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Asymptotic properties of structure functions for 6Li and 6He nuclei
are studied in the framework of the model involving an α-particle
and two nucleons. The density distributions of halo nucleons and
the α-particle at large distances are studied and compared with
analytical asymptotics. A new representation for the form factor,
which is useful at low transferred momentum, has been proposed,
and the asymptotic behavior of form factors has been analyzed.
The results obtained demonstrate that the calculation schemes de-
veloped in the framework of the variational method with the use
of a Gaussian basis allow the asymptotics of structure functions
to be studied in both the coordinate and momentum spaces.

1. Introduction

Six-nucleon nuclei (A = 6), as was reliably established,
are characterized by a distinct three-cluster structure
(an α-particle plus two nucleons), so that they can be
described in the framework of the three-particle model.
Provided that Nα-potentials of interaction are con-
structed [1, 2] in such a way to reproduce not only scat-
tering phases, but also the binding energy and the radii
of nuclei under investigation, all basic structural char-
acteristics of 6Li and 6He nuclei agree with the known
experimental data.

To study the bound states of nuclear systems, we use
precise calculation procedures based on the variational
method with Gaussian basis functions. This approach
has revealed a high accuracy and a reliability in its ap-
plication, with a lot of problems concerning bound states
in various systems of interacting particles (see work [3]),
including the problem of near-threshold weakly bound
states. At the same time, a natural suspicion can ap-
pear that wave functions in the Gaussian representa-

tion can have a wrong asymptotic behavior at large dis-
tances, especially for weakly bound states. In this work,
we have studied with which accuracy and to which dis-
tances the Gaussian representation of wave functions is
valid for finite basis dimensions. As an example, we
consider the asymptotics for density distributions and
form factors of weakly bound nuclei 6Li and 6He. In the
present work, the density distributions for halo nucle-
ons and α-particles in those nuclei at large (on the nu-
clear scale) distances are analyzed, and their agreement
with asymptotic estimations is shown. We also study
the problem of form factor asymptotics at large trans-
ferred momenta. To our knowledge, these problems, in
particular, the asymptotics of density distributions, have
not been solved earlier in the framework of a consecutive
three-particle approach to the systems under examina-
tion. Note that, for Coulomb systems, the problem of
structure function asymptotics was considered in work
[4].

2. Formulation of the Problem

Nuclei 6He (in the state with Jπ = 0+) and 6Li (in the
ground triplet state with Jπ = 1+) will be examined in
the framework of the three-particle model (an α-particle
plus two nucleons), as was described in works [1, 2]. The
Hamiltonian of 6Li nucleus in the three-particle model
is used in the form

Ĥ =
p2
p

2mp
+

p2
n

2mn
+

p2
α

2mα
+

+Vnp (rnp) + V̂pα (rpα) + V̂nα (rnα) + VC (rpα) , (1)
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T a b l e 1. Parameters of potentials V̂nα and V̂pα and calculated energies (MeV) and root-mean-square radii (Fm)
of 6He and 6Li nuclei

Potential Vnα E(6He) Rch(6He) Rm(6He) rnn rnα Rn Rα

V0(r) = −49.813 exp(−(r/2.334)2). −0.973 2.068 2.589 4.398 4.221 3.252 1.208

g = 140.0 MeV·Fm−3.
u(r) = π−3/4 exp(−(r/2.69)2)

Experiment −0.9734(10) [6] 2.068(11) [5] 2.59(5) [7]

Potential Vpα E(6Li) Rch(6Li) Rm(6Li) rnp rnα; rpα Rn; Rp Rα

V0(r) = −43.605 exp(−(r/2.323)2). −3.699 2.560 2.553 3.192 4.201; 4.314 3.020; 3.124 1.322

g = 130.0 MeV·Fm−3.
u(r) = π−3/4 exp(−(r/2.69)2)

Experiment −3.699(1) [6] 2.56(5) [8] 2.45(7) [9]

where, for more generality, all three particles are as-
sumed to have different masses and to be characterized
by different pair interaction potentials. The Hamilto-
nian for 6He nucleus has a similar form, but without
the Coulomb potential VC. The potentials of interaction
between halo nucleons are taken in the form proposed
in works [1, 2]. Such local spin-dependent potentials al-
low the phases of two-nucleon scattering and their low-
energy parameters, as well as the basic parameters of a
deuteron (the binding energy and the charge radius), to
be described with a sufficient accuracy.

To describe the interaction between the nucleons and
the α-particle, combined potentials V̂

Nα
, each consisting

of the local and separable terms, were used as

V̂
Nα
ψ(r) = V (r)ψ(r) + gu(r)

∫
u(r1)ψ(r1)dr1, (2)

whose parameters were fitted with respect to the scat-
tering phase at low energies, as well as the energies and
the charge radii of 6He and 6Li nuclei. In this work, tak-
ing new experimental data for the charge radius of 6He
(Rch,6He = 2.068±0.011 Fm [5]) into account, we use po-
tentials with somewhat corrected parameters (Table 1).
The corresponding S1/2-phases of Nα-scattering, which
were calculated on the basis of the method [2] free of the
problem of singularities of the phase equation, agree with
experimental results at energies lower than the breakup
threshold.

The wave functions of the nuclei under study were
obtained in the framework of the variational method in
a Gaussian representation. They look as

Φ = Ŝ

K∑
k=1

Dk e
−ak(r1−r2)

2−bk(r1−r3)
2−ck(r2−r3)

2
. (3)

The appropriate accuracy of calculations is achieved, by
using about 200 to 300 basis functions.

3. One-particle Density Distributions

Consider the density distributions for “point-like” parti-
cles, of which the examined nuclei are composed in the
three-particle model. We assume the distributions to be
normalized by 1.

The density distribution of the α-particle (more accu-
rately, of its center of masses) nα(r) has two behavior
modes (Fig. 1): an internal “core” (it originates from the
so-called “cigar” configuration in the three-particle wave
function) transforms into an external “halo” (which is
associated with the presence of the “triangle” configura-
tion for the wave function; see works [1, 2]). It is the
“triangle” configuration, the properties of which are re-
sponsible for the asymptotics of the density distribution
nα(r); it can be imagined as a motion of the α-particle
and the deuteron cluster around their common center of
masses.

Hence, when the α-particle moves far away from the
center of masses of the system, the wave function ψ of 6Li
nucleus has a two-cluster structure and a corresponding
asymptotics

ψ(rnp,ρα) −−−→
ρα→∞

ϕd(rnp)f(ρα), (4)

where ϕd(rnp) is the wave function of a deuteron, and
f(ρα) is the function of relative motion of the α-particle
and the center of masses of the deuteron (the Jacobi
coordinates rnp ≡ rp − rn and ρα ≡ rα − mprp+mnrn

mp+mn
).

Owing to the Coulomb repulsion between the α-particle
and the deuteron, the asymptotics of f(ρα) looks like

f(ρ)−−→
ρ→∞

C (2κρ)−1W−η, 1/2(2κρ)−−→
ρ→∞

C
exp(−κρ)
(2κρ)1+η

, (5)

where W−η, 1/2(z) is the Whittaker function,

Wk,µ(z) ≡
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≡ zke−
z
2

Γ
(

1
2 − k + µ

) ∞∫
0

t−k−
1
2+µ

(
1 +

t

z

)k− 1
2+µ

e−tdt,

Wk,µ(z) −−−−−−−−−−→|z|→∞, |arg(z)|<π
e−

z
2 zk

(
1 +O

(
1
z

))
, (6)

η = µαdZe
2

~2κ ≈ 0.30024 is the Coulomb parame-
ter (for the reduced mass µαd = mα(mp+mn)

mα+mp+mn
≈

1248.73172 MeV/c2), and κ =
√

2µαd|E(6Li)−E(d)|
~2 '

0.3078 Fm−1. Then, the density distribution nα(r) for
the α-particle is

nα(r) = 〈ψ|δ (r− (rα −Rc.m.)) |ψ〉 =

= λ3
α

∫
|ψ(rnp, λαr)|2 drnp , (7)

where λα = mp+mn+mα
mp+mn

≈ 2.9849318. At large dis-
tances, taking relation (4) and the normalization con-
dition

∫
|ϕd(r)|2dr = 1 into account, it looks like

nα(r) −−→
r→∞

nα, asymp(r) ≡

≡ Cα
(
6Li
) W 2

−η, 1/2(2λακr)

(2λακr)2
−−→
r→∞

−−→
r→∞

Cα
(
6Li
) exp(−2λακr)

(2λακr)2(1+η)
(8)

with 2λακ ≈ 1.8375 Fm−1. In Fig. 1, the cal-
culated density distribution nα(r) is shown (solid
curve), and the inset demonstrates the ratio between
nα(r) and its asymptotics (8), namely, the combina-
tion C−1

α

(
6Li
)
(2λακr)2W −2

−η, 1/2(2λακr)nα(r) (dashed
curve). Note that the inset demonstrates the ratio be-
tween the density and its asymptotics, because the den-
sity is anomalously low at large distances. One can see
that this ratio saturates already at r ≈ 2 Fm at the
asymptotic level Cα

(
6Li
)
≈ 4.88 Fm−3 and remains con-

stant up to considerable distances r ≈ 8 Fm. This means
that the calculation of nα(r) (with about 300 basis Gaus-
sian functions) is reliable up to distances of about 8 Fm,
where the density becomes of the order of 10−9 times
its values in the vicinity of zero distance. In addition,
we note that the ratio nα(r)/nα,asymp(r) shown by the
dashed curve has no special meaning at small distances,

Fig. 1. Density distribution nα(r) for the α-particle in 6Li nucleus
(solid curve). The dashed curve in the inset demonstrates the ratio
between nα(r) and its asymptotics nα,asymp(r) (Eq. (8))

because the asymptotic expression (8) is irrelevant in
this region.

Consider the density distribution np(r) of the halo
proton in 6Li nucleus,

np(r) = 〈ψ|δ (r− (rp −Rc.m.)) |ψ〉 =

= λ3
p

∫
|ψ(rnα, λpr)|2 drnα , (9)

where λp = mp+mn+mα
mn+mα

≈ 1.201046. The basic contribu-
tion to the np(r)-asymptotics at r →∞ is made by the
same configuration (4). Taking the relations between the
different sets of Jacobi coordinates used in expressions
(4) and (9) into account, we obtain

rnp =
mα

mn +mα
rnα + ρp ,

ρα =
mn(mp +mn +mα)

(mp +mn)(mn +mα)
rnα −

mp

mp +mn
ρp, (10)

Eq. (4) gives rise to

np(r) −−→
r→∞

−−→
r→∞

∼
∫
ϕ2
d

(
λpr +

mα

mn +mα
rnα

)
×

×f2

(
mn(mp +mn +mα)

(mp +mn)(mn +mα)
rnα−

mp

mp +mn
λpr
)
drnα.
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Fig. 2. Density distribution np(r) for the halo proton in 6Li nu-
cleus (solid curve). The dashed curve in the inset demonstrates
the ratio between np(r) and its asymptotics (14)

(11)

To find the principal term in the asymptotics of ex-
pression (11), we apply the saddle-point method (or
the stationary phase method). Provided that the cor-
responding argument remains finite as r → ∞ in the
decreasing functions ϕd or f , and the function itself re-
mains constant, such two regions can provide the main
contribution to the asymptotics of np(r). In order to take
the first region into account, it is convenient to introduce
a new variable x ≡ rnα+λp mn+mα

mα
r. For the second one,

we use the substitution y ≡ rnα−λp mp(mn+mα)
mn(mp+mn+mα)r =

rnα − mp
mn

r. Then, in the limit r → ∞, we obtain the
following two main terms:

np(r) −−→
r→∞

−−→
r→∞

∼ f 2

(
mp +mn +mα

mα
r

)∫
ϕ2
d

(
mα

mn +mα
x

)
dx+

+ϕ2
d

(
mp

mn +mn
r

)∫
f2

(
mn(mp +mn +mα)

(mp +mn)(mn +mα)
y

)
dy,

(12)

in which both integrals converge. Independent of the
short-range potential model asymptotics of the deuteron
wave function is known to be

ϕd(r) −−→
r→∞

Cd
exp(−αr)

αr
, (13)

where the coefficient Cd is directly connected with
the asymptotic normalization constant AS of the
deuteron (for the selected potential, AS =

√
4π
α Cd ≈

0.88 Fm−1/2), the value α =
√

2µnpεd
~2 ≈ 0.23163 Fm−1

(µnp = mnmp
mn+mp

, εd = 2.224756 MeV). Using also asymp-
totics (5) for f(ρ), we transform Eq. (12) into

np(r) −−→
r→∞

−−→
r→∞

Cp1
(
6Li
) (

2Λ
p1κr

)−2
W 2
−η, 1/2

(
2Λ

p1κr
)
+

+Cp2
(
6Li
) (

2Λ
p2αr

)−2 exp
(
−2Λ

p2αr
)
, (14)

where Λp1 ≡ mp+mn+mα
mα

≈ 1.5037956 and Λp2 ≡
mp+mn
mn

≈ 1.99862348. We keep both terms in asymp-
totics (14), because, in this problem, the coincidence
of parameters, Λ

p1κ ≈ Λ
p2α, is observed with an ac-

curacy high for nuclear physics (Λ
p1κ ≈ 0.46286 Fm−1

and Λp2α ≈ 0.46294 Fm−1). As a result, none of terms
in asymptotics (14) for np(r) can be neglected in a wide
interval of distances that are considered. Note that the
coincidence Λ

p1κ ≈ Λ
p2α, when expressed in another

form, means that

E
(
6Li
)
≈ (mp +mn)(mn +mα)

mn(mp +mn +mα)
E(d) ≈ 5

3
E(d). (15)

We should emphasize that Eq. (15) does not establish an
analytical dependence between three- and two-particle
energies and particle masses. It only reflects a coinci-
dence of some combinations made up of specific physical
constants. Comparing Eq. (14) with the calculated den-
sity np(r), we can determine the coefficients Cp1

(
6Li
)

and Cp2
(
6Li
)
. As is seen from Fig. 2, the asymptotics in

form (14) with the coefficients Cp1
(
6Li
)

= 0.565 Fm−3

and Cp2
(
6Li
)

= 0.250 Fm−3 is achieved starting from
the distances r ≈ 10 Fm and, then, coincides with the
calculated density. The density distribution np(r) found
numerically (with 300 basis functions) turns out reliable
up to larger distances r ≈ 16 Fm, where the magnitudes
of np(r) are about 10−7 times its maximum value.

We emphasize that an essential decrease of the density
distribution np(r), as well as nn(r), at short distances
is associated with the repulsion between halo nucleons
at small distances and a substantial role of the “trian-
gle” configuration in 6Li nucleus, in which the center of
masses of the deuteron cluster is located aside from the
center of masses of the nucleus.
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In a similar way, one can obtain an asymptotics of
the density distribution nn(r) for a halo neutron in 6Li
nucleus:

nn(r) −−→
r→∞

−−→
r→∞

Cn1

(
6Li
)

(2Λ
n1κr)

−2
W 2
−η, 1/2 (2Λ

n1κr) +

+Cn2

(
6Li
)

(2Λ
n2αr)

−2 exp (−2Λ
n2αr) , (16)

where Λn1 = Λp1 , and Λn2 ≡
mp+mn
mp

≈ 2.0013784. Since
Λ
n2α ≈ 0.46358 Fm−1, we have almost the same coinci-

dence relation, Λ
n1κ ≈ Λ

n2α, as it was in the previous
case. Therefore, both terms in Eq. (16) give compara-
ble contributions to the asymptotics of the distribution
nn(r) in a wide interval of distances under consideration.
Comparing asymptotics (16) with the calculated distri-
bution nn(r), we find that Cn1

(
6Li
)

= 0.475 Fm−3 and
Cn2

(
6Li
)

= 0.222 Fm−3.
Since the distribution of neutrons in 6Li nucleus [2] dif-

fers weakly from that of protons (see Fig. 2), we present
the ratio np/nn in Fig. 3. This ratio should tend to a
constant at large distances, because the first (principal)
terms in asymptotic expressions (14) and (16) differ from
each other by only a factor. The other terms, although
being important at intermediate distances, differ weakly
in both expressions by exponents in exponential func-
tions. So, the ratio np/nn should achieve the constant
value rather quickly. As is seen from Fig. 3, starting
from distances of about 6 Fm, this ratio approaches a
constant of about 1.18. It is larger than 1 because the
halo proton in 6Li, owing to Coulomb repulsion from
the α-particle, is located somewhat farther from the nu-
clear center than the neutron, whereas np < nn at short
distances.

The structure of 6He nucleus, to a great extent, is
similar to that of 6Li one [1, 2] at distances within
several Fm, but the asymptotic behaviors of the den-
sity distribution of halo neutrons and α-particles in
those nuclei are different. It is connected with the fact
that 6He nucleus has a three-particle breakup threshold
(6He → n + n + α) rather than a two-particle one, as
6Li does (6Li→ d+ α). Therefore, the wave function of
6He has a three-particle Merkuriev asymptotics [10, 11]

of the type ∼
exp

(
−
√
|E|R

)
R5/2 , where R is the hyperradius.

For a more detailed analysis of the asymptotics of the
density distribution nα(r) for the α-particle in 6He nu-
cleus, let us consider the wave function Φ of this system
in the three-particle model (with the momentum L = 0)

Fig. 3. The density distribution ratio np(r)/nn(r) for halo nucle-
ons in 6Li nucleus

in terms of the variables rnn (the distance between neu-
trons), ρα (the distance from the α-particle to the center
of masses of two neutrons), and θ (the angle between the
vectors rnn and ρα). Beyond the region of interaction
between particles, the function Φ(rnn, ρα, θ) looks like

Φ(rnn, ρα, θ) =
∞∑
l=0

Pl (cos θ) Ψl (rnn, ρα) . (17)

Let us change over to the variables s12 =
√
µnnrnn and

s3 = √µ(2n)αρα and write down the Schrödinger equa-
tion in the asymptotic region (without interaction) for
the single zero-order term Ψ0(s12, s3) of expansion (17).
Introducing ϕ(s12, s3) ≡ s12s3Ψ0(s12, s3), we obtain the
equation

−
(
∂2

∂s212
+

∂2

∂s23

)
ϕ = −κ2ϕ, (18)

where −κ2 ≡ 2E
(
6He

)
/~2. In terms of the variables

R and α, where s12 = R cosα and s3 = R sinα (similar
variables were used by V. Efimov in [12]), we obtain the
following equation for the function u ≡

√
Rϕ:

∂2u

∂R2
+

1
R2

(
∂2

∂α2
+

1
4

)
u = κ2u. (19)

The solution of this equation that vanishes at large dis-
tances (at ρα → ∞, so that R → ∞ simultaneously,
because R =

√
µnnr2nn + µ(2n)αρ2

α) is the function

u (R,α) = C exp (−κR) sin
(α

2
+ δ
)

(20)
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Fig. 4. Density distribution nα(r) for the α-particle in 6He nucleus
(solid curve). The dashed curve in the inset demonstrates the ratio
between nα(r) and its asymptotics nα,asymp(r) (Eq. (23))

with an arbitrary δ. Returning to the initial variables,
we have the following dependence for Ψ0 in the asymp-
totic region:

Ψ0(rnn, ρα) ∼
exp

(
−κ
√
µnnr2nn + µ(2n)αρ2

α

)
rnnρα

(
µnnr2nn + µ(2n)αρ2

α

)1/4 ×

× sin
(

1
2

arctan
(√

µ(2n)α

µnn

ρα
rnn

)
+ δ

)
. (21)

This expression gives its contribution to the asymptotics
of the density distribution nα(r) in 6He nucleus. Sub-
stituting expression (21) into Eq. (7)—where λα should
be replaced by λ̃α ≡ 2mn+mα

2mn
≈ 2.98356566 in the case

of 6He nucleus—we obtain the following estimation as
ρα →∞:∫ ∣∣∣Ψ0

(
rnn, λ̃αr

)∣∣∣2 drnn −−−→
ρα→∞

−−−→
ρα→∞

∼ e(−2κ√µ(2n),α ρα)

ρ3
α

×

×
∫
e(−2κ(

√
µnnr2nn+µ(2n),αρ2α−

√
µ(2n),α ρα))

r2nn
drnn −−−→

ρα→∞

−−−→
ρα→∞

∼ e(−2κ√µ(2n),α ρα)

ρ3
α

×

Fig. 5. Density distribution nn(r) for the halo proton in 6He
nucleus (solid curve). The dashed curve in the inset demonstrates
the ratio between nn(r) and its asymptotics (24)

×
∞∫
0

exp

(
− κµnnr2nn√

µ(2n),α ρα

)
drnn−−−→

ρα→∞

−−−→
ρα→∞

∼ e(−2κ√µ(2n),α λ̃αr)

r5/2
. (22)

It is clear that the asymptotics of nα(r) involves the next
terms of the expansion in the reciprocal distance as well:

nα(r) −−→
r→∞

e−ar

(ar)5/2

(
Cα0 +

Cα1

ar
+ ...

)
. (23)

Here, a ≡ 2κ√µ(2n),αλ̃α ≈ 1.49133 Fm−1. When com-
paring expression (23) with the result of calculations of
the density distribution (see Fig. 4), we have to consider,
besides the first term of expansion, also the second one,
because the constant Cα0 = 0.10 Fm−3 turns out small in
comparison with Cα1 = 2.43 Fm−3, and both terms are
important at intermediate r. One can see that asymp-
totics (23) is valid starting from r ≈ 2 Fm, and numerical
calculations (with about 350 basis functions) confirm its
validity to distances r ≈ 8 Fm, where nα(r) gets values
of the order of 10−9 times those at zero distances.

Consider the asymptotics of the halo-neutron density
distribution nn(r) = 〈ψ|δ (r− (rn −Rc.m.)) |ψ〉 in 6He
nucleus. Using the calculation scheme like (22), we ob-
tain (a similar asymptotics is valid for three-nucleon nu-
clei as well [13])

nn(r) −−→
r→∞

e−br

(br)5/2

(
Cn0 +

Cn1

br
+ ...

)
, (24)
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where b ≡ 2κ
√

2mn ≈ 0.61303 Fm−1. Comparing the
asymptotic expression (24) with the result of calcula-
tions of nn(r) for 6He nucleus (see Fig. 5), we find that
Cn0 = 0.04 Fm−3 and Cn1 = 0.11 Fm−3. One can
see that asymptotics (24) holds true starting from dis-
tances of about 6 Fm and remains reliable up to distances
of about 12 Fm (calculations with 250 basis functions
symmetrized with respect to the permutation of halo-
neutron coordinates).

Hence, the asymptotics of wave functions and density
distributions can be studied taking advantage of varia-
tional calculations with the Gaussian basis. Such calcu-
lations provide a reliable base for the determination of
asymptotic constants. The asymptotics of density dis-
tributions have, to a large degree, a universal character,
because they were examined in the region, where nuclear
interaction does not manifest itself.

4. Form Factors for Low Transferred Momenta

The charge form factors of 6Li and 6He nuclei are known
to have a characteristic “dip” at a certain q2min (q2min ≈
8.3 Fm−2 for 6Li and ≈ 10.1 Fm−2 for 6He). Recall
that the form factors of nuclei consisting of non-point
particles (nucleons and α-particles) can be expressed as
follows:

Fch,6He(q) = Fα,6He(q)Fch,4He(q),

Fch,6Li(q)=
2
3
Fα,6Li(q)Fch,4He(q)+

1
3
Fp(q)fp(q), (25)

where Fα(q) ≡
∫
e−i(qr)nα(r)dr is the form factor of a

“point-like” α-particle in the relevant nucleus, Fch,4He(q)
is the characteristic charge form factor of the α-particle,
Fp(q) ≡

∫
e−i(qr)np(r)dr is the form factor of the “point-

like” halo proton in 6Li nucleus, and fp(q) is the form
factor of the proton itself. The presence of the “dip”
in the charge form factor of 6He nucleus, as well as its
position, is associated with properties of the character-
istic form factor of the α-particle, whereas Fα(q) is a
smoothly decreasing function without any dips. A sub-
stantial contribution to the charge form factor of 6Li
nucleus is also given by the second term in expression
(25) which contains the proton form factor.

Consider the form factor of the “point-like” proton in
the 6Li halo. At low transferred momenta,

Fp(q2)−−→
q→0

1− 1
6
〈
r2p
〉
q2 +

1
120

〈
r4p
〉
q4 + ... =

=
∞∑
k=0

(−1)k

(2k + 1)!
〈
r2k
〉
q2k, (26)

Fig. 6. Form factor Fp(q) of the “point-like” halo proton for 6Li
nucleus (solid curve) in the range of low transferred momenta q2.
Curves 1 and 2 are approximation (26) with two and three terms,
respectively. The inset demonstrates the range of very low q2

where
〈
r2p
〉1/2 = Rp ≈ 3.124 Fm is the root-mean-square

radius for the halo proton (see Table 1), and
〈
r4p
〉1/4 =(∫

r4np(r)dr
)1/4 ≈ 3.725 Fm (this value was obtained by

direct calculations using the density distribution np(r) in
6Li nucleus).

As Fig. 6 demonstrates, the formal expansion (26) is
inconvenient for studying the form factors at low trans-
ferred momenta, in particular, for a reliable determina-
tion of root-mean-square radii directly from form-factor
curves, because the terms of series (26) quickly grow
with the momentum transferred, whereas the form fac-
tor quickly falls down. As a result, expansion (26) coin-
cides with the form factor only at anomalously small q2.
We suggest the expansion in the following form:

Fp
(
q2
)
≈

1− q2

q2min

1 + S2q2 + S4q4 + ...
,

S2 ≡
R2
p

6
− 1
q2min

,

S4 ≡
R2
p

6

(
R2
p

6
− 1
q2min

)
−
〈
r4
〉

120
, (27)

where the factor 1− q2/q2min, which makes allowance for
the “dip” in the form factor, is singled out explicitly,
and the expansion in a series of q2 (up to q4) is carried
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Fig. 7. Charge form factor Fch(q) of 6Li nucleus (solid curve) and
representation (28) (dashed curve). Experimental values (without
experimental errors) are denoted by squares

out in the denominator. Expression (27) has the same
expansion in a series of q2 (up to q4 inclusive), as for-
mula (26) does, but it describes the form factor at low
transferred momenta much better and even in the “dip”
region (0 ≤ q2 ≤ q2min ≈ 2.64 Fm−2). Note that, if there
are more “dips” in the form factor, it is better to single
out all of them explicitly as multipliers, as it was done
in the numerator of formula (27). It is evident that, if
the form factor is “dip-free”, it is more convenient to ex-
pand just the reciprocal form factor in a series of squared
transferred momentum.

The proposed expansion (27) allows one to expand
the appropriate q2-region to make the determination of
the parameter

〈
r2
〉1/2 more reliable and to evaluate the

quantity
〈
r4
〉1/4 directly from experimental curves for

form factors. If the charge form factor of 6Li nucleus
is considered at small and medium q2 before the “dip”
region, an expansion of type (27) should contain more
terms for the description of the form factor at these q2 to
be correct. It is explained by the fact that, in this case,
q2min is considerably larger, being of about 8.3 Fm−2. In
Fig. 7, we compare the experimental form factor with
that given by the expression

Fch,6Li(q) ≈
1− q2

q2min

1 + S̃2q2 + S̃4q4 + S̃6q6 + S̃8q8
,

S̃2 ≡
R2

ch

6
− 1
q2min

,

S̃4 ≡
R2

ch

6

(
R2

ch

6
− 1
q2min

)
−
〈
r4
〉
ch

120
,

S̃6 ≡
〈
r6
〉
ch

7!
+ 2S̃2S̃4 − S̃3

2 +
(
S̃4 − S̃2

2

) 1
q2min

,

S̃8 ≡ S̃4
2 + S̃2

4 + 2S̃2S̃6 − 3S̃2
2 S̃4+

+
(
S̃3

2 + S̃6 − 2S̃2S̃4

) 1
q2min

−
〈
r8
〉
ch

9!
(28)

and with the result of straightforward calculations of the
charge form factor for 6Li. The expansion of expression
(28) in a q2-series coincides with expansion (26) to an
accuracy of the q8-term inclusive. In expression (28),
the experimental parameters are q2min ≈ 8.3 Fm−2 and
Rch = 2.56 Fm [7], whereas the parameters

〈
r4
〉1/4
ch

=
3.19 Fm, S̃6 = 0.07 Fm6, and S̃8 = 0.006 Fm8 were fitted
to put the form factor curve in agreement with experi-
ment. The straightforward calculation of the parameter〈
r4
〉1/4
ch
≈ 3.15 Fm using the charge density of 6Li nu-

cleus gives rise to a result that is close to that obtained
when fitting the form factor curve. Hence, an expan-
sion of type (28) makes it possible to determine not only
the parameter Rch, but even the quantity

〈
r4
〉1/4
ch

, using
the experimental curve for the form factor. At the same
time, the application of expansion in form (26) gener-
ates considerable errors even for Rch. Note that, owing
to its form, representation (28), as is seen from Fig. 7,
is capable of reproducing the experimental form factor
even in the region behind the “dip”.

Should the experimental charge form factor for 6He
nucleus be known, it would be possible to obtain an es-
timation for

〈
r4
〉1/4
ch

in this case as well and to compare

it with the value
〈
r4
〉1/4
ch
≈ 2.39 Fm, which follows from

direct calculations using the charge density for this nu-
cleus. It is of interest that an approximation of type (28)
with the parameters given above for Rch,6He,

〈
r4
〉1/4
ch,6He

,
and q2min, as well as S6 = 0.02 Fm6 and S8 = 0.003 Fm8,
practically coincides with the form factor calculated for
the range of low and medium q2, which is illustrated in
Fig. 8.

Recall that the charge radius of 6He is substantially
less than the similar parameter of 6Li nucleus (though
their mass radii are close), because the 6Li halo con-
tains a proton, which contributes to the charge density
distribution of this nucleus together with the α-particle,
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Fig. 8. Calculated charge form factor of 6He nucleus (solid curve)
in comparison with the approximation of type (28) (dashed line)

whereas the charge radius of 6He stems only from the
α-particle motion (and its own charge distribution). For
the same reason,

〈
r4
〉1/4
ch,6He

<
〈
r4
〉1/4
ch,6Li

(see Table 2).
Note also that, in all considered cases, 〈r2〉1/2 < 〈r4〉1/4
owing to the inequality(∫

r2n(r)dr
)2

<

∫
r4n(r)dr, (29)

which is a particular case of the Cauchy–Buniakowski–
Schwarz inequality for the functions f(r) ≡ r2

√
n(r)

and g(r) ≡
√
n(r), with regard for the normalization

condition
∫
n(r)dr = 1.

T a b l e 2. Calculated charge radii and
〈
r4
〉1/4
ch

for 6Li
and 6He nuclei

Nucleus Rch, Fm 〈r4〉1/4ch , Fm
6Li 2.560 3.15
6He 2.068 2.39

5. Form Factor Asymptotics Problem

The study of the asymptotics of form factors of com-
plex nuclear systems at large transferred momenta (they
correspond to short distances in the coordinate space)
can be important for the analysis of both interparti-
cle interactions at small distances and the structure
of particles of the system. In our model of 6Li and
6He nuclei, both the interaction and the structure of
particles-constituents are considered at the phenomeno-
logical level.

Fig. 9. Calculated form factor Fα(q) for the α-particle in 6Li
nucleus (solid curve) in the range of the transferred momenta q2 ≤
200 Fm−2. Dashed curve 1 corresponds to asymptotics (32), and
dashed curve 2 to interpolation curve ∼ exp

(
−0.0265q2

)
The asymptotics of form factors in complex nuclear

systems were studied in a number of works [14–18] in
the framework of the non-relativistic approach and for
certain interaction potentials. The final result of those
researches consists in that the form factors for systems
with three identical particles are determined in terms of
Fourier components of interaction potentials v(q) in the
form

F (q) ∼
(
v(q)
q2

)2

, (30)

provided that the law of potential decrease at large mo-
menta satisfies the conditions

v(q) q1+ε → 0, v(q) exp
(
aq1−ε

)
→∞ . (31)

The Gaussian potentials used in this work do not satisfy
the second of these conditions.

Even if the consideration is confined to the non-
relativistic approximation with the potentials chosen as
a combination of gaussoids (with the local and non-local
terms for Nα-interaction), the analysis of the form fac-
tor asymptotics is not simple and cannot be reduced to
a simple generalization of the results of works [14–16]
(see also work [17] for nuclei considered as Fermi sys-
tems) valid in the case of power-law (in the momentum
representation) interaction potentials.

Let us consider 6Li nucleus and the form factor Fα(q)
for the “point-like” α-particle in this nucleus. The cor-
responding form factor Fα(q) calculated in the frame-
work of the three-particle model is shown in Fig. 9. One
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Fig. 10. Calculated form factor Fp(q) of the halo proton in 6Li
nucleus (solid curve) in comparison with the calculated form factor
Fp(d)(q) of the proton in a deuteron (dashed curve)

can distinguish between two modes of form factor be-
havior (similarly to the momentum distribution for the
α-particle in 6Li nucleus [2]) depending on the squared
transferred momentum, and such a dependence turns
out to be rather a slowly decreasing function. It can
be explained by the fact that the interaction between
the α-particle and the deuteron cluster is governed (at
the qualitative level) by a doubled potential V

Nα
, which

includes a local attraction in the form of a gaussoid and
a separable (of the first rank) repulsion with a Gaussian
form factor. Then, in the two-particle approximation (α-
particle plus deuteron) for this potential, we can demon-
strate that the form factor asymptotics (similarly to the
two-particle wave function in the momentum space) di-
minishes like

F (q) ∼

∼ 1
q + q0

exp(−λ(q+ p0)
√

ln (β ((q + p0)2 + a2)) ). (32)

From Fig. 9, one can see that the form factor Fα(q)
has a very similar behavior (dashed curve 1 ) in the real
three-particle calculation as well, at q2 ≤ 10 Fm−2 (in
the range of transferred momenta which is associated
with the “triangle” configuration). The matter is that the
average kinetic energy of the α-particle in 6Li nucleus is
about 3 MeV [2], which corresponds to q2 ≈ 0.6 Fm−2.
Therefore, the region q2 ≤ 10 Fm−2 could be considered
as asymptotic, were it not for the anomalous change
of behavior modes due to the “cigar” configuration. If

the problem had been a genuine two-particle one with a
Gaussian attraction potential, it would have been possi-
ble to present explicit expressions for the parameters in
expression (32) in terms of the potential radius and the
intensity (in particular, λ would have been proportional
to the gaussoid radius). Since we actually deal with a
more complicated (three-particle) problem, and expres-
sion (32) rather only resembles the real asymptotics, we
should fit the parameters in expression (32). A compari-
son with the calculated curve brings about λ ≈ 0.377 Fm
and β ≈ 0.7 Fm2. The other parameters, except for the
multiplier, weakly affect the asymptotic curve. There-
fore, for simplicity, we put q0 = 1 Fm−1, p0 = 0 Fm−1,
and a2 = 1 Fm−2.

At larger transferred momenta (q2 ≥ 50 Fm−2), an-
other mode, which is governed by the “cigar” configu-
ration, reveals itself in the asymptotics of the form fac-
tor Fα(q). The central part of the density distribution
nα(r), which is similar to a small-radius gaussoid (see
Fig. 1), is responsible for this contribution to the form
factor asymptotics. Therefore, its Fourier transform is
also very similar to a gaussoid (in Fig. 9, this region of
the form factor is interpolated by dashed curve 2 which
diminishes following the law ∼ exp(−0.0265q2)). How-
ever, at very large q2 lying beyond the reach of our cal-
culation that achieves q2 ∼ 600 Fm−2 at about 300 basis
functions, this dependence must concede the true asymp-
totics of type (32), originating from the “triangle” con-
figuration, because the latter decreases slower. Dashed
curves 1 and 2 in Fig. 9 intersect at q2 ∼ 1500 Fm−2

which is located beyond the validity range of the non-
relativistic potential model.

We now consider the form factor Fp(q) of the halo pro-
ton in 6Li nucleus (not taking the structure of the proton
itself into account). In Fig. 10, the calculated form factor
Fp(q) is depicted (solid curve), the structure of which,
besides “dips”, demonstrates the change of slope (in the
range q ≈ 5 Fm−1). Such a change is again explained
by the fact that the “triangle” configuration manifests
itself in the form factor behavior at q ≤ 5 Fm−1, and
the “cigar” configuration at q ≥ 5 Fm−1.

To explain the characteristic behavior of Fp(q) at a
qualitative level, one may admit that the main contribu-
tion to the asymptotics is given by the “triangle” config-
uration, in which the α-particle and the deuteron cluster
move around their common center of masses. This is re-
lated not only to the fact that the probability of this con-
figuration in 6Li nucleus is higher [2] than the probabil-
ity of the “cigar” configuration, but also because, just in
this configuration, the short-range interaction between
the proton and the neutron in the halo can reveal itself
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more strongly in the wave function of the system and give
a dominant contribution to the form factor asymptotics
(recall that other potentials have substantially larger
radii in our three-particle model of 6Li nucleus; conse-
quently, it is natural to assume that they have less influ-
ence upon the asymptotics of form factor Fp(q)). This
assumption allows the form factor Fp(q) to be approxi-
mately presented as a product of the form factor Fp(d)(q)
of the proton in a deuteron and the form factor Fd(q) of
the center of masses of the deuteron cluster in 6Li nu-
cleus. Since the motion of the center of masses of the
deuteron cluster and the motion of the α-cluster in 6Li
nucleus are directly bound with each other (by means of
the immovable center of masses of the whole nucleus), we
obtain Fp(q) ≈ Fp(d)(q)Fd(q) ≡ Fp(d)(q)Fα( mα

mn+mp
q).

Hence, accurate to a rather slowly diminishing multi-
plier Fα( mα

mn+mp
q), the features of the asymptotic behav-

ior of the form factors Fp(q) (in a three-particle system)
can resemble the behavior of Fp(d)(q) (in a two-particle
system). Moreover, the change of a slope of the form fac-
tor Fp(q) at q ≈ 5 Fm−1, which was mentioned above, is
associated with the similar behavior of the form factor
Fα(q) at q ≈ 10 Fm−1, and the presence of dips in the
form factor Fp(q) can be connected with an infinite num-
ber of dips in the form factor Fp(d)(q) (shown in Fig. 10
by the dashed curve). Therefore, let us briefly discuss
(in more details, it will considered elsewhere) the prob-
lem of the asymptotics of a deuteron form factor Fd(q)
(in the framework of a potential model and leaving aside
the issue of the own form factor of a proton):

Fp(d)(q) ≡
∫
e−i(qr)np(d)(r)dr =

=
∫
e
−i mn

mp+mn
(qr) |ϕd (r)|2 dr =

=
∫
ψ∗d(p)ψd

(∣∣∣∣p +
mn

mn +mp
q
∣∣∣∣) dp

(2π)3
. (33)

In formula (33), ϕd(r) and ψd(q) stand for the wave func-
tion of the two-particle system (deuteron) in the coordi-
nate and momentum representations, respectively. If the
interaction potential in the momentum representation
diminishes following the power law v(p) −→

p→∞
p−S (in

particular, it is valid for Yukawa potentials), the asymp-
totics of the wave function at large momenta, as fol-
lows directly from the Schrödinger equation, would be
ψd(p) −→

p→∞
v(p)/p2 ∼ p−(S+2). Then, from expression

(33), it would be clear that

Fp(d)(q)−−→
q→∞

∼ ψd
(

mn

mn +mp
q + p0

)
∼

∼
v
(

mn
mn+mp

q + p0

)
q2

(34)

at large transferred momenta as well, which coincides
with v(p)/p2 ∼ p−(S+2), in accordance with the results
of works [14–18], only in the case of power-law potentials.

However, the estimation F (q) ∼ v(q)/q2 does not
remain valid for any shape of the potential v(q) (con-
trary to what was supposed in work [18]). In particu-
lar, for potentials with the exponential dependence on
the momentum, v(q) ∼ exp(−βq1−ε), correct is estima-
tion (34) with the important coefficient mn/(mn +mp)
at the transferred momentum which substantially af-
fects the law of form factor decrease. For a potential
v(q) that diminishes quicker than the solution ψd(q),
the asymptotics of F (q) differs considerably from de-
pendence (34), in particular, for Gaussian potentials
v(q) = −g exp(−aq2). In this case, it can be shown
that, in the asymptotic range of large momenta, the
form factor of two-particle systems has an asymptotics
of type (32) which cannot be reduced to dependence
(34). Hence, the form factor asymptotics F (q) ∼ v(q)/q2
for power-law (in the momentum representation) po-
tentials does not extend upon all possible potential
shapes. Moreover, for potentials with attractive and re-
pulsive gaussoids – in particular, for the triplet potential
Vnp(r) = 840.545 e−(r/0.44)2−146, 046 e−(r/1,271)2 , which
we use in our model of 6Li nucleus for the description of
the interaction between the proton and the neutron – the
wave function in the momentum representation is char-
acterized, besides a general decrease, by oscillations as
well, which immediately reveals itself in the form factor
(the dashed curve in Fig. 10).

Hence, even in the case of two nucleons with Gaus-
sian potentials, the asymptotics of form factors turns
out to be nontrivial. For the nuclei examined in this
work, we also managed to understand, at a qualitative
level, the character of form factor behavior in three-
particle systems (in particular, for Fα(q) and Fp(q) dis-
cussed above). But the general problem dealing with
the asymptotics of form factors in systems more compli-
cated than a two-nucleon one and in the case of Gaussian
potentials of interaction between particles remains unre-
solved.
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6. Conclusions

To summarize, we note that variational calculations with
Gaussian basis allow the density distribution asymp-
totics to be analyzed at large (on the nuclear scale) dis-
tances. For 6Li and 6He nuclei, the wave functions of
which do not differ strongly in the interaction region,
we have shown that the asymptotic dependences of den-
sity distribution are substantially different (with respect
to both halo particles and an α-particle), because these
nuclei are characterized by basically different of breakup
thresholds (two-particle threshold for 6Li nucleus and
three-particle one for 6He one). It was found that at
least two competing terms with close exponents in the
exponential function are important for the asymptotics
of halo nucleon density distribution in 6Li nucleus at
large distances. When studying the density distribution
of halo neutrons in 6He nucleus, which is characterized
by the three-particle breakup threshold, at distances up
to several tens of Fm, it is necessary that the second ex-
pansion term should be taken into account in addition to
the first one, in the expansion of the asymptotics into a
(1/r)-series, because this term has a considerably larger
coefficient.

The analysis of the behavior of charge form factors
of 6Li and 6He nuclei at low transferred momenta al-
lowed us to reliably calculate the average quartic radius〈
r4
〉1/4. A procedure has been proposed to single out

the multipliers 1− q2/q2min from the oscillating form fac-
tors and to change over to the expansion of the reciprocal
form factor in a q2-series, which allowed the applicability
range of expansions in q2 to be extended and the quanti-
ties

〈
r2
〉1/2 and

〈
r4
〉1/4 to be determined from the form

factor curves more reliably.
For the form factors Fα(q) and Fp(q), it has been

demonstrated that, in the case of Gaussian interac-
tion potentials, the asymptotics of the form factors at
large transferred momenta are not of the form F (q) ∼[
v(q)/q2

]A−1, as it is stated in the literature (see work
[18]).

From the general viewpoint concerning a wide range
of interaction potentials and complicated quantum-
mechanical systems, a number of problems dealing with
form factor asymptotics remains open and requires the
additional consideration.
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ОСОБЛИВОСТI АСИМПТОТИК РОЗПОДIЛIВ ГУСТИНИ
I ФОРМФАКТОРIВ ЯДЕР 6Li ТА 6He
У ТРИЧАСТИНКОВIЙ МОДЕЛI

Б.Є. Гринюк, I.В. Сименог

Р е з ю м е

Дослiджено асимптотики структурних функцiй ядер 6Li та 6He
у моделi α-частинка плюс два нуклони. Вивчено розподiли гу-
стини нуклонiв гало та α-частинки на великих вiдстанях у
цих ядрах та проведено порiвняння з аналiтичними асимптоти-
ками. Запропоновано нове зручне представлення формфакто-
ра для малих переданих iмпульсiв. Проаналiзовано проблему
асимптотичної поведiнки формфакторiв. Отриманi результати
показують, що розвинутi числовi схеми варiацiйного методу з
використанням гаусоїдного базису дозволяють вивчати асим-
птотичну область структурних функцiй як в координатному,
так i в iмпульсному просторах.
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