УДК 621.9.014

О. А. Розенберг, докт. техн. наук; А. А. Шульженко, чл. – корр. НАН Украины; С. В. Сохань, А. Н. Соколов, канд. техн. наук; В. Н. Боженок, Н. А. Шуляковский, инженеры

Институт сверхтвердых материалов им. В. Н. Бакуля НАН Украины, г. Киев, Украина

ПРЕЦИЗИОННОЕ ТОЧЕНИЕ АЛЮМИНИЕВОГО СПЛАВА АМГ-6 АЛМАЗНЫМ НАНОСТРУКТУРНЫМ ИНСТРУМЕНТОМ

Changing roughness character of surface of alumina alloy AMG-6 is investigated at a precision turning by diamond nanostructural tool based on diamond powder with initial graininess of ACM5 0,1/0 and ACM5 0,5/0,1. Moreover, effect is investigated of sharpening cutting edge on roughness.

Введение

В последние годы темпы научно-технического прогресса стали зависеть от использования искусственно созданных объектов нанометрового диапазона. Созданные на их основе вещества называют наноматериалами, а способы их производства и применения – нанотехнологиями [1].

Одним из направлений наноиндустрии, которое активно развивается в настоящее время, является разработка материалов инструментального назначения, обладающих нанокристаллической структурой. Например, Институту промышленных технологий в Фраунгофере, Германия (Institut Produktionstechnologies, Fraunhofer) требуется токарный инструмент нано-кристаллическойструктуры с углом в плане 90° и радиусом при вершине 1 мм при переднем угле 0° и задних углах $5-10^{\circ}$, обеспечивающий контролируемую волнистость поверхности < 0.25 мкм (рис. 1). В этом случае для комплекса механических свойств важную роль играет соизмеримость размера зерна в сверхмелкозернистом поликристалле с размером дислокационной петли, что способствует существенному увеличению твердости [2].

некоторых, числе Для TOM инструментальных, материалов снижение размера зерна до нанометрических значений приводит к 4–5 – кратному возрастанию твердости И предела текучести. повышение прочностных свойств экспериментально подтверждает И новленная зависимость твердости или предела текучести от размера зерна (соотношение Холла-Петча) [1, 3]:

$$\Delta H_{v} = \psi \cdot k_{y} \cdot d^{-1/2},$$

где $\psi = H_{\nu}/\sigma_{\rm s}$ (H_{ν} — твердость дефектного материала; $\sigma_{\rm s}$ — предел текучести); k_{ν} — постоянная Холла-Петча.

Tool Geometry
radius: 1 mm
window cutting edge: 90°
clearance angle: 5°-10°
rake angle: 0°
controlled waviness: <0,25µm
conical clearance

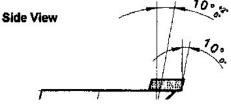


Рис. 1. Требования к токарному инструменту из природного алмаза.

Отсюда следует, что для получения качественного сверхтвердого поликристаллического материала с плотной однородной мелкозернистой структурой перспективно использование алмазных порошков нанометрического диапазона. При соответствующих условиях в нанодисперсном поликристалле или нанокомпозите возможна реализация уникального комплекса механических свойств, напри-

мер, сочетание очень высоких твердости и трещиностойкости, что имеет большое значение при применении указанных материалов для прецизионного точения полимерных материалов, цветных металлов и их сплавов.

Ожидаемое повышение уровня свойств инструментальных материалов, получаемых из порошков с размерами частиц нанометрического диапазона, может быть обеспечено только в том случае, если в процессе спекания заготовок не будет нарушена исходная дисперсность структуры. Эта задача в настоящее время решается в основном за счет подбора и введения в исходную шихту добавок, блокирующих рост зерна при спекании, за счет получения достаточно плотных структур уже на стадии прессования заготовок и использования техники высоких давлений при спекании. В частности, в работах [4-6] показано, что различные виды воздействия на исходные нанопорошки алмазов и подготовленную шихту (применение химического модифицирования поверхности частиц нанопорошков алмаза, предварительная механическая активация, например, методом холодного изостатического прессования), а также использование добавок активирующих, процесс спекания, позволяет повысить физико-механические свойства спеченных материалов. Сохранение нанодисперсной структуры полученного композита позволит широко использовать его при финишной обработке методом точения цветных металлов и сплавов, в частности, как альтернативу однокристальному алмазному инструменту, который примерно в 4 раза дороже обычных инструментов из поликристаллических алмазов, но при точении, например, алюминиевых поршней обеспечивает шероховатость до 0,1 мкм вместо 0,4-1,25 мкм при использовании поли-кристаллического алмаза [7].

Цель настоящей работы — изготовить лезвийный инструмент из алмазных нанокомпозитов и исследовать его работоспособность при прецизионном точении алюминиевого сплава $AM\Gamma$ -6.

Методика эксперимента

В качестве исходного материала использовали смеси нанопорошков алмаза статического синтеза ACM5 0,1/0 и ACM5 0,5/0,1, не подвергавшиеся предварительной химической очистке и термообработке в вакууме, фракционный и примесный состав которых соответствовал ДСТУ 3292–95 [8].

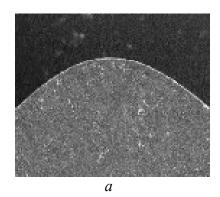
Спекание при высоких давлениях проводили с использованием аппарата высокого давления (АВД) типа тороид с диаметром центрального углубления 13 мм, который обеспечивает спекание при давлениях до 8,0 ГПа. В качестве добавок, активирующих процесс спекания, были выбраны растворители углерода на основе оксидов переходных металлов, которые в исходной шихте составляли 2–15 % (по массе) [9]. Подготовленную смесь активировали методом многократного изостатического прессования при давлениях от 1,1 до 5,0 ГПа. Спекание шихты проводили при давлении 8,0 ГПа, температуре 2000 К. Продолжительность спекания составляла 20-30 с.

Методом электронной микроскопии ранее [6] была определена микроструктура подобных образцов. Основной составляющей микроструктуры являлись зерна размерами 70–100 нм. Нанодисперсные зерна имели в основном форму многогранников с сильно сглаженными вершинами. В объеме зерен всех размеров выявлены также изгибные контуры, что указывают на высокий уровень напряжений в них.

Перед изготовлением резцовых вставок из наноструктурного материала были исследованы их механические свойства (твердость и трещиностойкость). Твердость HV 0,5 изменялась в пределах 55–65 $\Gamma\Pi$ а, а трещиностойкость K_{1C} составляла 8–12 $M\Pi$ а·м^{-1/2}.

Требуемый профиль в плане резцовых вставок (угол в плане 90° и радиус при вершине 1 мм) и задние углы главной и вспомогательной задних поверхностей ($5-10^{\circ}$) из исходных таблеток диаметром 4,2-4,4 мм; последующую доводку задних поверхностей обеспечивали шлифованием на универсально-заточном станке в несколько переходов алмазными чашечными кругами типа $12A2-45^{\circ}150\times20\times3\times32$ разной зернистости. Резцовые вставки закрепля-

ли с механическим креплением в державке, которую укрепляли на поворотном приспособлении, установленном на столе станка (рис. 2, a), и регулированием углового положения державки в приспособлении устанавливали задний угол 5° (рис. 2, δ). Требуемый радиус при вершине на резцовых вставках обеспечивали позиционированием вертикальной оси поворота приспособления относительно рабочей поверхности алмазного круга.



)

Рис. 2. Поворотное приспособление для профилирования и доводки резцовых вставок по задней поверхности (а); установка заднего угла (б).

Формирование требуемого профиля на резцовых вставках (в качестве заготовки использовалась таблетка) осуществлялась алмазным кругом марки АСМ зернистостью 60/40 % концентрации на полимерной связке B2-01 (см. рис. 3, a). Доводку задних поверхностей обеспечивали шлифованием последовательно алмазными кругами марки АСМ зернистостью 28/20, 14/10 и 7/5 также на полимерной связке B2-01. Недостатком такой схемы доводки задних поверхностей является формирование указанных поверхностей с направлением следов обработки не вдоль, а поперек режущей кромки (см. рис. 3, δ), что, естественно, сказывается на качестве обработанной поверхности. Как показано на фотографии, полученной на электронном микроскопе, ширина режущей кромки составляет порядка 100 нм (рис. 4).

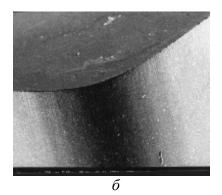


Рис. 3. Профиль в плане резцовой вставки – а; и следы обработки на задней поверхности вставки – б при увеличении ×70.

Для устранения микросколов режущей кромки и уменьшения радиуса ее округления резцовые вставки доводили по передней поверхности на чугунной планшайбе, шаржированной микропорошком алмаза марки ACM зернистостью 2/1, на универсальном плоскодово-

дочном станке, обеспечивающем частоту вращения планшайбы 2000 об/мин, в то время как на резцах из природного алмаза получают радиус округления режущей кромки 20–2 нм, что обеспечивает прецизионное точение оптических поверхностей с шероховатостью $Ra \le 10$ нм. Точение резцом с радиусом округления режущей кромки в указанном диапазоне характеризуется неизмеримо малой силой трения о заднюю поверхность резца (рис. 5).

Одновременно была изготовлена резцовая вставка диаметром 4 мм, у которой задний угол (5°) обеспечивали за счет формирования задней конической поверхности методом круглого наружного шлифования. Таким образом задавали направление следов обработки не поперек, а вдоль режущей кромки, что должно было способствовать повышению качества обработанной поверхности. К сожалению, из-за отсутствия технологических возможностей доводку таблетки по передней поверхности на чугунной планшайбе для устранения микросколов режущей кромки и уменьшения радиуса ее округления не проводили.

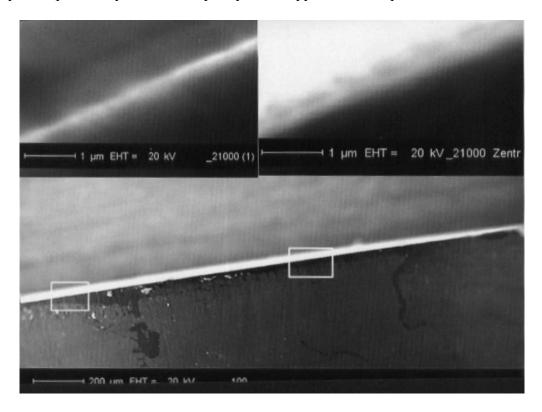


Рис. 4. Радиус округления резцовой вставки при увеличении соответственно $\times 70$; $\times 14000$; $\times 17000$.

Прецизионное точение алюминиевого сплава АМГ-6 алмазным нано-структурным инструментом выполняли по схеме точения торцовой поверхности на станке мод. МО–1045, разработанным в ИСМ для прецизионного алмазного точения оптических поверхностей резцами из природного алмаза (рис. 6). Использовали образцы алюминиевого сплава диаметром 200 мм. Станок обеспечивал частоту вращения образца 525–530 об/мин. Глубина резания составляла 3,5 мкм, смазочно-охлаждающая технологическая среда (СОТС) — технический спирт. Подачу резца, оснащенного вставкой из алмазного наноструктурного материала, изменяли ступенчато, обеспечивая ее постоянство в диапазонах скорости резания, приведенных в табл. 1.

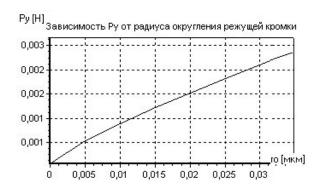


Рис. 5. Зависимость сил резания от радиуса округления режущей кромки резца из природного алмаза.

Таблица 1. Диапазоны изменения скоростей резания и подача резца

Диапазон скоростей ре- зания, м/мин	Подача резца, мм/мин		
250–330	4,0±0,25		
200–250	$2,5\pm0,05$		
15–200	$7,5\pm0,05$		

Измерение шероховатости поверхности алюминиевого сплава АМГ-6 после прецизионного точения алмазным наноструктурным инструментом выполняли на профилометрепрофилографе мод. «Talysurf–5M–120» фирмы «Taylor–Hobson» (Англия), позволяющем проводить измерения высотных параметров шероховатости поверхности с точностью до $0,001\,\mathrm{MkM}$.

Результаты эксперимента

Прецизионное точение алюминиевого сплава АМГ-6 выполняли алмазным наноструктурным инструментом, имеющим условные обозначения 68/3; 68/5; 82/1 и 70/1 (круглая таблетка). Результаты измерения высотного параметра Ra шероховатости поверхности алюминиевого сплава АМГ-6 после прецизионного точения указанным алмазным наноструктурным инструментом приведены в табл. 2.

Рис. 6. Станок мод. MO–1045 конструкции ИСМ для прецизионного точения плоских и сферических деталей оптики.

	Параметр Ra (мкм) при подаче резца (мм/мин)						
Обозначение	2,5±0,25		4,0±0,05		7,5±0,05		
инструмента	диапазон	ср.зн.*	диапазон	ср.зн.*	диапазон	ср.зн.*	
68/3	0,0290,021	0,025	0,0380,036	0,037	0,0410,033	0,037	
68/5	0,017	0,017	0,0390,036	0,037	0,0390,036	0,037	
82	0,0180,015	0,017	0,0250,015	0,020	0,0280,025	0,027	
70 к	0,0320,029	0,030	0,0290,028	0,028	0,0270,025	0,026	

Таблица 2. Шероховатость поверхности алюминиевого сплава АМГ-6

Наиболее низкие значения параметра Ra шероховатости поверхности алюминиевого сплава АМГ-6 после прецизионного точения получены при использовании алмазного наноструктурного инструмента, имеющего условное обозначение 68/5 (рис. 7).

Выводы

Впервые изготовлен и испытан при прецизионном точении алюминиевого сплава $AM\Gamma$ -6 лезвийный инструмент из алмазного нанокомпозита. Его применение позволяет снизить шероховатость обработанной поверхности до уровня Ra = 0.015 - 0.018 мкм.

Также установлено, что сочетание рационального состава алмазного нанокомпозита и тонкой доводки режущего клина для резца с радиусом при вершине R=1,0 мм позволяет в совокупности обеспечить снижение высотного параметра шероховатости обработанной поверхности на 30–35% по сравнению с резцом–аналогом, у которого R=2,0 мм, но режущая кромка не была доведена.

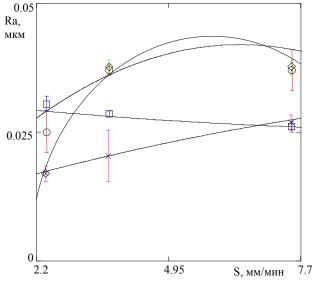


Рис. 5. Характер изменения параметра Ra шероховатости поверхности после прецизионного точения различными резцовыми вставками: 68/3 (\bigcirc); $70 \times (\square$); 68/5 (\lozenge). $\times 82$.

Работа выполнена при финансовой поддержке Украинского научно-технологического центра (проект № 1745).

Литература

1. Андриевский Р. А., Глезер А. М. Размерные эффекты в нанокристаллических материалах. І. Особенности структуры. Термодинамика. Фазовые равновесия. Кине-

^{* –} Среднее значение 3-х измерений в каждой точке.

- тические явления // Физика металлов и металловедение. 1999. № 1. С. 50–73.
- 2. Физика ультрадисперных систем / Ред. кол.: Морохов И. Д. и др. М.: Наука, 1987. 260 с.
- 3. Сверхтвердые материалы: синтез, свойства, применение: Докл. междунар. семинара / Ред. кол. Н. В. Новиков (отв. ред.) и др. Киев: Наук. думка, 1983. 236 с.
- 4. Сверхтвердые материалы. Получение и применение: монография в 6 томах/ Под общ. ред. Н. В. Новикова. Том 1: Синтез алмаза и подобных материалов / Отв. ред. А. А. Шульженко. Киев: ИСМ им. В. Н. Бакуля, ИПЦ «АЛКОН», 2003. 320 с
- 5. Шульженко А. А., Соколов А. Н., Гаргин В. Г. Активированное спекание алмазных нанопорошков в условиях высоких давления и температуры // Породоразрушающий и металлообрабатывающий инструмент техника, технология его изготовления и применения: Сборник научных трудов Киев: ИСМ им. В. Н. Бакуля, 2004. С. 101 106.
- 6. Шульженко А. А., Соколов А. Н., Олейник Г. С., Гаргин В. Г. Исследование влияния условий спекания на формирование структуры и свойства наноструктурных алмазных композитов // Породоразрушающий и металлообрабатывающий инструмент техника, технология его изготовления и применения. Сборник научных трудов Вып. 8. Киев: ИСМ им. В. Н. Бакуля, 2005. С. 149—155.
- 7. Novak D. The benefits of tools made from single-crystal diamond // Cutting Tool Engineering. 2002. 54, № 2. P. 38–43.
- 8. Порошки алмазні синтетичні. Загальні технічні умови. ДСТУ 3292–95, Київ: Держстандарт України, 1995. 71 с.
- 9. Деклараційний патент на корисну модель № 12204 Україна, C22C 26/00. Спосіб одержання композиційного матеріалу на основі нанопорошків алмазу / О. О. Шульженко, О. М. Соколов, В. Г. Гаргін Опубл. 16.01. 06. Бюл. № 1.

Поступила 23.06.2006 г.