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The study of energy spectrum of necklace spin ladder modelling magnetic properties of
a number of quasi-one-dimensional ferrimagnetics containing ions of transition metals,
was carried out. It was shown that the excitations without decrease of total spin are
separated from ground state by finite energy gap, and the excitations with decrease of
total spin are gapless. Temperature dependence of magnetic susceptibility, agreed with
known experimental data for quasi-one-dimensional Cu-Ni bimetallic ferrimagnets and
analytical formula for Ising model of NL, was built on the base of exact energy spectra of
small ladder clusters.

ITpoBeneno usyuyeHue sHepPreTUUECKOr'0 CIIeKTPa AWATroHAJbLHONU CIUHOBOM JIECTHUIILI THUIA
"oxepenbe”, MOeIUPYIONeil MAarHUTHBIE CBOMCTBA PAJa KBA3UOLHOMEPHHIX ()eppUMAarHeTH-
KOB, COJEPKaIIUX MOHBI ITepeXOaHbIX MeTasioB. [lokasaHo, UuTo Bo3Oy:KAeHUA 6e3 yMeHbIIe-
HUA IIOJHOTO CIIMHA OTJeJIeHbl OT OCHOBHOT'O COCTOSAHUS KOHEUHOH 9HepreTUYecKOIl IeJbio,
a BO3OYIK/JEeHUSA C yMeHbIIEHUeM IIOJIHOTO CIiMHa - GesmieseBble. Ha ocHOBe TOUHOTO dHepre-
TUYECKOTO CIIEKTPa MaJIbIX JIECTHUUYHBLIX KJACTEPOB IIOCTPOEHA TeMIlepaTypHas 3aBUCUMOCTh
MAarHuTHOUW BOCIPUUMYUBOCTH, COTJIACYIOUIASCSA C M3BECTHLIMU OHKCIEePUMEHTAJbHBIMU JaH-
HBIMU s KBasuomgHoMepHbIX CuU-Ni 6umeraninueckux (epprMarHeTUKOB U aHAJIUTUYECKON
opmyI0ii, TONYUeHHON B PaMKaX COOTBeTCTBYyIoIelt monenu Maunra.

In spite of intensive study during last decades, the low-dimensional magnetic systems offer per-
manently new challenges to researches by exhibiting a wide variety of exotic physical phenomena.
Many of these interesting and novel phenomena were first predicted from theoretical studies on
one-dimensional spin systems [1-4]. These predictions motivated a number of experimental efforts
in field of synthesis and study of quasi-one-dimensional magnetic systems with spin chains and
ladders. The search for molecular ferromagnets is among the important challenges in this area and
it has been already resulted in discovery of many interesting magnetic systems. Those include a
simplest representative of diagonal ladders, a necklace spin ladder (NL) with antiferromagnetic ex-
change coupling between nearest neighbor only (Fig.1). This system describes adequately magnetic
properties of (IPA),CuCl, crystals (IPA is isopropylammonium) [5-8]. The main difference between
NL and ordinary rectangular lattice having the same unit cells is a macroscopic ground state spin of
NL. The reason is as follows: although NL is bipartite system, the number of sites in each sublattice
is different. This unbalance between the numbers of sites in each sublattice is responsible for the
ferrimagnetism exhibited in NL. Another interesting systems are quasi-one-dimensional bimetallic
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molecular magnets containing two transition
metal ions per unit cell and having the general
formula ACu(pbaOH)(H,0),-2H,0 with pbaOH
= 2-hydroxo-1,3- propylene-bis(oxamato) and
A = Mn, Fe, Co, Ni. These magnets belong to
the alternating spin chain family which exhibit
ferrimagnetic behavior.

The parameters of the corresponding spin
models are sensitive to changes in chemical
structure of ferrimagnets. Therefore, the the-
oretical study of these spin models in a wide
region of coupling parameters is of direct inter-
est in designing of new quasi-one-dimensional
ferromagnetic materials. This study deals with
the energy spectrum and low-temperature thermodynamics of necklace ladder. Because of the simi-
larity of low-temperature thermodynamics of NL and of a spin chain with alternate spin-1 and
spin-1/2 sites, the results of this study are also applicable to some bimetallic molecular magnets.

Fig.1. The unit cell selection for an NL with periodic
boundary conditions.

Let us consider a general structure of the exact energy spectrum of NL with isotropic exchange
interaction in the absence of external magnetic field. If all interactions between spins inside of unit
cell of the ladder with periodic boundaries are equal, this cell can be chosen by four different means.

(Fig.1).

In case of “linear” unit cells, the spin Hamiltonian of the ladder can be written in two different
forms:

2 L L
H="Jy3" 3 S ,Seitn 1Y (S2,S1001 +S3,82,11) (M
a—ln=1 o
2 L L
H=2; > 3 S uSaiin+J0 9 (Se,Stnit +S85,82011) - 2
a=1n=1 n=1

Thus, the exact energy spectrum of NL with periodic boundaries obeys the conditions
Ek(J07J1):Ek(J17JO)' (3)
The “corner ” unit cells can be treated in absolutely similar manner. The corresponding lattice

Hamiltonian has a form

2 L L
H=J1% > S0 ,Sarin 0 (S1n +S5,)S001 - )

a=1ln=1 n=1

The exact energy spectrum of (4) also obeys the condition (3) and does not coincide with the spec-
tra of the Hamiltonians (1, 2) at J; = ./ . Besides, similar to the case J; =<y considered in [7], the
Hamiltonian (4) satisfies the condition

H(Sy, +Ss,) = (S, +Ss5,) H. )

This means that upper and lower spins of each unit cell form a pure singlet or triplet. Let this
composed spin to be equal to 1 for all unit cells. In this case, the corresponding part of the exact en-
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ergy spectrum (4) is described by the Hamiltonian of a linear chain with alternating spins: s =1/2
and s=1

L
H= Z (JlTnSn + JOSnTn+1> . ©)

n=l1

If the composite spin of an arbitrary cell is zero, this cell does not interact with its surrounding
and cyclic chain is transformed to the linear chain having L —1 unit cells. This consideration can
be easily generalized to the case of an arbitrary number of composite spins. As a result, similar to
[7], the exact energy spectrum of (4) is reproduced by the set of the Hamiltonians of the type (6) for
cyclic chain, linear chains of different length, and the corresponding set of isolated spins s =1/2 .
Therefore, the thermodynamics of NL with “corner” unit cell and linear chain with alternating
spins can be supposed to be quite similar at low temperatures.

At JJ; =0, the ladder has a form of a collection of isolated segments (unit cells) and its energy
spectrum is a set of different combinations of isolated cell energies. In zero magnetic field, these
energies are equal to

El :—J(), 82207 ESZJ?O (7)
The corresponding wave functions of three-site unit cells have a form:
1. | YO _ _ 1. | . _
—i|=——=S{1 28,1 +S5)|0}, —i|=—7=IS31—-511)|0),
@1[2 l] JE( 1,1 2,1 3,1)| ) @2[2 l] \/5( 3,1 1,1)| )
1. 1 /e _ _
—i|l=—F=IS{;+S S5 1|0}, 8
@3[2 l] J§( 11921+ 3,1)| ) ®

where |O) is the unit cell wave function with maximal value of spin momentum m = 3 and energy e3.

Obviously, in the absence of magnetic field, the ladder ground state is 2~ fold degenerate and
can possess any value of z-projection of total spin M from the interval (—N /2, N/2). The degener-
ate ground state wave functions of the ladder are direct product of unit cell eigenfunctions of the
energy ¢

N . 1 N
Vo (M) =TTy (m;.0) m; =+, M=>"m,;, )
i=1 i=1

where ¢ (m i,i) is the ground state eigenfunction of i -th unit cell having z-projection of cell spin m; .

Weak interaction between cells eliminates the degeneracy in first order of perturbation theory
(PT) in coupling -J; . When considering the corresponding matrix elements of this interaction, it can
be shown that in first P'T order the lowest part of the energy spectra of rectangular and diagonal
ladders are described by effective Heisenberg spin Hamiltonians of the following form:

N
HR :N€1+J12Sisi+l, (10)
i—1
10, Y
Hyr = Ng —712 S;Siy1 - (1)
i—1

Thus, the ground state of rectangular ladder formed by three chains corresponds to minimal
value of total spin (Sy; =0, 1/2), whereas for diagonal ladder, Sy = N /2, which is in agreement
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Table. Exact lowest excitation energies for NL lineal segments containing 4-7 unit cells; (*) the results of nu-
merical simulation by DMRG method.

4 5 6 7 1002*
Dy 1.4727 1.4717 1.4710 1.4705 1.4676
Dy 1.1544 1.1557 1.1562 1.1563 1.1565
Dg 0.1072 0.0742 0.0538 0.0406 0.34x10%

with Lieb theorem [9]. Besides, the excitations of the rectangular ladder with the spin Sy should
be gapless, similar to uniform Heisenberg spin chain.

In case of diagonal ladder (NL) there is only one state of spin Sy = N /2 in first PT order in
oJ; . Therefore, to create the ladder excited states with total spin S, we should use the cell states
¢ 9 and ¢ 3. It can be shown easily that these excitations are separated from the ground state
by the finite energy gap AE ~ ;. A similar conclusion can be done for the excitations with total
spin S > S; . The excitations with a decrease of total spin are described by the Hamiltonian (11)
and thus should be gapless in agreement with the theorem from [10]. This character of NL energy
spectrum results, within the limit of weak interaction between cells, in a plateau in field depen-
dence of magnetization at M = L/2. 1t should be noted that in contrast to magnetization plateau
of rectangular ladder formed by three spin chains [2], the plateau for NL appears at zero value of
magnetic field.

In order to get more information about the energy spectrum of NL at arbitrary value of the
interaction between unit cells, we have calculated numerically the lowest energy levels of finite
lattice fragments. The linear and cyclic fragments formed by 4-7 unit cells were studied using the
Davidson method [11]. We also applied the density matrix renormalization group method (DMRG)
[12] (an algorithm for “infinite” systems) using Cs symmetry of NL similar to “reflection symme-
try” of uniform spin chain [13]. In DMRG calculations, 500 iterations were performed and up to 32
optimized states were kept to reach proper convergence (Table 1.). The energy gap A; between the
ground state and lowest state with M = N/2+1 agrees with our PT analysis of the excitations
with S > .S, . The gaped character of the excitations should cause plateau in field dependence of
ladder magnetization with increasing M.

To determine the first excitation state of spin S , a standard scheme for density matrix construc-
tion basing on two eigenfunctions of superblock matrix was used. Note that for standard DMRG
method, it 1s difficult to determine total spin of excitations, because the basic functions of a preset

M subspace are superposition of eigenfunction of S? with different values of S. In case of NL, the
distance Ay between first two energy levels of subspace M =S, is less than gap A,. Hence, the
second state with M =S, should also have the spin S;. A similar approach was used to find the
lowest energy state with spin S=.5; —1.

The study of NL. thermodynamic characteristics such as temperature dependence of magnetic
susceptibility can be done in general numerically only. Nevertheless it is of interest first to perform
the analytical study of the thermodynamics of NL described by the following Ising Hamiltonian:

2 L L
H= JO Z Z S(i,n ZJrl,n +J1 Z (Sg,n inJrl + Sg,n ;,nJrl) : (12)

a=1ln=1 n=1

According to transfer-matrix method, the free energy per unit cell of infinite ladder model (12)
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Fig. 2. Temperature dependences of
quantity ~ x7 for NL cyclic fragment
formed by 5 unit cells at different values of
Jy (Jg=1).
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has the form f=—kTInX\, where % is Boltzmann constant; 7", temperature; \ , maximal eigen-
value of transfer-matrix R for the Hamiltonian (12). In the presence of magnetic field H, R is a
symmetric 2x 2 matrix with matrix elements

Ryy = 2exp(h/2){cosh[B(Jy ++/; —2h)/2|+1}, Ryp (h) = Ryy (~h),

Ry = 2{cosh(6h)+cosh[B(J0 —Jl)/2]},

where 7' = kT ; h, external magnetic field in energy units (h = gnH , g is g -factor of transition
metal ions forming the magnetic sublattice; 1, Bohr magneton). The ladder free energy per unit
cell has a simple form at h=0:

f==kT{2In2+1n[1 + cosh (8o /2)cosh (3] /2)]} . (13)
When h =0, the corresponding formula for f is cumbersome and is not presented here. In the

case of weak magnetic field, the analytical study becomes simpler. In particular, the temperature
dependence of zero field magnetic susceptibility has a following form:

2
xT = R(p,q)(gn)

= 4k(2+cosh(p)+cosh(q))’ (14

(1 + 2exp(—p) —cosh (p))2
1+ cosh(q)

s

R(p.q) =5+ cosh(p)+4exp(—p)+

Numerical calculations using formula (14) show that the temperature dependence of the quanti-
ty xxT has a wide minimum. At .J; =.J; this minimum appears at temperature 7' = 0.67J5/k .

To determine similar dependence for Heisenberg NL, let us use the exact energy spectrum of
finite lattice clusters formed by 5 unit cells and well-known spectral formula for magnetic suscep-
tibility. To reduce the computational work, the spin space symmetry was taken into account by
means of branching diagram technique [14]. The corresponding temperature dependences of x xT'
at different values of coupling between unit cells are shown on Fig.2.

These dependences include rounded minima. At .J; =.J;, the minimum corresponds to the
Tnin = 0.59y /k , which is quite close to similar estimation for Ising model (12). As mentioned
above, at J; =.J;, the low-temperature thermodynamics of NL and linear chain with alternating
spins s =1/2 and s=1 should be similar. The DMRG calculations of temperature dependence
of ywxT for this chain show a rounded minimum at 1 .. = (0.5i0.1)J0 /k [15]. At the same

min
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time, this spin chain simulates adequately the magnetic properties of quasi-one-dimensional fer-

rimagnet NiCu(pbaOH)(H,0),-2H,0 [16]. If we take coupling parameter ./, = 94cm™", our value
T in =0.59J, /k corresponds to experimental data (7;,;, = 80K ). Note that there are two inde-

m:
pendent estimations of this parameter: .J; = 8lem ! [16] and J, = 100cm ™! [15].

To conclude, it was shown that in an infinite NL, the excitations without decrease of total spin
are separated from ground state by a finite energy gap, and the excitations with decrease of total
spin are gapless. Temperature dependence of magnetic susceptibility, agreed with known experi-
mental data for quasi-one-dimensional Cu-Ni bimetallic ferrimagnets and analytical formula for
Ising model of NL, was built on the base of exact energy spectra of small ladder clusters.

in
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Euneprernyunii ciekTp i TepmoguHaMmika
KBAa3HOIHOBUMIPHHUX (hepiMarHeTukis Ha OCHOBI
CIIOJIYK MepPexiTHuX MeTaJIiB

B.O.Yepanoscvruii, O.A.Kpasuenrxo, T.0.Ky3neuosa

IIpoBemeHo BHBUEHHSI €HEPreTHYHOIO CIEKTPY [laroHaJIbHOI CIINHOBOI IpabuHH THILY
“Hamupero’, IO MOAeJIIoe MArHITHI BJIACTHBOCTI JESKHX KBA3I0AHOBUMIPHHX ¢epOMAarHeTHKIB
HA OCHOBI CIIOJIYK Iepexigumux Meranis. llokaszamo, mo 30ymmenHst 6e3 3MeHICHHSI IIOBHOI'O
CIIIHY BIJIOKPEMJICHI Bl OCHOBHOI'O CTAHY CKIHUEHOI0 eHepTreTHYHOIO IIIJINHOIO, a 30y senHs 13
3MEHIIeHHAM IIOBHOIO CIIHY He MAloTh TAKOI Il/JuHE. Ha 0CHOBI TOYHOTO e Hepre THYHOTO CIIeKTPY
Maaux apabHHHEX KJacTepiB nobyaoBaHa TeMIepaTypHa 3a/esKHICTh MATHITHOI CIIPUATANBOCTI
IO IIOTOJUTHCS 3 BIIOMHME eKCIICPUMEHTAIBHUMH JAaHUMH I KBasiomHoBHMIpHHX Cu-Ni
GimeraneBux depiMardieTUKIB Ta aHAJITHYHOIO OPMYJIO0, IO OTPHMAHA B PAMKAX BIAIOBIIHOI
momeJl Isinra.
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