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The general dynamical properties of free quasi-particles are analyzed. Analyzed also the
conditions under which the description of the dynamic properties of the quasi-particles is
almost identical with those of real relativistic particles. The problem of the relation of
quantum and classical methods of describing the quasi-particles in the case of the excited
states of crystals is considered. Basic principles of construction of dynamic properties of
classic type for quasi-particles at excitation of matter with the structure of solids (crys-
tals) are analyzed. The results of analysis were demonstrated on the example of electronic
excitations of crystals in the simplest case, when other effects are neglected (phonons, the
response to excitation of the lattice, defects, high density of excitations, which requires
the account of interactions between them, and so forth). It was shown that such excita-
tions are described in three ways simultaneously. These descriptions make it possible to
interpret the experimental data in terms of the usual relativistic dynamics, if the consid-
ered system allows the use of the considered approximations (plane wave in a phase,
nearest neighbors and cubic grate).

B crarbe amanmsupyrorcs oOIue AUHAMUYECKHE CBOMCTBA CBOOOAHBIX KBA3HUYACTHUIL A
TaKIKe YCIOBHUSA, IIPH KOTOPHIX OIMCAHNE ANHAMHUYECKUX CBOMCTB KBA3UUYACTUIL IPAKTHUYECKH
COBIIAZIaeT ¢ AHAJOTHYHBIMM CBOMCTBAME PEAJbHBIX PENATUBUCTCKUX UACTHUIL. PaccMOTpeHa
nmpobieMa COOTHOIIEHWS KBAHTOBOIO M KJACCHYECKOTO CIOCOGOB ONMCAHUA KBA3WYACTHIL B
cayuyae BOSOYMKIEHHBIX COCTOSHUN KPHUCTALIOB. [IpoaHaiusmpOBAHLI OCHOBHBIE IIPUHITHIILI
IIOCTPOEHUA AUHAMUYECKHUX CBOMCTB KJACCHUYECKOTO THIIA AJs KBAa3SHUACTHUI[ IPU BO3GYKIE-
HUM CPel CO CTPYKTYPOil TBepAbIX Tes (KPHUCTANLIOB). PedysbTaTsl aHAIN3a IPOLEMOHCTPUIPO-
BaHBl HA I[IPHUMepe 3JIEeKTPOHHBIX BO3OYMKICHUUA KPUCTAJJIOB B CAMOM IIPOCTOM CJIy4ae, KOTIa
IPYIUMHU BINSHUAMU IIpeHeOperaioT ((POHOHBI, PEAKIIUA PeIIeTKM Ha BO30y:KiaeHHe, IedeKThI,
BBICOKAsA ILIOTHOCTH BO3OYKIEHHII, KOoTopas TpedyeT yuyera B3auUMOLEHCTBUII MEKIy HHMH, U
Tomy Iogobuoe). [lokasamo, uTo Takue BO3OYKICHUS OJTHOBPEMEHHO OIIMCBHIBAIOTCA TPEMS CIIOCO-
SaMu. OTH OIMCAHUS TAlOT BO3MOJKHOCTH HMHTEPIPETUPOBATH JKCIEPHUMEHTAJBHLIE NAHHLIE B
MIPUBBIYHBLIX TEPMUHAX PENATUBUCTCKOA ITUWHAMHUKM, €CJIH PACCMATPHUBAEMAasd CHCTEMAa IOIIyCKAeT
WCIIOJNIB30BAHNE YKA3AHHBIX Npubamxennil (IIOCKoM BouaHBI B (asze, Ommxailinmux cocemeil u
KyOH4ecKoll peleTKu).

1. Introduction

At research of the excited states of semi-conductor materials often there are difficulties at
interpretation of results in terms of quasi-particles. At the same time such interpretation is convenient,
as quasi-particles represent analogues of particles of classical type. In small energy of quasi-particles
(within a corresponding energy band) usually such difficulties does not arise. But in big energy (in the
same limits) this question too little researched. In paper this question is analyzed in details for free
quasi-particles. Comparison with properties of real particles is conducted. The relations which obtained,
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allows comparing different ways of their description: quantum (initial) and two descriptions of classical
type (exactly these two descriptions associate with a concept “quasi-particle”) — wave and mechanical.
In particular, it gives the chance to compare the dynamic properties of quasi-particles and real particles
and may be useful from two points of view.

First of all it is useful for adequate application of classic method of description of the excited states of
condensed matter in terms of quasi-particles for interpretation of experimental results. Such interpretation
is especially important, if it applies in the wide range of such dynamic parameters, as wave vectors, quasi-
impulse, dynamic effective masses, speeds and other. And also at the study of such physical properties,
as transfer of energy [1-5], charge [6-8] or other physical characteristics [9-15], influences of the external
fields on these processes, and others like that. Secondly, for more complete understanding of physical
properties of the real particles.

Common dynamic properties of free quasi-particles are analyzed in paper. They are based on one
of major characteristics of the excited states of condensed physical objects — on dispersion dependence
of energy or frequency from a wave vector [1-27]. Terms at which description of dynamic properties of
quasi-particles practically coincides with similar properties of the real relativistic particles are analyzed
also. The problem of relation between quantum and classic methods of description of quasi-particles in
the case of the excited states of crystals is considered.

2. Common remarks about dynamic properties

The main feature of the condensed matter is the presence of properties inherent only to this substance.
One of such properties are, so-called, dispersion dependences of energy on a wave vector: F (k).

It is known [28,29] that in the case when energy is a function from a parameter or family group of
parameters, physical sense of such energy is interpreted depending on physical sense of this parameter or
their group. A parameter k is always associated with an impulse: P = Ak, which in quantum mechanics
name a wave impulse, and in the theory of solids — quasi-impulse. Therefore dependences F (k) at once
obtain the sense of Hamiltonian:

E(k)=H (P). (1)

Energies F (k) in the solids are always the eigenvalues of the operators of Hamilton. Therefore it has
the direct origin as Hamiltonian. After establishment (1) it is possible to find a speed of the proper classic
object in accordance with the Hamilton equations:

_OH(P) _10E(k) _ dw(k)

or, b ok 0k (2)

It is visible from this determination, that the got speed coincides with group speed of processes, for
example, in plasma: dw (k)/0k;, and also with effective speed of quasi-particles in solids: 9F (k)/(hdk;).
Thus, both group speed and effective speed are ordinary Hamilton speeds of some object of classic nature
and depend on P or k. Taking into account determinations (2) it is possible to notice that in general case
speed V with components V; is a function of an impulse P = Ak with components P; = hk;. Consequently
mass has nature of tensor:

Vi (k)

m (k) = s = 1 9Vi ) = LLZE(k) = % (3)
oP; — h Ok h? Ok;0k; or;

Equalities (3) show that this tensor is symmetric in relation to a main diagonal. This determination
of reverse mass is the most general. It does not depend on the choice of point on a dispersion curve [16,
17], or from reality of the investigated substance. Tensor of reverse mass my; 18 a dynamic parameter,
as depends on an impulse P = Ak. It is now necessary to answer on an important question: is there some
relation of such determination of mass with phenomenological inert mass, or not?

For an answer on this question we will take into account that dependences F (k) and V (k) are
the parametric type of dependence of energy from speed. Formal eliminating a parameter k gives a
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possibility to get the energy as a function of speed. But, if energy is a function of speed, it has status of
the Lagrangian, and in analogy with (1), it is possible to write down such equality:

E(K) = L (V). (4)

The origin of index “m” is related to the term “mechanical” and will become more clear after a formula
(10).

Situation, when the same energy is simultaneously the Hamiltonian and the Lagrangian can
cause the surprise. But determinations (1) and (2) show that it takes place always because these
determinations always have the form of parametric dependence of energy from speed. Because the
derivatives 9Ly, (V)/0V; determines an impulse, it is necessary to find out its physical sense and attitude
to a wave impulse P = hik. We will designate this impulse as P,,. Then

P = 0L, (V)/8V;. (3)

Dependence L, (V) without specification of energy (in general case) is not known. Therefore we will

take into account that this energy is also the Hamiltonian in relation to an impulse P. In this case (5) it is
(i) _ 8H(P)op;

possible to represent as: Pi = —5 B av Taking into account determinations (2), at once it is possible
to get:
PG =V, - (9P,/3V;). (6)

We will show now, that the derivative 0P;/0V; determine tensor of direct mass: m,;. Indeed, if

My — 8Pi/avj7 (7>

equality must be executed:

m;klmkj — (SU (8>

Putting in (8) right parts of determinations (3) and (7), we will get

mymyy = (0Vi/OPy) (OPL)V;) = 8Vi/oV; = &;.

Thus, equality (8) is executed always, because the components V; of vector of speed V are independent.
It is possible to show that equality mikmgjl = 0;; is executed also, if the components P; of vector P are
independent.

Coming back now to equality (6), we use in it determination (7). As a result it is possible to get

PG (k) = my; (k) V; (k). (9)

Symmetry of tensors m;; and m;jl was also taken into account in equality (9). As is obvious from
equality (9), an impulse P, differs from an impulse P, at least, by two circumstances: by determinations
and different attitude to mass. In accordance with determination: P = &k, but

P,. (k) = i (k) - V (k). (10)

With respect to attitude of these impulses toward mass, an impulse P, (k), as is obvious from (9) and
(10), is the generalized determination of ordinary mechanical impulse. In special case, when m;; (k) =
m (k) d;;, equalities (9) and (10) it is possible to lead, accordingly, to the kind: pli) (k) = m (k) V; (k)
and P,, (k) = m (k) V (k). Wave impulse P = ik, on mass does not depend, but, in accordance with
equality (3), determines it and does, at first, a dynamic parameter, and, secondly, a tensor.

For further it will be important, that energy £ (k) simultaneously is the Hamiltonian in relation to a
wave impulse P, and the Lagrangian in relation to a mechanical impulse P,,.

Presence of two specifications of classic type for free quasi-particle, which are based on equalities
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E(k)=H (P)= Ly, (V), (11)

generates additional duality of classic-classic type. On today it is known only duality of quantum-
classic type for the real particles and quasi-particle in solids. Between these two descriptions, except
the equalities (11), exists another “intersection™ both descriptions have identical speed determined by
the common system of equalities V = Vp{H (P)} = %Vk{E(k)}. These equalities can be continued
as V = Vp, {H, (P,)} But for this purpose it is needed at first to define Hamiltonian H,, (P,,). It
is possible to do this in a general case, having determinations for L,, (V) and P,,. But except of the
Hamiltonian H,, (P,,), for complete symmetry in relation to both dynamic descriptions, it would be
necessary to find also the Lagrangian L (V), which, unlike L,, (V), relates to wave description, instead
of mechanical. But it is expedient to execute such work already when dispersion dependence F (k) is
specified. It will be done in the following to parts of the article.

3. Dynamics of quasi-particles in solids. Basic relations

In this part the questions listed above will be considered on the examples of the simplest excitations
of single-particle type in solids. This is, first of all, electrons in the conductivity band of semiconductor or
dielectric. In the application aspect such electrons provide the charge transfer (electric current). To the
simplest excitations of single-particle type belongs also a Frenkel excitons in molecular crystals. It provides
the transfer of energy. Such choice is explained by two circumstances. First of all, the concept of quasi-
particle first arose up at research of solids. Secondly, primary description of the excited states of crystals,
in a difference, for example, from plasma, is a quantum. This enables to establish connection not only
between two classic descriptions considered higher, but each of them with primary quantum description
also. Such analysis gives a possibility for transition from quantum description of the excited state of crystal
to one of its classic analogues correctly. Correct implementation of such transition is important because
classic description essentially easier in interpretation of results of researches. In addition, knowledge of
basic features of intercommunications between different descriptions can matter in understanding and
origin of properties of the real particles.

Typical Hamiltonian for single-particle electronic excitations in solids, without taking into account
reaction of lattice of crystal on excitation, is determined by equality [30-33]. Crystals with a simple lattice
are examined only (one atom or one molecule in an elementary cell). It enables to examine, so-called,
normal dispersion dependences — with a minimum in a point k = 0.

1 2 % %
By ({a}) = 59> Ywnmp+ Y Dhlagal” +> /M, (ajnarni+ afapiarm) - (12)
2 nl n nl

Primes over symbols of double sums mean here, that vectors n take on arbitrary values, but vectors
1 take on all values, except the value 1 = 0. Determination (12) is a functional in relation to factors
afn. Vectors n, 1 determines a spatial position of separate atom or molecule. In solids this is the vectors
of crystalline lattice. They, as well as afn, can be the variables of functional, if the reaction of lattice
on excitation is taken into account [1,2,4,30-33]. A factor ay, in accordance with its determination, is
unknown part of wave function of electronic subsystem of crystal and is determined by the condition of
dynamic minimization of functional (12) [2,30]. The eigenvalues F; (k) are determined simultaneously
with aty,. The condition of dynamic minimization of functional (12) is equivalent to procedure of reduction
to the diagonal type of the proper operator [3,4]. Procedure of reduction to the diagonal type of the proper
operator enables to find energy F; (k) directly at the level of operator. A factor a s, determines the spatio-
temporal distributing of excitation within the limits of crystal and time of existence of excitation. The
important feature of this factor is its dependence on an index f. This index determines the quantum
state of crystal, excitation or injection of electron took place in which.

The set parts of wave function of crystal determine the matrix elements wn ny1, DY, and Mrin 4 of
functional (12). Energy wn nt1 is energy of interaction between separate atoms or molecules. Energy
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D/ determines the change in an interaction between atoms or molecules at appearance of excitation. A
matrix element MI’;H 11 also determines additional interaction between atoms or molecules at excitation of
crystal. But this matrix element determines not so the change in an interaction, as processes of transfer of
excitation on space of crystal, because describes the states with the simultaneous localization of excitation
in two different space positions: n and n+ L

If three conditions of ideality are executed in a crystal (or is considered executed approximately): 1)
a crystal has unlimited sizes; 2) does not have the defects of crystalline lattice; 3) the local reaction of
crystalline lattice on electronic excitation is not taken into account, the potential energy D/ does not
depend on a variable n. In this case execute the equality D = D(f,7 and the functional (12) takes more
simple form

0 1 . .
By ({a}) = B + 52 IM] o1 (@t + G pi1apn)- (13)
nl

)

Notations are entered here: E(}j =Us+ %D{,Nf — it is the fixed part of energy in relation to the varied

variables {asn} and {a}n}; in this energy Uy = %Z /wy1 — is general potential energy of all crystal, and

nl

Ny =Y |agm]® — is norm of function asym on a variable n. Usually functions a sy are built so that they
n

were normalized on unit, i.e. that a condition Ny = 1 was performed. In general the inequality: N; < oo,
is enough. More hard condition N; = 1, is actual, when functions af, must form the base system. Using
procedure of Hamilton dynamic minimization [2, 30]:

dapn _ OE; ({a})

ih = - ,
ot aafn

it is possible to get equation

. 8afn 1
ih e —521:/‘M1f‘(af,n+1+af,n1)~ (14)

Here at once two circumstances were taken into account [30]. First of all, the matrix elements Mr{ nil
in the conditions of ideal crystal depend only on the difference of lower indexes. Secondly, in typical
crystals they are negative. If to take into account these two circumstances in functional (13), it is possible

to get
0 1 % %
By ({a)) = BY = 53/ | M| (afnasmin + @ nagm). (15)
nl

It is impossible not to pay attention on one interesting fact. If in equation (14) to use the formal
operator identity ayni1 = exp{£(1- V)}as a, it takes form of the Schodinger equation

8afn
ot

ih = ﬁ(f)afm

where
0 = —Z/‘le‘ch(LVn). (16)

1

This remark will be important further, at the discussion of determination of operator of impulse for
quasi-particles.
As the system is complex, at first we will represent a function as, in the most general form [34]

a(t) = ¢m(t) expilpa (2)]. (17)

After putting (17) into (14) and separating a real and imaginary parts from one another, the system
(14) disintegrates on two subsystems in relation to functions ¢sq and I'sy:
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0P fn 1 . .
h 81{ + 52/‘le‘{§0ﬁn+l Sin (Ff,n+l — an) — Wf,nfl SIn (an — Ff,nfl)} = O, (18)
1
h(pfn it = 52 ‘Ml ‘{Wf7n+l cos (Ff7n+1 — an) + @ fn-1€08 (an — Ff,nfl)} =0. (19)
1

First approximation which results in the dynamics of quasi-particles, practically the identical to
dynamics of free relativistic particle is approximation of plane wave in a phase. Maybe, it is the
main approximation which gives a possibility to compare dynamic properties of particles and quasi-
particles. In this case phase function I'y, suppose equal: I'y, = k- n — wyt. In this case for a wave
function (17) and system of equations (18), (19) we will get: an (t) = @a () - exp[i(k - n— w;t)],

84)Dflﬂ 1 .
SN M [ sin (k1) {p .m0 = 91n 1} = 0 (20)
1
52 / ‘le‘ cos (k- 1) {¢rnr1+@pn1}t + hwppm =0. (21)
1

But since a phase was set, two subsystems for determination of one function ¢y (t) appeared. It
means that it is needed to search some compatibility conditions.

One of forms of such terms is a condition: ¢y (t) = ¢ = constant. In this case from determination
(17) it is possible to get the solution which is known as plane wave:

ap(t) =@y -explifk-n—wpt)]. (22)

Thus a subsystem (20) is satisfied identically, and a subsystem (21), after cancellation on ¢, is reduce

to equality: hwy (k) = =/ ‘le ‘ cos (k - 1). The solution (22), as a wave function, is bad in the sense that
1

in an infinite space has an endless norm: Ny = oo. If to give up the first condition of ideality (endlessness
of crystal) in the norm condition: Ny =37 |af,ﬂ|27 it takes a form: N; = Nap?, where N is number of atoms

n
or molecules in the examined region of crystal. As in this case two parameters are indefinite: Ny and ¢y,
suppose usually N; = 1. It does a wave function approximately normalized on unit. Thus: ¢; =1 /v N,
and (22) takes a form:

1
am(t)= —expli(k-n—wrt)]. 23
fn (t) NG [i ( ol (23)
Substitution (23) in energy (15) gives a law of dispersion for the examined case (absences of reaction
of lattice on excitation):

e (k) = —Z/‘le‘cos (k1) = hwy (K) (24)
1

where it is marked: e (k) = Ey (k) —E(})). As energy £ (k) coincides with the eigenvalues F; (k) accurate

within a constant E(}) )

instead of Ey (k).

Comparison of expression (24) with determination of operator (16) shows that an operator — ¢ V,, may
be put into accordance to a wave vector k (taking into account physical correctness of such accordance).
As a wave vector k straightly determines a wave impulse P only, it is possible to come to the conclusion,
that in transition from classic description to the quantum one, the operator of gradient is equivalent only
to the wave impulse in sense of equality P——i i V4, but not to mechanical impulse, determined in (9),
(10). As it will be shown, the accordance between a mechanical impulse and the operator of gradient is
not such simple. At least, for quasi-particles it is so.

Formulas (24) enable already to specify common dynamic properties of quasi-particles for crystals
with a simple lattice (one atom or one molecule in an elementary cell). Indeed, putting energy

,in all dynamic determinations of previous section it is possible to use exactly ¢ ¢ (k)
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(24) in determinations (2) and (3) for speed and mass we find enough concrete expressions:
i 1 . _ 1 N
Y |1|i‘le ‘ sin (k1) and ;" (k) =2 > /I j‘le ‘ cos (k-1). Here [I|,, [I|, are projections

1 1

of vector of lattice 1 on co-ordinate directions: {7,5} = {«,y, z}. Solving the first equality in relation to a
vector k and putting it in (24), energy indeed can be got as function from speed. It is possible also to obtain
the mass as a function from speed. But to do this analytically is impossible. For this reason it is necessary
to search other approximations in which it is possible. Such search is important for the getting of possibility
to analyze the features of dynamics of classic type (wave and mechanical) exactly in an analytical form.
In this sense a next, second approximation, there is an approximation of the nearest neighbours

typical for crystals. This approximation is based on the fact, that in typical situations matrix elements le
quickly (exponentially) decreasing with the increasing of |1|. Energy (24) here is determined by expression:

epk)=-> M,fa cos (by, - k), where by, are base vectors of crystalline lattice. An index ¢, in the case
(04

of arbitrary lattice, has three values: @ = {1,2,3} — in accordance with three crystalline directions.
Not limiting generality, we will stop on the simplest case — an approximation of cubic lattice. In
this case crystalline directions coincide with the axes of the Cartesian system of co-ordinates, i.e.
a =1 = {x,y, 2}, and the vector of lattice b, loses an index. This simplification can be considered
as the third approximation. It may be the most essential approximation, because the crystals with an
ideal cubic lattice rarely meet.

In these approximations the energy (24) simplified to equality:

e (k) = —|Mf|Zcos(bki). (25)

A new denotation is here entered: M bf = My. Using determinations (2) and (3) it is possible to get:

my
Noey

Standard denotation for a relativism dynamics is here used: 5; = Vf(i) / C'; a vector 3 has components

y@ _ L0=r (k)

_ : . () _ my
o h akl fosm(bki), ™m =i ———— (5ij

& 7 cos (bki) (26)

5;. Formulas (26) show also, that dimensionless speed does not depend on a quantum number f:

In the first of the determinations (26) a constant Cy has the dimension of speed, determines by the
equality:

Cy = bM;|/h, (28)

and have a sense of maximum possible speed of examined quasi-particle. The last property of it is similar
to the constant C of relativistic dynamics (special theory of relativity): being a constant, it is invariant to
any transformations. But, in same time, a constant C'; differs from €, it has different values for excitations
in different states. As shown in [33] this problem have a solution in the proper setting of norms of wave
vectors k for every state f.

In the second of determinations (26) a constant m; has the dimension of mass and determines by the
equality:

my =1/ (|Mg|b?). (29)

It have a sense of not dynamic part of mass (i.e. not depends on a wave vector k). By this property it
is similar to the rest mass of relativistic dynamics and has an interesting feature: depends on the index
of the state of crystal, determining the spectrum of the masses by this. For mass m; it is possible to
formulate another useful determination:
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Farther, for prevention of bulky in formulas, an index f obviously will be used in the case of absolute
necessity only, as it already has executed the main mission. I.e., instead of my, Cy, My, 4 (k), Vf(l),
apa (t), wy (k) we will use, accordingly m, C, M, = (k), Vi, aq (t), w (k).

Due to the last two approximations, from listed above (nearest neighbors and, especially, cubic grate),
tensor of mass becomes diagonal. And due to the third approximation (cubic grate) tensor nature of
mass is determined by its dynamic properties only. A constant m is a scalar in these approximations. In
this sense it is yet more similar to a mass of rest. From point of the relativistic approximation in the
dynamics of quasi-particles there is important also an equality: m C? = | M|, which is possible to get with
the help of determinations (28) and (29). L.e. in terminology of relativistic dynamics the rest energy of
quasi-particle is proportional to the width of the proper energy band of crystal, excitation or injection
happened in which. And energy (25) now can be represented as:

e (k) = —mC?) " cos (bk;). (31)
The identity (1) in approximations of nearest neighbours and cubic lattice is determined by equality
now:

e(k)= H(P) = —mszi:COS (%P) (32)

To obtain property (4) it is necessary, as mentioned above, to eliminate a wave vector k in (31) by
the first of determinations (26). We will get as a result:

£(k) = L, (B) = —mCZZ /1= B2 (33)

It is necessary to notice that the determination (33) of the Lagrangian differs a little from accepted
in a relativistic dynamics [29,35]. There it is determined by an equality Ly, (3) = —mC24y/1 — |3[°. But

such difference tells, probably, that a question needs additional researches.
Using determinations (26) in relation (9) and taking into account that in examined three
approximations the identity: cos (bk;) = /1 — 57, is executed, it is possible to get:

W__mVi _ e B (34)

Pa’ = cos (bk;) V1-52

Appearance of a factor /1 — 37 in dynamic relations at excitation of the condensed systems was
mentioned in other articles also [1, 34].

The presence of determinations of the Lagrangian (33) and of impulse (34) enables to consider
mechanical description of dynamics of quasi-particle completed and pass to wave description of its
dynamics. Indeed, it remained only to find the mechanical Hamiltonian. For this purpose it is possible
to use standard [28, 29| determination: H,, (P,,) = CY_ @Pﬁf) — Ly (B), in which it is necessary to

N2
eliminate speed 3 by equality (34). As a result it is possible to obtain: H,, (P,,) = mC?>_4/1 + (p%) ,

K3
where is marked: pSB = Pﬁf) / (mC) = 5 / V1 — 2. Here p%? are the components of dimensionless
mechanical impulse. As it was possible to expect, this determination also differs from generally accepted

H, (Pp) =mC?\/1+ P2,
Before consideration of a wave description we will stop on relation between impulses P and P,,. Using
in equality (341) determination (27) and replacing components k; by the components P; in accordance

with determination: k; = P;/h, we will get expression: Pﬁl) =mCtg (W)’ which can be named the

generalized relation of Louis de Broglie. While getting of dependence Pg) on P; the determination of
mass (30), written down in a form: A/b = m C', was used. From this determination for mass follows also
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i

P
the dimensionless determination of wave impulse p; = c = bk;. As mentioned above at the discussion
m

of operator (16) and energy (24) an operator —i/iV, is put into accordance to the wave impulse P.

It is now obvious, that to the mechanical impulse is put into accordance not so simple operator with

50 . h S B .
components: P — —imCth —CVH>. Or with an account of (30): Py = —iy th (bV4,). Relation
m

between impulses can be represented in a dimensionless form

Pl =tg(p). (35)

Obviously, that equality (35) becomes an ordinary relation of Louis de Broglie: p,, = p, only in the
case of very small impulses, and, accordingly, very small speeds. Relation p,, = p looks here, as zero
approximation. It is possible to select two approximations additionally. They are based on the inequality
that is always executed: p%? > p; > ;. It appears from determinations of impulses p%), p; and also of
speed ;.

The description based on a wave impulse will be considered now. For final construction of this
description we have determination of the Hamiltonian (32) and relation (26) between speed and wave
impulse (in dimension form). In a dimensionless form the same relation has a form (27). For completion of
this description it is enough to define the proper Lagrangian. Again we will use standard determination:
L(B)=C> 3;P; — H (P). Further putting (32) in the last equality, eliminating an impulse P by means

of relation (27) and forming a dimensionless form, we will get:

18) = 3 (anesin (3 /1= 32 (36)

i

where it is marked {(3) = L(8)/m C?. This Lagrangian at implementation of operations 9l (3)/95;
indeed generates the components of wave impulse p; = arcsin (5;). The last equality is reverse in relation
to determination (27) (at the account of relation bk; = p;). The necessity of implementation of reverse
transformation means limitation on the components of impulse p; by such inequalities |p;| < w/2. It
differs from a similar limitation by the condition of Born-Karman: |p;| < . Condition of Born-Karman
is related to the terms of periodicity, but here we speak about the ordinary mathematical requirement:
at implementation of reverse transformation it is necessary to be limited by the region of unambiguity.
Condition of Born-Karman twice more of region, got here.

Thus, for consideration of quasi-particle, as classic object (material point), we have two descriptions,
equal in rights. One description is mechanical one with the Lagrangian by, (8) = L., (8)/(m C?) and the
Hamiltonian fn, (Pm) = Hy, (Pr,)/(m C?). This is the description which can be named the relativistic
approximation as it practically have the same form and was got in three approximations listed above
(plane wave in a phase, nearest neighbors and cubic grate). Another description is wave description
with the Hamiltonian function & (p) = H (P)/(m C?) and the Lagrangian [ (3) = L (3)/(m C?). Both
descriptions are equal in rights in the sense that identically adequately describe dynamic properties
of quasi-particle, as classic object. In general case it is impossible to do the choice between them
without additional researches. Except possibly the relativistic approximation considered here in which the
mechanical Lagrangian l,, (8) and the mechanical Hamiltonian k., (P,,) have the acquainted relativistic
form. Therefore, in conclusion, we will consider a question about attitude of both dynamic descriptions
of classic type to quantum description, as one of methods, which gives a possibility to do such choice.

Quantum description in the accepted approximations (plane wave in a phase, nearest neighbors and
cubic grate) relates to the wave function (23). In these approximations it takes such a form

1

an (1) = TN P [i (pjz5 — b (P) )] (37)

A form p;z; implies here, as usual, executing of adding up by an index j. Variables x; are the
components of vector of grate n = {bzy,bxzo,bas} = {bx, by, bz} in approximation of cubic grate. In
accordance with determination (32) the Hamiltonian h (p) looks like h(p) = —>_ cos(p;). It appears in
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a phase due to a relations (24), from which, in particular, ensues w (k) = ¢ (k)/#, and due to relation
(31), from which it is possible to get a Hamiltonian A (p). Dimensionless time 7 has such determination
7 = mC?*/h = |M|t/h. Because a function (37) is formulated in terms of wave impulse, it at once
gives advantage to the wave “branch” of descriptions of classic type. In addition, quantum description is
always formulated in the intrinsic frame of reference, what is important for the adequate location of classic
description in a quantum description. For formulation of the solution (37) (its phases, if to be more exact)
in the intrinsic frame of reference, we will find at first the point of conditional localization of excitation.
As quasi-particle has a speed 8 = {3,}, its conditional location in the moment of time 7 can be set by a
vector xg with the components x(oj ) = B;7. In the case of irregular motion this relation is determined by

more common equality: dxq/dr = 8. Executing in (37) identical transformation: z; = z; — x(oj) + x(oj),

entering determination of relative variables: z; — x(oj) = ¢;, and taking into account the dimensionless

form of common determination of wave Lagrangian: [ (8) = >_ 8;p; — h (p), it is possible, in final analysis,
i

to get

1

an (t) = —expli (p;& +1 7). 38

(t) Nii pli(p;& +1(8) 7)] (38)

Obviously, that phase part of solution actually disintegrated on two multipliers. First of it
exp[i (p - £€)], is the stationary quantum wave function of free particle in the frame of reference, related
to the point xg, which moves in relation to a crystalline lattice with the speed 8. An argument of this
multiplier can be brought to the form: p; - (x; — 5;7), and is visible that it meets condition of invariance of
Galilei. However, taking into account the relation (35) written in a form: p; = arctg (p%)), it is possible (in
some set of exactness) to use approximation : py, ~ p, p ~ 3, but p.,, # 8, i.e. pSJB = ﬁi/\/l — ﬁf. It can
be named the first approximation of Louis de Broglie. This approximation is possible due to inequalities
that are always executed in examined case p$}3 > p; > B;, and it is always possible to find the range of
values of these three variables in which such approximation is possible. In this case it is not difficult to

show that an argument p; - (z; — 3;7) can be brought to Lorentz invariant form: p; - (z; — 5j7)/\/1 — B2
Indeed, consistently using equalities: p ~ pj,, pg? = ﬁi/\/l — 3?2 and B ~ p, it is possible to get such

sequence of transformations

Py (&5 — By7) = b9 - () — By7) = B, - (a —ﬁﬂ)/ 1—R 5 (x —ﬁﬂ)/\/l )

But this transformation can be done only in such first approximation of Louis de Broglie.
Second multiplier exp (i{(8) 7), depends on classic action S(7) = [(8) 7, which determines the
dynamics of point xo = @7 and the Lagrangian [ (8) is determined in (36). In general case classic

action (in dimensionless formulation) is determined by expression: S (7) = [1(8') dr’. Consequently, it
0

is possible to assert that an indefinite phase element which a wave function (38) is determined within
is a classic action of trajectory of motion of point of conditional localization of excitation (with the
Lagrangian (36)). It will be shown in further our articles, that it is true also for the general case of
dynamics of quasi-particle both in the external field and at interaction of quasi-particles.

In conclusion it is possible to mark that in the case of plasma the scalar and vector potentials execute
the same role as a wave function in solids.

4. Conclusions

Basic principles of construction of dynamic properties of classic type for quasi-particles at excitation
of environments with the structure of solids (crystals) are analyzed. Excitation is realized as dispersion
dependences F (k) or w (k). The used methods of analysis have enough general character and can be
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applied also in other physically or technologically actual regions, where energy is a function of some
parameter. The results of analysis were shown on the example of electronic excitations of crystals in
simplest case, when ignore other influencing. Phonons, reaction of grate on excitation, defects, high
density of excitations, which requires the account of interaction between them, and others like that.
It was shown that such excitations were simultaneously described by three methods. First is quantum,
which gives description of the examined excitations in terms of wave functions and eigenvalues of energy.
The second method is classic. It arises out from quantum method and is formulated in relation to a
wave impulse. This method of description is based on the fact that eigenvalues of energy are an energy
bands, i.e. dispersion dependences Fy (k). Exactly dependence of energy on a parameter assumes its
consideration in terms of classic mechanics as a Hamiltonian of some free point object. Description of
quasi-particle in terms of the second method can be named a wave classic type description. The third
method which originates from the second is also classic type description, but in relation to other impulse —
mechanical. Interestingly, that in approximations used here (plane wave in a phase, nearest neighbors and
cubic grate) the third method of description practically coincides with the known dynamic description of
free relativistic particle. From point of more complete understanding of nature of the "real"particles, is
impossible not to pay attention on this. At the same time this (third or second classic) description enables
to interpret experimental information in the usual terms of relativistic dynamics, if the examined system
assumes the use of the considered approximations. If this not so, the third, mechanical description, as
well as the second, will differ from any of known descriptions. A question about the “relation” of both
classic descriptions to the first — quantum — is found out. Also it is found out that the second, wave classic
type description executes a certain transitional role from a basic quantum to the third, mechanical. This,
second description exists in the phase of wave function as an element, sense of which is fully identical to
classic action for the trajectory of point of conditional localization of excitation.
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EdekT Bupo/keHHst AMHAMIYHNX BJIACTUBOCTEN KBA3i4aCTUHOK
€JIEKTPOHHOI'O MOXO/2KEHHSI y HAIiBIPOBIAHNKOBUX MaTepiajgax

A . Cynpyn, JI.B. lImenvosa

V cTaTTi aHAMIBYIOThCH 3aTralbHi ANHAMITHI BJACTHBOCTI BITLHAX KBa3i9aCTHHOK, & TAKOXK YMOBH,
MpH SKAX ONUC THHAMIYHAX BJIACTUBOCTEN KBa3i4aCTHHOK IMPAKTHYHO 30ITAaEThCs 3 aHAJOTIYHIMHE BJIa-
CTHBOCTSMU PEANBHUX PESITUBICTCHKAX JacTHHOK. PO3TVIAHYTO TpobiieMy CIiBBIAHOIEHHSI KBAHTOBOTO
¥ KJIAaCUIHOTO CIOCOOIB OMUCY KBaz3idYacTHHOK y BUMAJKY 30yIXKeHWX CTaHIB KpucTagdiB. lIpoanasmizo-
BaHO OCHOBHI MPWHIUTHN TOGYIOBW AWHAMITHWX BJACTHBOCTEN KIACWIHOTO THUIY AN KBa3i9acTHHOK
TpH 36YIKEHH] CePEJOBHUIN i3 CTPYKTYPOIO TBePIHX Tif (KpHUCTATIB). PesylbTaTn aHAMI3y TPOJEMOH-
CTPOBAaHO HA MPUWKJIA eTeKTPOHHUX 30y/KeHb KPHUCTAMIB y HAWIPOCTINIOMY BHMIAJKY, KOJIH IHITAMEA
BILTHBAMA HEXTYIOTH (DOHOHM, pPeaKiis TpaTKW Ha 36yIKeHHs, TedeKTH, BUCOKA TYCTHHA 30YIKEHb,
N[0 BEMATAE YPAXYBAHHS B3AEMOJIIH MiXK HUMH, Tormo). [Tokazamo, mio Taki 36yKeHHsa OTHOTACHO OTIH-
CYIOTBCSI TphoMa crocobamu. [1i omicn JafoTh MOXKIUBICTE iHTEPIPEeTYBATH eKCIIepUMEeHTaNbH TaHi y
3BHYHHUX TepMiHaX PelSTHBICTCHKOI JUHAMIKH, SKIO PO3TJISHYTa CHCTEMa MPHITYCKAE BHKOPHUCTAHHS
POSTVIAHYTHX HaOAMKeHb (MIocKol XBHI Y dasi, HafGAMKINX CYCIiMiB i KyGITHOT TDATKH ).
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