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Initial structure and composition of Fe—W vacuum deposited films were studied using
the methods of transmission electron microscopy, X-ray diffraction, energy-dispersive
spectroscopy, and X-ray fluorescence analysis. It was shown that tungsten microalloying
resulted in the grain dispersion of iron matrix. The tungsten non-homogeneous distribu-
tion within each grain has been revealed. The features observed are explained by the
alloying component grain-boundary segregations formed under condensation of two-compo-
nent vapor.

MeTomaM1 TTpPOCBEUMBAIONIEH 9JI€KTPOHHON MUKPOCKOTINM, PEHTTEHOBCKOIT AudpaxTomMer-
PHUU, DHEPTOAUCITEPCUOHHON PEHTTEHOBCKOI CIEKTPOCKOMUM U CHEKTPAJLHOTO PEHTTEHOBCKO-
ro (WIyOpecIleHTHOTO aHAJN34 MU3y4YeHa UCXOAHAs CTPYKTypa u cocrtas mieHok Fe—-W, momy-
YeHHBIX BAKYYMHBIM ocasKaeHmneM. IlokasaHo, YTO MUKPOJETHMPOBAHME Kejie3a BOJIL(pPaMoM
TPUBOIUT K AUCIEPTUPOBAHUIO 3€PEHHOI CTPYKTYPHI Keae3Hoil marpuiibl. O6Hapy:KeHO He-
OHOPOJHOE pacupefieieHre BOALDpamMa B Tpeaesax Kamaoro 3epuHa. HabmiomaeMble 3aKOHO-
MEPHOCTU OOBACHAITCA (POPMUPOBAHUEM 3€PHOTPAHWUHBIX CETPerarnuil Jerupymoliero KoM-
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IIOHEHTAa IIPU KOHJAeHCal ABYXKOMIIOHEHTHOI'O IIapa.

1. Introduction

In the modern materials science an effec-
tive way of increasing the constructional
strength of engineering products is the
creation of wultra-fine grain structures
among which the submicro- and nano-crys-
talline materials play a significant role. In
this respect, the promising technology of
production of such materials in the form of
films (foils) and coatings is electron-beam
evaporation and vapour-phase vacuum depo-
sition (EB-PVD-technology) [1].

An effective way for increasing the
strength and thermal stability of such mate-
rials is alloying with refractory admixtures.
Indeed, the studying of the most important
material — iron — has shown [2] that alloy-
ing with tungsten minor quantities (less
than 1 at. %) has resulted in significant
dispersion of the iron matrix grain struc-
ture and substantial increase of film

256

strength up to the level characteristic to
known nano-crystalline materials [3].

In this connection, the objective of the
work was to investigate the structure pecu-
liarities of promising objects — Fe films
(foils) obtained by vacuum vapour crystal-
lization with tungsten alloying.

2. Experimental procedure

Fe—W condensates of 10-30 pum thickness
were prepared in vacuum ~107° mm of mer-
cury by electron-beam Fe and W simultane-
ous evaporation followed by deposition onto
non-orientating glassceramics substrates in
the temperature range from 200 to 600°C.
The quantity of alloying component in the
condensates was varied from 0.15 to 0.8 at. %
by varying the component deposition rates.

The condensate element composition was
analyzed by X-ray fluorescent analysis
(XRF) and energy-dispersive X-ray spectros-
copy (EDS). The structure investigations
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Fig. 1. Effect of substrate temperature on the
grain size of vacuum condensates: I — Fe;
2 — Fe-W (W ~ 0.8 at. %).

were carried out by transmission electron
microscopy using PEM-100 and JEM-2100
instruments, and X-ray diffraction using
DRON-3. The electron-microscopy studying
was fulfilled with samples thinned using jet
electrolytic polishing procedure.

3. Results and discussion

It is known [1] that many technological
parameters influence on the structure and
physical-mechanical properties of vacuum
condensates. The vapor phase crystallization
temperature (substrate temperature — T,) is
considered as the most important parameter.

It was shown earlier [2] that in Fe con-
densates the sub-microecrystalline structure
with grain sizes about 0.3 um can be ob-
tained. Addition of W small quantity (less
than 1 at. %) as alloying component allowed
realizing even more dispersive structure.

In Fig. 1 the comparative experimental
dependences of the average grain size d on
the substrate temperature for Fe and Fe-W
(~0.8 at. % W) condensates prepared under
similar technology conditions are shown. It
is seen that W admixture results in substan-
tial (by an order) decreasing Fe matrix
grain size over all the T, range and allows
dispersing the grain structure down to
nano-size scale (d is about 50 nm). So, tung-
sten takes rather strong modification effect
on the structure of Fe vacuum condensates.

Typical structures of Fe-W condensates
are shown in Fig. 2. It was established that
the grain size decreases as the substrate
temperature lowers and the alloying compo-
nent content increases. For the samples
shown this value is about 1.3 um (Fig. 2a)
and 50 nm (Fig. 2b) which is typical for
submicro- and nano-crystalline structures,
respectively. Over all the studied concentra-
tion and temperature ranges, only the sin-
gle-phase structure was observed. This fact
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Fig. 2. Fe-W vacuum condensate structure in
initial state. a) T,=550°C, W-~0.15 at.%;
b) T,=250°C, W~0.8 at.%
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Fig. 3. B.c.c. Fe matrix lattice parameter
versus W alloying element content.

is supported by the electron-diffraction pat-
terns (Fig. 2) where none of the second
phase reflections are observed, as well as by
the results of X-ray diffraction phase analy-
sis. Note that some electron diffraction pat-
terns show not all Fe reflections allowed by
structure factor (Fig. 2a) that indicates de-
veloping the growth texture under high
deposition temperatures.

The observed absence of particles in the
images could be obviously caused by two
main factors. First, it is W dissolution in Fe
followed by supersaturated solid solution
formation. Second, it is exclusively high
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Fig. 4. Results of EDS element point analysis for Fe-W foils (T, = 550°C, W ~ 0.15 at. %)

dispersity of particles due to low diffusion
mobility of W atoms in Fe erystalline lattice
at applied deposition temperatures (<550°C).

It is known [4] that under equilibrium
conditions, W solubility in the binary sys-
tem of Fe-W decreases to 4.6 at. % at
1190°C. Information for lower temperatures
is rather limited. Several works should be
marked out (e.g. [5]), in which Fe-W alloys
were studied after quenching. The results
indicate substantial increasing the lattice
parameter after W alloying (Fig. 3). As
for our data (Fig. 3) under increasing
tungsten content up to ~ 2 at. % W the
lattice parameter remained practically
constant a = 2.8665 A (the measurement
inaccuracy did not exceed 0.0002 A). Thus,
in spite of higher supercooling rates (com-
paring to quenching under thermal treat-
ment [5]) the vacuum ecrystallization from
vapor phase does not result in formation of
a supersaturated solid solution.

Let us consider the question on tungsten
distribution homogeneity in the conden-
sates. Among rather contradictory informa-
tion, it is worth to mark out the work [6] in
which a tendency to grain-boundary tung-
sten segregation was reported. Having ap-

Table. Element compositions of Fe—W foils

plied the vacuum refining for minimization
of possible impurities, the authors revealed
the 30—-35 % micro-hardness increase near
grain boundaries in comparison with the
grain bulk. This supposition seems quite
logical because the impurity diffusional
transport to grain boundaries results, as a
rule, to a free energy gain. In order to clar-
ify the situation realized in our objects the
EDS element point analysis was applied for
chosen samples with sub-microstructure in
initial condensed state. This selection was
caused by the locality about 50 nm of the
method. The element composition was deter-
mined in specific structure areas, namely,
in the sample bulk (spectrum-1), at triple
joint (spectrum-2), and at the grain bound-
ary (spectrum-3 and spectrum-4) (Fig. 4).
The results obtained are given in Table.

As it is seen from Table, the chemical
composition is inhomogeneous to a large ex-
tent. Indeed, in the boundary areas tung-
sten content is by a factor of 5 to 20 higher
than in the bulk. Thus, the experimental
data support the idea about formation of
tungsten segregations at the grain bounda-
ries of Fe matrix under their simultaneous
vacuum vapor mixture condensation.

Element XRF method EDS method
Total Spectrum-1 Spectrum-2 | Spectrum-3 | Spectrum-4
spectrum
Fe, at.% 99.85 99.86 99.97 99.84 99.38 99.74
W, at.% 0.15 0.14 0.03 0.16 0.62 0.26
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The mechanism of such heterogeneous
structure formation in the films deposited
from vapor mixture of two metals is in the
stage of studying and is of special interest
[7]. It can be supposed that nano-disperse W
inclusions are formed during condensation
at the crystallization front of the growing
layer so promoting W segregations at the
grain boundaries.

4. Conclusions

The investigation of Fe-W vacuum con-
densates (films) in the concentration range
of W to 1 at. % reveals a single-phase
structure. None of W solid solution in bece
Fe was found. Inducing W into the vapor
flux produces the strong modification effect
on the condensate structure, thus, increas-
ing the grain dispersity to nano-scale. The
observed dispersion is caused by forming
the grain boundary W segregations during
the condensate formation.
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CTpyKTypHi 0CO0JMBOCTI BAKYYMHHX KOHJIEHCATIB
3aJji3a, JeropaHUX BOJb(ppaMoM

0.€.Bapmin, A.I.3y6xo06, O.1.Invincorxuil

Meromamu mpocBiuyouoi eeKTpoHHOI MiKpocKoimii, peHTreHiBcbkoi mudparxTomerpii,
eHeproguciIiepciiinol peHTreHiBChKOI CIEKTPOCKONII Ta CHeKTPAJbLHOIrO0 PEeHTreHiBChKOro (uy-
OPECIIEHTHOr0 aHAJi3y BHBUEHO BUXIAHY CcTPYKTypy i ckaax miaisoxk Fe-W, orpumanux BakKy-
VMHUM ocaiKeHHAM. IloKasaHo, 110 MiKpoJieryBaHHS 3ajisa BoJb(paMOM IIPUSBOAUTL IO
OUCIePryBaHHA 3€PEHHOI CTPYKTYpH 3aiisHoi marpuili. BusaBieHO HEOIHOPIAHUI PO3MOIia
BOJB(pPaAMy y MerKax KOMKHOIO 3epHA. 3aKOHOMIPHOCTI, IO CIOCTEPirarmThCiHd, HOACHIOIOTHCA
GOPMYBAHHAM 3€PHOTPAHUYHNX Cerperamiil Jerymouyoro KOMIIOHEHTA NpU KOHAeHcallii maeo-

KOMIIOHEHTHOI I1apu.
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