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The gradient of strong stray fields generated by various systems of permanent magnets
with giant magnetic anisotropy has been calculated. It is shown that the gradient values
near singular points are characterized by the dependence VH ~ AM(1/r), where A is a
constant for this system of magnets, Mg is the saturation magnetization of the magnet
material, r is the distance from the singular point. The field gradient in those areas may
reach about 108 to 108 Oe/cm. The indicated gradient level is comparable with maximum
values achieved in superconducting solenoids supplied with the conical tips produced of
soft magnetic material with high M. It is established that the volume forces with the
specific density of f = 4Msz/r arise near singular points in the magnet material being in
high-gradient field. The mechanical stress in a magnet caused by these forces is charac-
terized by the dependence ¢ » 47tMS21n(a/Xmm) and may reach 2-8 kg/mm?2.

PaccunTaH rpaJUeHT CUJIBHBIX IOJIell pPacCcesHUsd, MeHepUPYEeMbIX Pas3JIUYHBIMU CHCTEMAa-
MU W3 [OCTOSHHBIX MATHUTOB C TUrAHTCKOM MAarHWUTHON aHusorponueii. ITokasaHo, uToO
BeJMUNHA TIpajueHTa BOIUSM CUHTYJAAPHBIX TOYEK XapaKTepusyercsd 3aBUCUMOCTHIO
VH ~ AMg(1/r), Tie A — HeKoTopafd NOCTOAHHAA IJA JAHHON cUCTeMBl MarHUTOB. BOimsm
cuHrynApHBIX Touek |VH| Moxer mocrurars suauenuit [VH| ~ 106-108 B/cm. Vkasaunbe sHave-
HUS TPAgUEHTa IIOJsi CPABHUMEI C IIPEJEJIbHBIMU €r0 BEeJINYWHAME, KOTOPbIE [JOCTUIAIOTCH B
CBEPXIPOBOJSAIINX MArHUTAX C KOHMYECKMMU HAKOHEUHMKAMU, MSOTOBJIEHHBIMU W3 MaTepua-
JIOB C BBICOKOI MHIyKImMell. YCTaHOBIEHO, YTO B BLICOKOIPAJAMEHTHOM II0J€ B MaTepUaie MarHu-
Ta BOJMM3W CUHIYJISAPHBIX TOYEK BO3HUKAIOT OOBEMHBIE CHUJIBI C YIEJIbHON IIJIOTHOCTBHIO
f~4M s2/ r. MexaHnuecKue HAIPAKEHUS B MarHuTe, CBSIBAHHBIE C 9TUMHU CUJIAMU, XaPaKTEPH-

3YIOTCS 3aBUCUMOCTBIO G ~ 4TnM Szln(a/X min

The systems of permanent magnets gen-
erating strong magnetic stray fields, which
are the fields with strength values H ex-
ceeding the saturation induction Bg of the
magnet substance, H > Bg=4nMg, were
described in several works [1-5]. Existence
of such fields was proved by calculations
and tested experimentally [3, 4]. To provide
the strong stray fields, the magnet material
uniaxial anisotropy field Hy >> 4nMg, and
coercive force H ~ 4nMg are necessary. In
[5], the frame of magnet systems generating
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the strong fields was defined; such systems
were optimized as well. The strong fields
were revealed [3, 4] in the rare earth (RE)
based permanent magnet systems. These
relatively new functional materials are used
widely in various fields of modern engineer-
ing [6]. The peculiar property of these ma-
terials is magnetic anisotropy giant fields
amounting to hundreds thousands of
Oersteds [7]. The application areas of those
magnet systems are being widened steadily
as the knowledge on their properties be-
comes more profound. Revealing the strong
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Fig. 1. System of 2 magnets and yoke (a); plot of stray-field tangential Hy/(x,z) component for the
points located on the plane XOY in the region —0.1a < x < 0.1a; —0.1a < z < 0.1a (b). For plotting,

b > w; Mg = 750 Gs were assumed.

magnetic field effect in these magnets ex-
tends substantially the functional capabili-
ties thereof: for example, those can be used
in magnetic recording techniques as mag-
netic heads for recording onto high-coercive
storage medium [8], in biology [9], for de-
velopment of ESR microscope [10], etc.

The strong stray fields in materials with
giant anisotropy in the most cases are not
only strong but very inhomogeneous. In [3,
4], the field gradient VH for a simple sys-
tem of two magnets was evaluated. Since

any systematic investigations on the field _

gradient were carried out neither in these
works, nor in others [5, 8, 10, 11], this
study is carried out. In particular, it is of
interest to evaluate mechanical stress occur-
ring in the magnet material with high gra-
dient field. Further, the magnetic field gra-
dient, as shown in [9], defines its influence
on biological objects. The extent of mag-
netic field effect thereon is defined by the
product HVH. The same characteristic is
important in the case of an inhomogeneous
field application for separation of sub-
stances with different magnetic susceptibil-
ity. Thus, the gradient is an important
physical characteristic of magnetic field to-
gether with the strength one. The high-gra-
dient fields can be considered as a tool for
influence onto different test objects in
physics, engineering, and biology. There-
fore, it is important to know the field gra-
dient limiting values reached near singular
points in different magnet systems. Thus,
studying the strong magnetic field gradi-
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ents is an important scientific and practical
task.

Let us consider the gradient of the field
created by the simplest system of two mag-
nets (Fig. la). The field strength vector
over the system surface includes two compo-
nents: H,(x,z) and H,(x,z), the third com-
ponent being Hy(x,z) ~ 0 (Fig. 1b). The ver-
tical component of the stray field H,(x,2) is
described by the expression:

H (x,2) = (1)
2M S{arct{uj — arctg[uj - 2arctg(£]},
z z 2

where a is characteristic magnet dimension.
The horizontal component H, (x,z) is ex-
pressed as

H (x,2) = Mg[In(a? + 22 + 2ax + x2) - (2)
- 2In(x2 + 22) + In(a? + 22 - 2ax + x2)].
The surface in Fig. 1b characterizes the
field component H (x,2).

The tensor of field gradient is deter-
mined from the condition dH = Tydr, where

OH, OH, (3)
Tor — ox 0z
H™ |\ oH, ¢H,

ox 0z

As the magnetic field H is a potential
one and satisfies the Laplace equation [12],
the field gradient tensor Ty is symmetric,
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Fig. 2. Plot of field gradient tensor T, (x,2)
component for the points located in the re-
gion —0.1a < x < 0.1a; —-0.1a <z < 0.1a. For
T,.[(x,2) calculations, the value Mg=
1000 Gs was assumed.

and the following conditions are fulfilled
for its components:

0H, oH,

oz ox’ ox oz

0H, 0H, (4)

From Equations (1-4) for the system of
two magnets, the following expressions can
be obtained for the Ty tensor components
(Ty” that is presented below):

O0H ,(x,2) 4 x
ox  Sx2y 2
a+x x—a

Sa+x2+22 7 S -x)2+ 22

OHx2) o (5)
o0z Sx24 2
z z
— 2M — 2M &
S + x)? + 22 Sx - a)? + 22
OH ,(x,2) 4 z
ox  Sx24 22
B z g z
Sa + x)? + 22 Sx - a)? + 22
OH (x,2) x
e M ;
0z Sx2 4 22
a+x x—-a

+2Mg

+ 2M¢ .
(@ +x)2 + 22 S —a)? + 22

It follows from Eq.(5) that on the surface
of the magnets (z = 0) in the points with
coordinates x = 0 and x = ta, all the compo-
nents of the field gradient tensor approach
infinity. It is seen from Eq.(2) that these
points are singular also for the stray field
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Fig. 3. Field gradient tensor T,, component
vs(x/a) for different distances from the plane
XO0Y: z=0.002a (1) and z = 0.01a (2).

component Hy, i.e. the field gradient
reaches its largest values in the same points
as the field Hx does. The surface in Fig. 2
shows the calculated values of the gradient
component 0H,/0x. The singular points are
all those positioned at the system edges
shown in Figs. 1a, 1b at x = ta, z = 0, and
on the OY axis. In the vicinity of these
points, the field gradient component takes
on large values. At the points lying out of
OY axis, the field gradient has finite val-
ues. This is seen from Fig. 3.

Knowing the field gradient tensor compo-
nents, it is possible to calculate the deriva-
tive T,, of the field vector H in an arbitrary
direction m = cosoi + sinpk. The T, vector
is equal to scalar product T, = (Tp,n). Sub-
stituting the tensor components from
Egs.(5) into this expression, we get |Tn| is
independent on the direction of n vector
drawn from the point O at small distances r
from OY axis (r = [x2 + 22]0-% << a):

4-\/§MS_4-\/§MS (6)

T ~ Va2 422 r

In the case of r ~ a, it is necessary to use
directly the Eqgs.(5) to calculate the gradi-
ent.

For the points positioned on the OX or
OZ axes at small distances from the coordi-
nate origin, the expressions for derivatives
in OX(0Z) directions are the following :

4-\2Mg (7)

4 - N2Mg
X 2

|Tx| = > |Tz| =

The Egs. (5)—(7) characterize the gradi-
ent of the field generated by the system of
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two magnets (Fig. 1la). If a single magnet of
parallelepiped shape is considered [5], the
field gradient module is halved, i.e. at a
small distance from its edge (r << a) this
module is |VH|z2\/§MS(1/r). The similar
calculations for the systems of three and
four magnets described in [5] give the val-
ues |VH| ~ 3V6 Mg(1/r) and |[VH| ~ 8Mg(1/7),
respectively. When the number of magnets
in the system increases further, the
strength of the strong stray field at r << a
is  characterized by the dependence
H ~ AMgln(a/r), where the pre-logarithm
factor A depends on the magnet system
type, as shown in [5]. To estimate the limit-
ing gradient values in different systems,
the formula |VH]| zA\EMS(l/r) can be used.
Note that in a cylindrical magnet with ra-
dial magnetization, as shown in [11], the
coefficient A = 2n, while in the narrow gap
between a pair of such cylindrical magnets,
A = 4nm.

Let us estimate the limiting gradient val-
ues for the system shown in Fig. la. Using
Eq. (5)—(7), we get that in the small vicinity
of the point O, the gradient can reach high
values: VH =10% to 107 Oe/cm at r~ 100

to 0.5 ym and a sufficiently large magnet
characteristic dimension a (r < 0.01a).

It should be noted that large gradient val-
ues can be created not only with permanent
magnets with giant magnetic anisotropy. For
example, a high-gradient field arises in a nar-
row gap between two conic tips positioned in
high magnetic field produced by supercon-
ducting solenoids. To calculate the field gra-
dient of this system, the value A = 4.8 can be
used found in [5] for a system of two conic
magnets with large anisotropy. It follows
therefrom |VH|z4.8MS(1/r). As the mag-
netization of conic tips made of iron or Co—
Fe alloys exceeds at least twice the Mg of
RE-based magnets, the field gradient in this
system should be very high. In the system
of eight permanent magnets, the field gra-
dient is [VH| ~ 8N2Mg(1/r) [5]. This value is
comparable to field gradients of supercon-
ducting magnets with conic tips. Thus, to
create the fields with high gradients, it is
necessary to use the systems of permanent
magnets with large saturation induction
and giant magnetic anisotropy, for example,
as for SmCog (Hy ~ 450 kOe). In this case,
the gradient value may reach VH = 105-
108 Oe/cm at small distances from the mag-
net edge.

Let us consider the mechanical stresses
connected with ponderomotive forces in
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magnets with giant anisotropy. The stray
fields in the magnet are known to be pro-
duced by magnetic "charges”, thus, the
fields are not external. To calculate the
stress caused by the "Coulomb” forces, an
elementary volume AV should be chosen cen-
tered about a certain point of the magnet,
and the stray field strength H should be
calculated without taking into consideration
the stray fields from the "charges” localized
in this volume. The stray field from the rest
of the magnet will be external with respect to
the chosen elementary volume. The magnetic
energy of the elementary volume AV in the
field H, produced by the external neighbor-
hood, is Ef; = «(M,H)AV, and the force F act-
ing on the volume AV is calculated as energy
gradient  Ep, i.e. F(x,2) = VEg = -
VIM,H)AV. At M = const, this expression
may be written as follows:

F(,’)C,Z) = (TH,M) = (TH’MS)AV ’ (8)

therefrom we get the expression for density
of volume (specific) forces [12]:

f(x,2) = F(x,2)/AV ~ (T'g,Mg) (9)
or f ~ (Mg,V)H,

where V is differential operator, V = (0/0x)i
+ (0/02)k.

In a system of two magnets (Fig. 1a), the
magnetization vector is directed parallel to
OZ axis in all the points of the magnet,
hence, Mg = Mgk, where k is a unit vector.
Taking this into consideration, the expres-
sion (9) takes the form:

= M, (0H y/02)i + M 0H ;/dz)k. (10)

If the expressions for field gradient ten-
sor components (5) are substituted into
(10), the module of volume force density
will be equal to

[£(x,2)| ~ M[(0H ;,/82)2 + (0H ,/ 82)2]0-5 ~
~ AM3[(x2 + 220-5] ~ aM%/r. (1D

Here, the smallest value r = ry is deter-
mined from the relation AV » (ry)3.

Let us evaluate the stress ¢ occurring in
an elementary area AS = Az - Ay positioned
in the point M(x,0) at the distance x from
OY axis in the system of two magnets (Fig.
la). For estimating calculations, we shall
limit ourselves by the only component fy.

Functional materials, 15, 3, 2008
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The force acting on the mentioned area ele-
ment is equal to

x ) od (12)
F- Ij/f(x)dv - {:LHMSAS7.
The stress occurred are described as
x (13)

M3
[Fdx = aMne/ X 0.

O (x) =
min

In Egs.(12) and (13), X, ;, is the mini-
mum distance from the magnet edge, which
is assumed to be commensurable with in-
teratomic distance, i.e. X,,;, ~ 1077 em.

The limiting stress value can be determined
from the relationship Gz4MS2ln(a/Xmin).
It follows therefrom that the maximum
stress occurs near the magnet axis, and its
value is 6~ 2-8 kg/mm?2.

As it is known [12], in a ferromagnetic
with induction B, positioned in an external
homogeneous magnetic field H, the stress
o~ BH/8n occurs due to ponderomotive
forces. Since the external field strength cre-
ated by a permanent magnet does not exceed
H <5103 Oe, the stress value does not ex-

ceed o ~ 0.02 kg/mm?2. In the case of inho-
mogeneous field, additional stresses occur.
Those stresses are substantially higher (ap-
proximately, by a factor of In(a/X,;,)),
than in the magnet with small anisotropy,
where strong stray fields do not occur. Note
that relatively low stress level in the mag-
net (o <2-3 kg/mm?2) at high density of
volume forces f near singular points (see
Eq.(11)) may be explained by rapid attenu-
ation of these forces as the distance from
the magnet singular points increases.

Thus, the study carried out for high-gra-
dient fields generated by the permanent
magnet systems with giant anisotropy al-
lows the following conclusions. The field
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gradient module in the systems mentioned
reaches |VH|~ 105-10%8 Oe/cm, which is
comparable to the fields occurring in super-
conducting solenoids with conic tips made
of soft magnetic material with high induec-
tion. The high-gradient field generated near
singular points causes occurrence of high
volume density forces in the magnet mate-
rial. For example, in the system of two
magnets (Fig. 1la) the forces amount
f~ 4MSZ/r. These result in additional stress
of ¢ ~ 2-3 kg/mm?2 in the magnet.
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BucokorpamaieHTHI moJisg pPO3CigAHHA y MarHiTax
3 TIraHTCHKOIO aHi30TPOIi€I0

B.M.Camoganos, /].Il.beno3zopos, A.I'.Paénik

O0unc/IeHO IPaJieHT CUJIBLHUX IIOJiB PO3CIAHHSA, IO I'€eHEPYIOTHCSA PIBHMMHU CHCTEMAMU 3
mocTifiumx wMarHitTiB 3 riramTchbKo Mar"iTHowo axisorpomicio. Ilokasamo, m[0 BeamuyMHA
rpagieHTa mMOONM3Y CHHTYJIAPHHUX TOUOK XapaKTepuayeTnca samexHictio VH ~ AM(1/r), me
A — meBHa crasa s gaHol cucreMu MarHirtis. I'pagieHT moss MoOKe csAratTu 3HAYEHD
nopsgry 106-108 E/cm. Brasaunuil piBeHb rpajgieHTa € MOPIBHAHHUM 3 IPAHUYHUMU HOTO
BeJINUYMHAMH, SKi JOCATalOThCSI y HAAMNPOBIAHMX MAar"Hirtax 3 KOHIUHMMHN HAKOHEUYHUKAMU,
BUI'OTOBJIEHUMHM 3 MArHiTOM AKMX MaTepiajiB 3 BHCOKOIO iHmaykiriero. BceramosieHo, 1o y
BHCOKOI'PAJI€HTHOMY IIOJIi y Marepiasi marmity mobim3y CHUHIYJSPHHX TOUOK BHUHHUKAIOTH
00’€MHI CHMJIM 3 MATOMOIO I'yCTHUHOWI [ ~ 4M52/r. Mexaniuni Hanpyru y marsiri, mos’ssani 3
MUMU CHJIAMM, XapaKTepU3YIOThCA S3aJlelKHICTIO O ~ 4nMs21n(a/X ) 1 MOXKYyTH gocAraTu

9 min
3HAUeHb 2—3 KI/MM“.
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