ¢ maximum on
the curve g versus vg, the derivatives of these func-
tions with respect to vy are not zero ones, whereas
the derivative of ¢ with respect to vs is equal to zero
there. And so, the mentioned derivatives of the func-
tions form the nonzero solution of the linear equations
for the Laplace transforms of the not stationary per-
turbations (dependent on the Euler variable z), which
corresponds to zero increment. That is, the point of
q extremum on the curve ¢ versus vy corresponds to
zero increment for any 3, and this point divides the
curve on the parts connected with the stable and un-
stable stationary modes.

But at some § value (near to 1.30685) the point of
¢ maximum (with ¢ value near to 4.87-10~2) comes to
the line vs = 0, and the mentioned part of the curve,
corresponding to the unstable stationary mode, dis-
appears. In that case all one-stream modes possible
for greater 3 values are stable. For such g values the
curve on the plot g versus v gives two values of ¢ for
vs = 0, and for any ¢ between these values there is
one value of vs. But if 8 becomes equal to some an-
other number (near to 1.36111) then both points of
the curve at the line vy = 0 meet each other at the ¢
value near to 1.33-1072. Then one-stream modes with
another ¢ values or with nonzero vg value become im-
possible. For the greater 8 values one-stream modes
are impossible at all.

At the large ¢ values the cause of impossibility
of one-stream mode existence lies in too large decel-
erating force of the space charge field in the part of
the gap nearer to entrance, as it is, in particular, in
the case = 0. At the small ¢ values and sufficiently
large 3, the cause of impossibility of one-stream mode
existence is insufficiently large accelerating force of
the space charge field in the part of the gap nearer to

exit, so that such force cannot overcome the braking
force and it is incapable to push all the flow through
this part of the gap. In the two-stream mode only the
part of input flow passes the whole gap, and the elec-
trostatic field may be capable to push some part of
input flow through the whole gap if the space charge
of the rejected part of flow is large enough.

2+ -10°
q ] | a
1 -107°
0 ——— 1010
0 8 1
Fig.2.  Boundaries of q for one-stream and

two-stream modes versus 5 (8/9 and 16/9 at
B8 =0), in linear and logarithmic scales

In the Fig.2, the dependence of critical values of ¢
(corresponding to the boundaries of one-stream and
two-stream modes existence) on the 3 value is shown.
The upper curve is determined up to the 8 value near
to 1.30685. It gives one value of ¢ for any [ and its
point for the maximum S value also belongs to the
the upper part of the lower curve. The lower curve is
determined up to the 5 value near to 1.36111. It gives
one value of ¢ for 8 < 1 and two ones for 5 > 1. Be-
tween them the two-stream mode cannot exist. For
q values greater than ones on the upper curve or less
than ones on the lower part of the lower curve the
one-stream mode cannot exist. Between the upper
curve and the upper part of the lower curve the one-
stream mode is unstable. Really it cannot exist, and
it is replaced with two-stream mode.
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Fig.3. Increment k versus q for the written

B values increased from the right curve to left

In the Fig.3, the dependence of k on ¢ at the fixed
B values is shown for the main self-consistent pertur-
bation. It develops monotonously and its increment
k is real. This increment is positive for the unstable
modes and negative for the stable ones. For any (8

(6]



in interval (0,1), the stationary modes with small ¢
are characterized by negative x with great absolute
values, and k— — oo when ¢—0. With S increase
the dependence of k on g changes essentially when 3
passes the value 1. Namely, for 5 near to 1, at small
¢, in the case 8 < 1, the curve k versus ¢ goes to —oco
with ¢ decrease, whereas in the case § > 1 it goes to
Zero.

4. CONCLUSIONS

The electron flow in the short-circuited diode is con-
sidered taking into account the braking force pro-
portional to velocity. Explicit solution of the equa-
tions is obtained with the usage of Lagrange vari-
ables, that gives comparatively simple expression for
electric field, in the processes, in which relative dis-
position of electrons in flow is not changed, electrons
do not outrun one another, though the distance be-
tween them may be changed. Appearing of the brak-
ing force and increase of braking coefficient leads to
changes of the input current intervals, in which sta-
tionary modes are stable or unstable. For small brak-
ing coefficient, the flows with sufficiently small input
current are stable, in some interval of input current
the stable and unstable one-stream modes may ex-
ist, and for sufficiently large input current one-stream

modes are impossible. Also, the one-stream modes
are impossible in the case when input current is very
small and the braking coefficient is so large, that in
absence of the electric forces electron stops inside the
gap. But the possible modes with not very small
input current are stable. The unstable one-stream
modes disappear at some sufficiently large value of
braking coefficient. And for the braking coefficients
values greater then some still greater threshold value,
one-stream modes are impossible et all.
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YCTOMYMBOCTDH IIOTOKA SJIEKTPOHOB B JIMOJIE, 3ATIOJTHEHHOM T'A30M
A. IHawenxo, B. Ocmpoywxro

s TOTOKA 3JIEKTPOHOB B KOPOTKO3AMKHYTOM JIHMOJE, 3aTOJIHEHHOM Ta30M, C YYeTOM TOPMO3SIIel CUIIHI,
TIPOTIOPIINOHAIBHON CKOPOCTH, PACCMOTPEHBI CTAITMOHAPHBIE PEsKUMBIL I UX JIHHeITHbIe Bo3MyIerusd. [lomyde-
HO ypaBHEHUe JiJjIsd HHKPEMEHTa YBeJNYeHUs aMIIUTY/ Bo3Myiennit. Hafinennr quana3onnl 3HadeHnii Ko3d-
dunmenTa TOPMOKEHN, B KOTOPBIX BO3MO2KHO CYIIIECTBOBAHUE YCTOMIUBBIX JIHOO HEYCTONIUBBIX CTAI[HOHAD-
HBIX DEKUMOB.

CTIMKICTDH IOTOKY EJEKTPOHIB V JI0/I, 3AIIOBHEHOMY I'A30M
A. IHawenxo, B. Ocmpoywxro

JJIsT TOTOKY €TeKTPOHIB ¥ KOPOTKO3aMKHEHOMY 071, 3alIOBHEHOMY Ta30M, 3 yPaXyBaHHAM TaJbMiBHOI CH-
JIA, TIPOTMOPINHHOI M0 IMIBUAKOCTI, PO3IVISHYTO CTAIOHAPHI peXkuMu Ta IxHi jiniitHi 30ypenns. OrpuMane

PiBHSIHHA J71s1 ITHKpeMeHTY 30iIbIIeH s aMILTITY L 30y peHb. 3HANRIEHO Miana30Hu 3HAYEHb KOSMIIEHTY raib-
MYBaHHA, Yy SKHX MOXKJIUBE iCHYBAHHS CTIKNX a00 HECTIMKUX CTAIIOHAPHUX PEXKUMIB.
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