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Relaxation of elementary excitations with small wave vectors (magnons) in the nematic
phase of magnet with spin S =1 near antiferromagnetic SU(3) critical point has been
studied. In the vicinity of the critical point the dispersion law minimum appears near the
border of Brillouin zone. The elementary excitations near this minimum (rotons) have the
gapped dispersion law, their damping is high, and they essentially influence on the
relaxation of magnons. The roton contribution to the damping of magnons is strong both
at the critical point and close to it.

WccnenoBanbl IPOIECCHl PEJIAKCAIMN DJEMEHTAPHBIX BO3OYMKIEHUU ¢ MaJbIMU BOJHOBBI-
MU BeKTOpaMu (MarHoHOB) B HeMaTHYecKoil ¢ase marHetmra co cuuuaom S=1 BGausu SU(3)
KPUTUYECKON TOUKH Iepexoia B aHTU(PEePPOMArHUTHOE COCTOSHUE. B OKPECTHOCTH KPUTH-
YEeCKOU TOUKHM B B3aKOHE JUCIIEPCUU IIOABISETCH MUHUMYM BOJIUSU I'DAHUIBLI 30HBI Bpriiios-
ua. CooTBeTcTBYIOI[UE BJeMeHTAPHbIE BO3OYMMIEeHUS BOJMSU 9TOr0 MUHUMYyMa (POTOHBI)
UMEIOT LIeJeBOU SaKOH JUCIEPCUU, WX 3aTyXaHWUe BEJIWKO M OHU OKAa3bIBAIOT CYLIECTBEHHOE
BIMSHWE Ha B3aTyXaHWe MarHoHoB. BKJAJ DPOTOHOB B 3aryXaHWe MATHOHOB OKAa3bIBAETCH
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OOJIBIIMM KaK B caMOM TOUKe mepexonga, Tak u BOJIu3M Hee.

In the modern solid state electronies it is
used mostly traditional magnetic materials,
both soft magnets and hard magnets, with
nonzero spontaneous magnetization. The
properties of these materials are pretty
good studied. There is another type of mag-
netic materials such as antiferromagnets,
for which magnetization equals zero. Their
properties are more variable. In particular,
they have much higher frequency of mag-
netic resonance and giant limit of motion
velocity of domain boundaries.

In recent years, researchers express con-
siderable interest in spin nematics, which
are similar to antiferromagnets [1].

It is well know that S = 1 isotropic mag-
net manifests spin nematic state with mag-
netization equals to zero and having
nonzero quadrupolar order parameter [2].
This system can be described by the follow-
ing Hamiltonian, see for details [2—-9]:
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S Jan n A
H= —EESnSm(A +S,S,)- (1)

n,m

Here the parameters J > 0 and JA deter-
mine biquadratic and bilinear exchange in-
teraction between the nearest neighbors. S,
is spin operator at site m. It is know from
[2, 8, 6], that for 0 <A <1 it is realized
nematic phase with zero average spin and
nontrivial spin quadrupolar average, with
quantum critical points at A=1 and A= 0,
corresponding to transitions to ferromag-
netic and antiferromagnetic states, respec-
tively. For spin nematic within its entire
stability region the damping of the elemen-
tary spin excitations with small wave vec-
tors (magnons) caused by their interaction
with each other is low, and magnons are
well defined by Goldstone excitations [4]. In
the limit of small wave vectors they have a
linear dispersion law, while the damping is
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quadratic in their frequency. At the ferro-
magnetic critical point magnon spectrum
softens and becomes quadratic, however
Goldstone’s behavior is preserved [5].

Near the ferromagnetic critical point the
energy of elementary excitations grows with
the growing of their wave vector, and close
to Brillouin zone boundary spectrum has a
maximum. Thus for this region the magnon-
magnon interaction is a sole source of their
damping. In contrast, near the antiferro-
magnetic critical point elementary excita-
tions with low wave vectors have a linear
dispersion law, but spectrum has a sharp
minimum for wave vectors close to the bor-
der of Brillouin zone. This minimum resem-
bles that for liquid helium and it can be
called as roton minimum. Therefore, nearly
the antiferromagnetic critical points there
are two types of elementary excitations with
low energy: magnons with small wave vec-
tors and rotons with wave vectors close to
the edge of Brillouin zone. Gap in the spec-
trum of rotons closely to point of the tran-
sition to the antiferromagnetic state is
small. Exactly at the antiferromagnetic
critical point the dispersion relation of ro-
tons becomes linear, e(k) o Ak = |k — k0|,
where Kk is the edge of Brillouin zone. As it
has been shown, the roton damping in the
critical point is high and proportional to
(1/AR)In(1/AE) [5]. In contrast, the standard
magnon damping caused by magnon-magnon
interaction has no peculiarities at this point
[4, 5].

In this paper rotons contribution to the
damping of magnons in nematic phase of a
magnet with S =1 is studied. As will be
shown here, rotons give an important con-
tribution to the magnon damping such that
magnons become highly damped excitations
as well.

To describe the magnetic excitations it is
convenient to use the phenomenological ap-
proach based on a complete set of general-
ized state of the group SU(3) [2, 7]. These
state are conveniently written as

lu,vy = ) (uj + ivj)|\uj), (2)
j:x’y72

where u and v are the real orthogonal vec-

tors subject to the constraints
w?+v2=1, (uv)=0, 3)

|‘Ux> = (|_1> - |+1>)/\/§7
) =i(-1) + k1) /N2, and  y,) = |0),

where [+1) and |0) are the conventional
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quantum states with the given z-projection
of spin, SZ|G>=G|G>, oc=1, 0, —1. The
total spin S = 1 is determined by the vector
of an average spin value <S> and quadru-
pole averages which are expressed in term
of u and v vectors as following [7, 8]

(8) = 2[uv], (4

The expected value of Hamiltonian (1) of
the states (2) determines energy of the sys-
tem in the molecular field approximation
consistently talking into account quantum
properties of the system of spins S=1. In
terms of vectors u and v specified at differ-
ent lattice sites, this energy has the form of
a sum over the nearest neighbor pairs

W= —%E{[(unum) TCAIN - O

+ [(unvm) - (vnum)]2 -
- 4(1 - A)[(unum)(vnvm) - (unvm)(vnum)]}'

Spin nematic state with <S> =0 is sta-
ble at 0<A<1. For one of the possible imple-
mentations of the uniform nematic phase,
which is characterized by V;=0 and and
vector director u% = 1, quadrupole averages

are <(su0)2> — o0, ({qu()f) — 1[4, 5].

In‘the/framework of’approach of the av-
erage field theory on the SU(3)-coherent
states given by (2), the dynamic of the mag-
net with Hamiltonian (1) is described by
Lagrangian of the form [2]

L= —2h2vnaun/8t - W(u,uw), (6)

n

where W(u,v) is the above energy of the
system (5).

Consider fluctuation of the wvariables u
and v describing the spin nematic state. As-
suming for definiteness that uglle,, one can
write vectors u and v in terms of Cartesian
coordinates longitudinal and transversal of
the deviations from the ground state. The
longitudinal components 2 and Vp,, are
dependent variables and quadratic in the
transversal components of u, ., u,, and
Vn,x» Vn,y which are chosen as independent
variables. Thus, in the spin nematic there
are two branches of transversal oscillations
of vector u polarized in the mutually perpen-
dicular directions. Then one can expand La-
grangian in powers of these variables. For our
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purposes it is sufficient to take into account
bilinear and biquadratic summands in upy,
Upy and Vnx Vn, and write L =Ly + Ly.

For description ofl{ the nonequilibrium ther-
modynamics of the system it is convenient
to pass to Hamilton formalism. This can be
done on the basis of Lagrangian L, (see for
details [5]). From the form L, it follows
that the variables u, ., u, , can be chosen as
the coordinates while -2hv, . and -2hv,
play the role of the corresponding canonica
momentums. Then Hamiltonian takes the
form of a sum of bilinear and bigquadratic
summands over the coordinates and momen-

tums,

where H, is quadratic part of the energy
W, written through the coordinates and mo-
mentums, and H, is just —L, with the gen-
eralized velocities expressed in terms of the
coordinates and momentums.

The transition to the quantum Hamil-
tonian is done as in [5], by the presentation
of Hy and H, in terms of creation and an-
nihilation operators of elementary excita-
tions polarized in directions of x and y,
respectively. Quadratic part H, takes diago-
nal form with the dispersion law
2V = cp)(L + ¢, — 2A - ¢p), where

ck(l/z)z exp(ika), z is number of nearest
a

neighbors, a is set of nearest neighbors vec-
tors of cubic lattice. The above dispersion
law is valid within the whole stability re-
gion for the nematic phase and for arbitrary
wave vectors till the border of Brillouin
zone.

Properties of the elementary excitations
are dependent on value of wave vector and
value of A. For small wave vectors ak <<|1,
k = |k| Hamiltonian H, of is ones for the
two-component ideal magnon gas

Hi = Ye,afay, + bby), ®
k
where a,”a, and b,", are operators of crea-

tion and annihilation x and y polarized of
magnons respectively with the dispersion law

g, = Jak\2z(1 — A) + (2A - 1)(ak)2.  (9)

This dispersion law is gapless for all the
values of A and has minimum at k&= 0.
Magnons, according to [5] have the all prop-
erties of Goldstone excitations. In long-
wave approximation they have linear disper-
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sion law, €, = Ack, ¢ = J(a/h)V2z(1 — A), and
the relaxation rate vy, is quadratic per their
frequency.

Near the border of Brillouin zone a be-
havior of dispersion law is different. For
wave vectors k= m/a — k, ak <<1 the dis-
persion law is written as

E7 = 2zJ2[22A + (1 - 8A)(ak)?].  (10)

At A>1/38 the spectrum is monotonous
and has maximum for wave vectors on the
border of Brillouin zone. At A<1/3 the
roton minimum appears. The dept of this
minimum is determined by the value of pa-
rameter A, and it is small at A —0. Such
excitations can be called rotons. Thus near
antiferromagnetic critical point one can in-
troduce two types of low-energy elementary
excitations: magnons and rotons. Hamil-
tonian non-interacting rotons can be written
in the form

HY = Y E(AFA, + BfB,), 11)
k

where A,%A, and B,"B, are creation and
annihilation operators for rotons with po-
larizations along x and y, respectively. At
A = 0 rotons have linear dispersion law,
E;, = hck, and their damping is high, vy, o
T(T/E)NIn(T/E,) [5]. At temperatures
(T/J)2>> A the numbers of rotons are non
small and they can essentially influence on
the relaxation of magnons.

The interaction Hamiltonian of the mag-
nons and rotons can be written as the sum
of terms containing products of four opera-
tors. An analysis of the energy and momen-
tum conservation laws shows that for small
wave vectors of the magnons and rotons
only the processes of scattering are allowed,
and the interaction Hamiltonian can be pre-
sented in the form

1 5_3 12
H=3YA1+2-3-4)x (12)
1,2,3,4
x[P(afASAga, + bFBEBgb,) + ®1afASBsb, +
+ ®yafBFAGL + h.c.],

where 1 =k;, 4=k, and éskz, §5k3 are
linear momentums of magnons and rotons,
respectively. The first term describes scat-
tering processes of magnons and rotons
without change of their polarization,
whereas the second term describes scatter-
ing processes of equally polarized magnons
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and rotons with change of the polarization
of the both scattering quasiparticles. Fi-
nally, third term describes processes of
scattering different polarized magnons and
rotons with change of the polarization for
both scattering particles. ®, ®; and @, are
the amplitudes of the corresponding proc-
esses, which have the following forms

- E2 - -
_EgEg - E§+ (Eg — Eg)(eg — &) + €184
=®, N ,
& EqE ey
(D]. =
_E,E; - Ej - &,Ey - e,Ey + &8, + MG E, + £,Ep)
= o ’
Ve, E E¢,
®, = (13)
. E,E, - EX+¢Ey+¢,E, +e¢, - Ag,E; +¢,E,)
0 Ve, E, E.¢, ’

where &y = 2J/16, and Ej = 22JA1/2 is the
energy gap for the roton spectrum.

A decrement of the magnon damping can
be calculated as the imaginary part of the
mass operator for the one-particle Green’s
functions [10] and can be present as

1T = (14)
® g(gk +E,— Ej~ €yp )
=mn(e k)z )T](Eq)n(3|k+p—q|)
psq

Here the notation n(ep) = sinh(e,/2T) is
used to short equations, T is the tempera-
ture in energy units, summation is per-
formed over the first Brillouin zone, and
2 = 02 + OF + 3.

In the system of coordinate with the
polar axis along vectors k delta function
can be written as

ep+ E,—E, - s{|k+p—qD = (15)

_2k+p-q d(x — xg
heglp + K V(21 - 2)(z - 2g)

where x = Pp=Py» and Pp» 9, are azimuthal an-
gles of the vectors p and q, z = kq/kg, xq is a
root of the equation &, + E, - E; — €4piq = 0
roots of the equation

and 219 are
o g t+ E E 8|k+p+q)/8x = 0. The roots

z1 9 are real if the condition g5 < g < ¢, is

fulfilled. For small-momentum limit of the
Al
magnons % >> k — 0 this condition takes

the form
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Fig. Plot of the function F versus the pa-
rameter x = E,/2T.

Vp2 + b p? + b3
G12=Pt k= ¢ ¢

- Py (16)
bo ‘

where by = (V2z/a)Al/2, and y — kp/kp.
Thus, the momentums of the thermal rotons
differ by the small quantity of the magnon
momentum. The amplitudes on the mass
surface of the processes take the form

(17)

q>=q>1=lq>2=q>0%

I
2 pIio]

Thus the amplitudes diverge at k£ — O,
but the calculation shows that the damping
is finite because at £ — 0 the phase volume
of the process tends to zero as k2.

Passing in (14) from summation to inte-
gration and analytical calculation of the in-
tegrals leads to the simple formula for the
magnon damping

08T gy (9

B 327;3 hebd f s1nh2(E /2T)

Integral in (18) can be calculated numeri-
cally for arbitrary temperatures, and the
magnon damping can be written as follow-

ing
33T T \3T\* (E (19)
Yi(T) = 217c07 Eo) ( ) F(zj()’]

where F(E;/2T) is a function of the tem-
perature, which has the form

_ I _[E2-ay,, (20
F®) =70y I =] sinh2e

263



V.I.Butrim, D.D.Moiseyenko/ Magnon damping in spin ...

The result of a numerical calculation of
the function F(x) is presented in Fig.

Thus the roton contribution to the
damping of magnons with small wave vec-
tors ak <<Al/2 has finite value at £ — 0
and it increases when approaching the antif-
erromagnetic critical point, where Ej is de-
creasing.

At the critical point A = 0 the dispersion
relation for both magnons and rotons be-
comes gapless. To find the magnons damp-
ing it is necessary to put Ep — g and
E,— ¢, in the relation (14). Then one ar-
rives to the standard integral known for the
case four Goldstone quasiparticles scatter-
ing, common to that in [5], but with essen-
tially different amplitude, which are diver-
gent at £ — 0 on the mass surface

o 0.309-0~ 21)
~ 9 Nkpgltp—q|

0 2q P

VEpglk+p—q|

_op. 209 - q%
2 Nepgltp—q

The analytical expression for the damp-
ing can be found for limit cases of small
and large magnon wave vectors, hck<<T
and hck>>T. Let us consider the most inter-
esting case at £ — 0. A calculation done for
hck<<T gives the following expression

(I)1=¢)

O

4 (22)
vi(T) = 26%;(5){% Tln(%} hek << T.

Well, exactly at the SU(3) antiferromag-
netic critical point the magnon damping at
hck <T diverges logarithmically.

Thus, in contrast with the ferromagnetic
critical point [5], where magnons are well-
defined by Goldstone excitations till the
value A = 1, Goldstone behavior of magnons
near the antiferromagnetic critical point is
broken because of roton contribution to the
magnon relaxation. Such behavior of the
magnon damping appears due to abnormal
behavior of the amplitudes of the magnon-
roton scattering, which diverge at £ — 0.
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Let’s discuss this problem in more de-
tails. At first blush the amplitudes for the
magnon-magnon scattering (13) are similar
to those found previously for ferromagnets
[11], antiferromagnets [12], or spin nemat-
ics [4]. These amplitudes are proportional to
the values of momentums of the quasiparti-
cles. For the standard case, all momentums
are small, and according to Adler’s princi-
ple all of them become zero on the mass
surface {4,1,12]. In contrast, for magnon-
roton scattering the momentum of rotons
are not small. Thus, if the magnons momen-
tums tend to zero, the numerators of (13)
are finite while denominators tend to zero.
As a result of this feature, the abnormal
behavior of the magnon relaxation appears
that described above.

We are gratefull to B.A.Ivanov for use-
ful discussion of the results and for help.
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3aracaHHSI MArHOHIiB Y CIHHOBOMY HEeMATHKY
nmo0au3y aHTH(EepPOMATHITHOI KPUTHYHOI TOUKHU

B.H.Bympim, /A.[4.Moiceenko

HocmimKeHo mpollecu pejakcallii eJeMeHTapHUX 30y/I/KeHb 3 MAJUMU XBUJILOBUMU BEK-
TopaMu (MarHOHIB) y HeMaTuuHi# dasi marmetura i3 cuunom S=1 mobausy SU(3) KputuyHOi
TOUKU Tepexoxy B aHTU(epoMaruHiTHuil cran. B okoni KpuTuuHOI TOUKM B 3aKOHi AmMcnepcii
3’aBageTbcA MimiMym mobamsy meki 3omu Bpinmioena. Bigmomigmi emementapHi 36yaixeHHA
mo6aM3y MBOTO MiHIMyMy (POTOHU) MalOTh UIIMMHHUN 3aKOH AucHepcii, ix saracaHusa BeJu-
Ke, i BoHU poOnATHL icTOTHUI BUJIMB Ha 3aracaHHs MarHOHiIB. BHecok poronis y saracamus
MATHOHIB BUABJIAETHLCA BETUKUM AK y camiil Touni mepexoxy, Tak i modbamsy Hei.
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