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In the presence of anisotropic pinning due to unidirected twins, the nonlinear vortex dynamics is
discussed in terms of phenomenologically introduced anisotropic drag and pinning viscosities. The
theoretical basis for experimental reconstruction of these viscosities is proposed. The nonlinear Ohm’s
law is derived. Assuming the anisotropic pinning alone (a-pinning model): a) new scaling relations for
the anisotropic Hall conductivity are predicted; b) nonlinear guiding effects are discussed; c¢) specific
current and angular behavior of current-voltage characteristics are analyzed.
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The influence of twin boundaries (TB’s) on the
transport properties of high-T, superconductors is a
topic of great current interest [1—11,16—18]. One of
the reasons for this interest is that the TB’s are
naturally occurring planar defects that can easily be
formed in a high-T, YBa,Cuy0,_ (YBCO) com-
pound.

It is generally recognized that the order parame-
ter is slightly suppressed at TB’s [1]. As result, an
isolated TB attracts vortices and pins them [1]. The
TB pinning force acting on the vortices directed
along the c-axis (and the TB) of the crystal is often
strongly anisotropic, because it is usually consider-
ably weaker for the motion of vortices along twins
than across them [2].

Recently, the problem of twin influence on the
vortex motion in plane geometry has been studied
numerically [3,4]. The simulations in [3,4] were
performed for the interaction of moving vortices
with only one isolated TB. Some interesting dy-
namic peculiarities of this interaction were eluci-
dated. However, it is worth noting that, in a real
transport experiment [2,5-10] we usually probe a
certain «self-averageds vortex dynamics, which re-
sults from the interaction of vortices with many
TB’s, distributed with some average density bet-
ween voltage leads. Obviously, this self-averaging
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will «smear> some subtle details of the vortex
interaction with an isolated TB, which were de-
tected in [3,4].

Several Hall experiments [5—7] were performed
on YBCO samples, where TB’s were oriented basi-
cally in two mutually orthogonal directions. Be-
cause the transport response of the crystals was
always measured as an integral property, the pin-
ning anisotropy of twins in this case was commonly
masked, i.e., the influence of TB’s pinning on
ab-plane transport in the H| ¢ geometry is, on the
average, isotropic, as for point pins (neglecting
small ab-axis anisotropy).

A much different type of situation (anisotropic)
occurs if we measure the ab-plane transport
response of single crystal with unidirected
twins [2,8-10]. It is generally believed [11] that
the main special feature of this response lies in the
possibility of the «guided» motion (GM) of vortices
along the easiest direction (in the case of TB’s —
mostly along them). This GM generates a new,
specific contribution to the transverse (with respect
to the current direction) resistivity of the sample
Pf, , which is even with respect to the magnetic field
reversal (in addition to the odd Hall contribution
Pg , inherent in the isotropic pinning contribution).
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Earlier, experimental and certain theoretical as-
pects of anisotropic pinning and GM of vortices
moving in the flux flow regime (for cold-rolled
Nb-Ta sheets) have been discussed in detail by
Niessen and Weijesenfeld in [12]. Interest in these
problems was renewed after detection of TB’s in
YBCO. Apart from the experimental works [2,5—10],
we should also mention in this connection the
recent theoretical paper by Mawatari [11], where
the single-vortex anisotropic pinning dynamics has
been discussed within the frame-work of the «mic-
roscopic» approach based on the Fokker-Planck
equation.

Another approach to the anisotropic pinning was
first suggested by Sonin and Kholkin in [13]. They
proposed the general form of a linear Ohm’s law in
uniaxially anisotropic media, which was formulated
(on the basis of symmetry considerations) in terms
of four phenomenologically introduced «intrinsics
resistivities [13]. In this approach, besides pf; (and
in addition to the usually measured even longitudu-
nal contribution pﬁ), a new, angle-dependent, odd
longitudinal resistivity P also appears, due to a
possible anisotropy of the Hall drag coefficient in
the twinned sample. The last effect has recently
been observed for the first time in a YBCO single
crystal with unidirected twins [9].

Note, however, that there are no reasons to
expect the change of the Hall drag coefficient a,
due to point pins, for isotropic pinning [14,15].
This directly implies a simple scaling relation
pg - O(l-(pﬁ)2 between current-dependent, nonlinear
resistivities p5(j) and i) for py << pjj [14,15].

In order to study possible scaling relations
within the frame-work of the phenomenological
approach [13], we have generalized its results to the
nonlinear case. In so doing, we follow the pheno-
menological approach used recently by Vinokur et
al. in [14] for the case of isotropic pinning. Below
we use the method of [14] for considering both the
isotropic and anisotropic pinning, and so we can
derive the nonlinear Ohm’s law, which was postu-
lated earlier for the linear case in [13]. In this way
we clarify the origin of the earlier introduced in
[13] four phenomenological resistivities in terms of
drag and pinning viscosities, i.e., at a more detailed
level. Below we also show that these viscosities
can be reconstructed (for purely anisotropic pin-
ning) from current-voltage measurements in two
simple special experimental LT-geometries (see
Figs. 1,b,c).

The main advantage of this phenomenological
approach (for example, in comparison with the
microscopic approach in [11]) lies in the possibility
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Fig. 1. The schematic sample configuration for three cases with
different values of angle a between the current density vector j
and the unit vector m directed along TB’s, which are shown
by thin parallel lines: general case, a # 0, /2 (a); longitudi-
nal L-geometry, j O mﬁ , 0 =T1/2 (b); transverse T-geometry,
jO mT‘ . a=0 (¢); in all cases E, and EH are transverse and
longitudinal (with respect to j-direction) electric-field compo-
nents, m [J m, .

of predicting and explaining the most general as-
pects of self-averaged vortex motion in the presence
of TB’s anisotropy in simple, physically transparent
terms. We can than elucidate the appearance of two
new anisotropic contributions to longitudinal and
transverse resistivities (odd P and even pf , respec-
tively), the scaling of anisotropic Hall conductivi-
ties, the nontrivial angular dependence of current-
voltage characteristic’s (CVC’s) in a nonlinear re-
gime, the peculiarities of nonlinear guiding of the
vortices, and some other general results.

a) Discussion of the model and nonlinear Ohm’s
law derivation. To be specific, let us consider the
YBCO single crystal with unidirected twins in the
geometry, where a homogeneous transport current
of density j flows in the ab-plane and external
magnetic field H is directed along the c-axis. We
ignore below small ab-plane anisotropy of the de-
twinned crystal; so, all the anisotropic effects under
consideration are caused by TB’s with the average
distance between them d >> a,, where a, is the
intervortex distance. In this limit we can suppose
that € =a,/d is the relative fraction of vortices
trapped by the twins. The TB’s presence changes
both electronic and pinning properties of the pre-
viously isotropic crystal. Let n, and a; be isotropic
(bulk) vortex drag and Hall drag viscosities, re-
spectively. In addition, we attribute the anisotropy
of these viscosities to the vortices being at the TB’s.
Then for appropriate viscous drag and Magnus
forces we have
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fo=-nv. fi=-nv-nv.-nv, (q)

f’M =-0,v Xn,
(2)

d - —_ —_
fM— o,V XN =0V, Xn -0V, %n,

Here v, and v; are transverse and longitudinal (with
respect to TB) average vortex velocities, respec-
tively (v =v, +v,, see Fig. 2); n,, n; and a, , q;
are the corresponding excess anisotropic viscosities
(as compared to isotropic contributions); n is the
unit vector in the magnetic field direction
(n=H/H). As for now, we also consider both bulk
(isotropic) and anisotropic (TB’s) pinning forces.
Also, for the former, we assume, as in [14], that
f; = - y,(v)v, where y,(v) > 0 is the nonlinear phe-
nomenological viscosity, which depends only on the
magnitude of » = |v|. The anisotropic pinning force
f¢ | which acts on the vortices at TB’s, can be
written as

f; ==y -y, (vhv, - v, (v, , (3

where y, and y, are the average phenomenological
transverse and longitudinal vortex pinning viscosi-
ties, respectively. Equations (1)—(3) allow us to
write the force balance equation for the k-th vortex
in much the same way as in [14]. Then, on averag-
ing it over disorder, thermal fluctuations, and also
vortex twin and bulk positions [14], we arrive at

1

Fig. 2. The ab-plane geometry of v and f components in two
coordinate systems: ([, t) coordinates with unit vectors m
(along j) and m; (O,|]) coordinates with unit vectors e (along

j) and e ; v — average vortex velocity, f, — Lorentz force,

0o
j — current density. Angles a, B, § — see text.
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the following dynamic equation for the average
velocity of «effectives vortex in the crystal with
unidirected TB’s

~

n,v+o,vxn+
+5[”t"t+0‘t"txn+rlz"z+°‘l"zxn]: 75 (4)

n; =N+ Vo) ne=ng+y v, ng=n+y v
6))

where f; =(®,/c)j xn is the Lorenz force (® is
the flux quantum and ¢ is the velocity of light). Let
m and m;=zxm be the unit vectors of (¢, I)
coordinate system (see Fig. 2), directed perpendicu-
larly and parallel to the TB’s, and z be the unit
vector along the z-axis, which is perpendicular to
the sample plane (n = nz, where n =+1). Then,
taking into account that v = (¢/H)E x n, where E is
the in-plane electric field, we can arrive at a non-
linear Ohm’s law in the form

j=(2/HO) (N, E+ 0, Exn +

+&N,E +a,E xn+nE,+a,E xnl) . (6)

Here E,=E, m, E, = E, m and E,=m [E, E,=
=m CE. Because of E;=(nrH/c)v, and E,=
= - (nH/c)v;, viscosities (5), actually, depend on
corresponding electric-field components.

Vector Eq. (6) can be represented in the scalar
form

o, By - o k=, 7
O ~ L
Om nE,+ 0, E =7

where j, =m [Jj, j, = m [, and the quantities

0, = (2/H®y) [0, (E) +en, (E))] = o(E) + o,(E ),

(8a)
o, = (¢2/Hdy) [n,(E) + en(ED] = 0,(E) + o (E]) ,
(8b)
Oy == (0, +€a) (2/HD) ,
(8¢c)

Oy = - (0, +ea) (> /HD)

are the additive functions of the appropriate viscosi-
ties and have a physical meaning of the correspond-
ing components of the conductivity tensor (in #—I
representation):

~ O 8 - no,,0
0=[] ! N 9)
f%m 9% Q4
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The formal solution of Egs. (7) as linear equa-
tions (but with nonlinear coefficients!) allows one
to deduce the nonlinear Ohm’s in the E(j) form (see
also [16]):

E = p; m(m Cjj) + p, m(m, [Jj) +

+n [P my(m 0fj) = pgy m(my Cj)1, (10)
pp=0/Ds, p,=0; /Dy,
(11

Pi=~0y /Dy, Pyi=-0g /Dy,

where D = 61 8t + 0y 0> and Egs. (11) give
the elements of resistivity tensor p which is the
reciprocal of 0. Although Eq. (10) formally resem-
bles a similar expression for the linear Ohm’s law
in [13], its physical meaning is WAider, Abecause,
generally, the resistivities p,, p,, Py, Py, » are
the nonlinear functions of E [see Eqs. (8)], and this
circumstance is denoted by the superscript « * ». If
E-dependence of p is irrelevant, then Eq. (10) is
equivalent to the similar equation in [13] (see
also [17]).

In experiment, one usually measures the longitu-
dinal E | and transverse E (with respect to j-direc-
tion) components of E. In these (O, | ) coordinates
(see Fig. 2) the unit vectors are e =i/7,
eg=zxj/j,and E = E” e+ E ey . Then there are
simple relations between E, , E; and E” , E of the
form

0 ;D , (12)

where x = m Ce, and y = m e . Then, in view of
(12), we have

Ej=@f+np)j, Eg=@5+npp)j; (13)

P =0 P Eom o
%E = xy(pt - pl) ’ %i = xy(pH[ - th)

Note, that the experimentally measured pE!” values,
generally depend, as defined by Eqs. (14), on the
angle o between my and j (see Fig. 2) in two ways.
The explicit dependence on o can easily be seen
from Egs. (14), provided that the elgments of the
tensor p do not depend on E, i.e., if p - p, where
p is the tensor of the linear Ohm’s law. However,
in nonlinear regimes there appears an additional
nonlinear angular dependence of E)E,II through the
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implicit dependence of p-tensor elements on E, , E,
fields, which, in their turn, depend on the a value
through j, = a7 and j, = yj by Egs. (7). Below we
pay a special attention to this a-dependence due to
its nontriviality. .

b) Scaling and <reconstruction» of O in the
a-pinning model. Equations (14) show that, in the
case of linear Ohm’s law, resistivities pﬁ’D(a) can be
found for the sample with an arbitrary a value (see
Fig. 1,a), if four current-independent intrinsic re-
sistivities p;, P, , Py, Py, are known. In their
turn, they can be measured experimentally (<recon-
structed») in two special («reduced») geometries of
experiment (see Figs. 1,b, 1,¢), namely, p; , py; —
in the longitudinal T.-geometry (j O TB’s), and p, ,
Py, — in the transverse T-geometry (j| TB’s). In
these reduced L.T-geometries the sample with unidi-
rected twins behaves isotropically, because, by vir-
tue of Eqs. (14), the two new resistivity compo-
nents pf, and Pyl » which are specific to anisotropic
geometry of general type (a # 0, T[/2), are equal to
zero. Below we show that for the case of purely
anisotropic pinning [e-pinning model, y;(v) = 0],
the above-mentioned situation can be generalized to
the nonlinear regime.

Actually, it can be shown that Eqs. (7) can
be written for both IL-geometry (x=2x; =1,
y =y; = 0) and T-geometry (x,; =0, y, = 1) as

~ L, -L L _ . ~ T\ T T _
S)-Z(E”)E” _O-Ht ED_] g)-l(ED)ED-{-O-Ht E” =0

O 1L L » O~ T T .
Elb-t(ED)ED + oy By =0 %bt(E”)E” ~Om Ep=J
(15)

Now we assume that four CVC’s, namely Eﬁ(]’),
Eé(]'), Eﬂ(]'), Eg(;'), are experimentally known. Let
also Eﬁ = fL(Eé) and Eﬁ = fT(Eg), where the func-
tions f; (¥) and f(x) are known, too. Then, after
some algebra with Eqs. (15) we arrive at

oy, = 5/ 1EL + (]
g _ . T Tyq '
%UHZ =—j/[Eg+ fL(E”)]
éﬁ(x) = [ @)/l +f 10/ f@)
To,(2) = i) () /2111 + [ @)/, @)

where jﬁ(Eﬁ), ]'T(Eﬂ) are the functions inverted to

the functions E”(]'), Eﬂ(/'), respectively. Equations

(16)

(16) give the complete and exact solution of the
o-tensor reconstruction problem in the ¢-pinning
model. They allow us to express exactly the longi-
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tudinal and transverse CVC'’s of the sample with
arbitrary angle a (see Fig. 1,a) in terms of four
CVC’s experimentally measured in LT-geome-
tries [17] at arbitrary constant values of 0y;;, Oy, ;
the expressions for the last are, in fact, the desired
scaling relations in the a¢-pinning model. If, as is
often the case in experiment [5,9], the Hall com-
ponents of the O-tensor are considerably smaller
then the diagonal components, then Eqs. (16) are
greatly simplified to

EIb-Ht = _]'/fT[EﬁU)]

0 . T, O T -
Om = /1 LE ()] %Ut(x) =J)(x)/x

B0 =[x (1)

Physical realization of pure anisotropic pinning
considered here is most probable in the temperature
range Tép <T< Tﬁ , where Tép and Tgp are de-
pinning temperatures [1] for the point pins and the
longitudinal motion of vortices on TB’s, respec-
tively.

¢) Guiding analysis. Below we present the main
results of studying the GM in the a-pinning model.
For simplicity, we here neglect generally small
nondiagonal Hall terms in the o-tensor (Eq. (13)).

First we consider the linear case, where
p; = pﬁL , Py = p|+|T, i.e., p; , p; values can be meas-
ured in LT-geometries. At arbitrary angle
a # 0, /2, the directions of v and f do not coincide
(see Fig. 2), if n,#n, Gie., p, # pl). Let us define
the auxiliary angle Y as a measure of competition
between guided (~v;) and transverse (~v,) motion

of vortices across TB’s («slipping», in terms
of [12]). Tt follows from Eq. (4) that

tan ¢ = v,/v; = tan a /tan a , (18)

where tan a,=p, /p; . In general, 0 <o, <T1/2,
however, normally [2,8] p, < p; and a, < T/4. We
also introduce another angle B = a + () (see Fig. 2),
which can be measured experimentally [12], be-
cause

cot B = —EE/EH' = —pE(a)/pﬁ'(a) . (19)
As it follows from (19) and the definition of (3,
cot B =tan a(1 - tan O(C)/(‘can2 a+tanay) . (20)

From Eq. (20) one can deduce that the B(a) depend-
ence is always nonmonotonic (see Fig. 3). The ex-
treme value of B, (B, at o, > T/4 or B . at
0, < T/4) is attained at the tan a, = (tan a,)!/2

and B, = 20, . Experimentally, of special interest
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Fig. 3. Schematic nonmonotonic dependence of B on a, where B
is the angle between j and v (see Fig. 2) and o is the angle
betweenjande:otc=0(z,[3=[3<(a); 0(6=0(Z,[3=[3>(b).

are the cases where cot B >> 1, i.e., the transverse
electric field Ef, is considerably greater than the
longitudinal field E} due to the dominant role of
the GM. More detailed examination of Eq. (20)
shows that the most favorable conditions for that
case will be at tan o, << 1 and tan a << 1. In fact,
there are two limiting cases, were |[Ef|>> |ET||,
namely

Utan a 9

Eti >> 1, tan® o << tan a, << tan a
cot B=p ar11 % (21a)

u! >>1,tan0(c<<tan20(

Stan o (21b)

The situation is quite real experimentally, because
in experiment [8] it was shown that tan a, < 1076
at T =87 K for YBCO (see Fig. 1, curves { and 5
in [8]). Note also that the distinction between cases
a) and b) in Eq. (21) follows from the fact that the
angle B always shows an extreme behavior in the
vicinity of angle a, (see Fig. 3).

The linear result can be generalized to the non-
linear regimes if we replace tan a, by tan o, =
=pED/PE), ie., we take into account that
a, - o,a, 7). It can be demonstrated (see Egs. (8)

c

and (11)) that
T(7.
tan a, = pr(7)/ PGy = D7%‘52111 a, (22)

where, as previously, Eﬁ(]') =jp; () and Eﬂ(]’) =
= jpr(y) are longitudinal CVC’s in LT-geometries,
respectively. Because a, =a (a, j), the nonlinear
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o—j dynamics of cot[% may be more complicated
than in the linear case. The two limits (a - 0
and o - T/2) are of particular interest. For exam-
ple, if a - /2, then in the creep regime (for
the power-law CVC’s) we may have p,(j cos a) -
- pr (/2 — a)] << pp(f), whereas p;(j sin a) =
= p;(7). So, if for LT-geometries at fixed j the
values of p,(j) and p; (j) are of the same order, i.e.,
tan &C < 1 for a =14 (weak guiding), then in
the limit o - m/2 there should be tan a, << 1,
i.e., we can expect an essential nonlinear enhance-
ment of the guiding effect. Similar reasoning for
o - 0 shows that tan &C >> 1 is feasible; then it is
possible that in the process of o increase from 0 to
T/2 at fixed j the observed voltage V' changes its
sign, passing over Vi =0 at tan a, = 1. Yet, from
the experimental viewpoint, it is of greater interest
to realize this transition for the given sample
(o =const) by changing the current; qualitative
analysis of these effects for the power-law CVC has
been made [17].

Now we show that both longitudinal Ef (7) and
transverse EX(j) CVC'’s of the sample with an arbi-
trary o value in the model under study can be
expressed through the longitudinal CVC’s in LT-ge-
ometries. Actually, in the «-pinning model
E,=E/[j,) and E;=Efj) (see Eqs. (7), where
small Hall terms are ignored). Then it follows from
Egs. (12), if we apply them to the LT-geometries,
that E(j) = ”(] ) and E (7)) = ||(71) The repeated
use of Egs. (12) yields

CESG) = 2E|(x7) + yE| () )
F) = < (47 ) - yEj(j)

Note the nontrivial angular dependence in the argu-
ments of EL | and ET functions. Equatious (23) also
show how &'16 pecullarltles of CVC’s in the «basic»
LT-geometries are manifested in the E ||,D(7) CVC’s.
First we shall study the a-dependence of critical
current densities 7 (a) in terms of the basic critical
current densities of our model jZ =j (M/2) and
jT'=7(0) in LT-geometries, respectively. For the
analysis we assume the simplest form of CVC’s in
LT-geometries

E(() = o = 71) 86 = 71 ;
E||(])—pt(7 i eG-ih,

(23)

(24)
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where B(x) =1 for x>0 and 6(x) =0 for x < 0.
Using these «ideal> CVC’s we ignore the creep and,
at the same time, we fix the singularities of CVC’s
in the form of a kink at j=j, . Substitution of
Egs. (24) into Egs. (23) gives the analytical form
of CVC’s.

But it is more instructive to analyse these equa-
tions on the (j,,j) plane. In Fig. 4 the first
quadrant of the plane is divided by straight lines
jr=jl and j, = ]C into four regions. The end of the
vector j with the coordinates (j sin a, j cos a) de-
pendent on j, a values, can belong to each of these
regions with different physical meaning of dynamic
states of the vortex system.

The region of «full pinning» (FP in Fig. 4),
where E |(7) EX(j) =0, is shown by the unshaded
rectangle and its dlagonal determines the critical
angle o (tan aP= ;7 /7). Then it is easy to see
that

g 2@ =75/sina o >al

J@=0_ 4 - (25)
S(@)=j/cosa o <a"
I
.S
I 58
FS
Vl::O /
T /
io ,
/
7
FP /
E=0 )7
FG
v =0
m 1
I
(X,*
o
. L .S .
0 LU D iy

Fig. 4. Schematic diagram of the dynamic states of the vortex
system on (j,, j,) plane. There are four regions: FP — full pin-
ning, FS — full slipping, FG — full guiding, GS — guiding

P I T e e .
and slipping. j and j; — critical current densities in L- and
T-geometries, respectively.
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In the region of «full slipping» (FS in Fig. 4),
shaded by vertical lines, a < a“) Jo) < jCL, and the
vortices are moving normally to the TB’s, i.e.,
Vi =V, || m. The «full guiding> (FG) region is
shaded in Fig. 4 by horizontal lines, it represents
the fully GM of vortices with vp; =v; I m,
because at o > o we always have jj(0) < jz. And
lastly, the <«slipping and guiding» (SG) region,
shaded by crossed lines, realizes the coexistence of
slipping and guiding, where v =v, + v, with v, # 0
and v; # 0.

If, for the given sample with fixed a =a,, the
transport current is increasing from zero, then,
depending on the a, j values it is possible to realize
sequentially different variants of intersection by the
end of j-vector of the boundaries between the neigh-
boring regions (see Fig. 4). For example, if a > ot
then the series of intersections FP - FG - GS
exists. Since a new source of dissipation appears,
at each of the intersection, the longitudinal CVC
of the sample Eﬁ(]', a) acquires a kink (inflection
point) at corresponding values of j. In general,
there are two such kinks on the CVC (if
azal 0, m/2); only in the case a = a these two
kinks merge into one.

In conclusion, we note, that anisotropic trans-
port effects caused by unidirected twins have only
begun to be observed experimentally; until now, all
the measurements were taken on YBCO single crys-
tals [8—10]. However, recently fabricated [18] c-
axis-oriented YBCO thin films with unidirected
twins, owing to a more pronounced anisotropy of
their resistive properties and attainability of higher
current densities without overheating, might appear
more suitable for observation of the predicted here
nonlinear effects than the crystals.
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