Investigation of I^{127} NQR spectra of the mixed $(Bil_3)_{(1-n)}$ · $(Pbl_2)_n$ semiconducting layered crystals

Yu.P.Gnatenko, A.I.Barabash, I.G.Vertegel, E.D.Chesnokov, A.I.Ovcharenko, S.V.Pogrebnyak

Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauki Ave., 01022 Kyiv, Ukraine

Received January 15, 10

The ¹²⁷I NQR spectra at 77 K of $(Bil_3)_{(1-n)}$ (Pbl₂)_n semiconducting layered crystals in the wide concentration range $0 \le n \le 0.50$ at 0.10 steps have been studied. It has been shown that in the concentration range $0.05 \le n \le 0.10$, the $(Bil_3)_{(1-n)}$ (Pbl₂)_n crystal exhibits the properties of a doped Bil_3 crystal containing intralayer Pbl₂ clusters. In the $0.01 \le n \le 0.20$ range, the crystal shows the properties of an replacement type isotropic mixed crystal. At the Pbl₂ impurity concentration $n \simeq 0.20$, the $(Bil_3)_{(1-n)}$ (Pbl₂)_n crystal is subjected to so-called "concentration" phase transition and at $0.20 \le n \le 0.50$, a new $(Bil_3)_{(1-n)}$ (Pbl₂)_n crystal exists including completely or partially ordered Pbl₂ atomic groups.

Представлены результаты исследований спектров ЯКР 127 I при 77 К полупроводниковых смешанных слоистых кристаллов (Bil_3) $_{(1-n)}$ ·(Pbl_2) $_n$ в широком интервале концентраций $0 \le n \le 0.50$ с дискретностью 0.10. Показано, что в диапазоне концентраций $0.05 \le n \le 0.10$ кристалл (Bil_3) $_{(1-n)}$ ·(Pbl_2) $_n$ имеет свойства примесного кристалла Bil_3 , содержащего внутрислоевые кластеры Pbl_2 . При $0.01 \le n \le 0.20$ кристалл (Bil_3) $_{(1-n)}$ ·(Pbl_2) $_n$ имеет свойства изотропного смешанного кристалла типа замещения. При концентрации $n \simeq 0.20$ примеси Pbl_2 кристалл (Bil_3) $_{(1-n)}$ ·(Pbl_2) $_n$ испытывает концентрационный фазовый переход и при $0.20 \le n \le 0.50$ существует новый кристалл (Bil_3) $_{(1-n)}$ ·(Pbl_2) $_n$ с полностью или частично упорядоченными группами атомов Pbl_2 .

1. Introduction

It is known [1-3] that layered semiconducting materials Bil₃, Cdl₂, Pbl₂ have some properties [3, 4], which make it possible to use these crystals as X-ray detectors with high energy resolution properties. Besides, those crystals are used successfully in optical and acoustic devices because of their anisotropic properties. The efficiency of the materials being applied in X-ray detectors is defined by the presence of structural defects and impurities influencing the electron properties and defining the radiation resistance of the materials.

In this connection, of importance is to study the properties of $(Bil_3)_{(1-n)} \cdot (Pbl_2)_n$ mixed crystals and to determine the concentration dependences of crystal parameters which may change depending on the impurity state. The nuclear quadrupole resonance spectra of ¹²⁷| nuclei (¹²⁷| NQR) in chemically pure Bil_3 crystals (n=0) and in the $Pbl_2 \cdot Cdl_2$ mixed layered crystals containing isovalent iodine atoms were studied in [5, 6]. The ¹²⁷| NQR spectra of the $(Bil_3)_{(1-n)} \cdot (Pbl_2)_n$ mixed crystals are studied in this work for the first time.

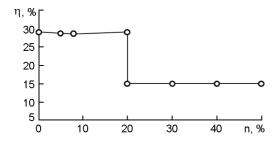


Fig. 1. Concentration dependence of the tensor asymmetry parameter η of electrical field gradient.

2. Experimental

The $^{127} \text{I NQR}$ spectra of the $(\text{Bil}_3)_{(1-n)} \cdot (\text{Pbl}_2)_n$ crystals under study at temperature T=77~Kin the frequency range 2-300 MHz were measured using a quasi-coherent NQR spectrometer ISSh-2-13. A digital accumulator for registration of weak and wide lines in the NQR spectra was used, too. The Bil₃ crystals with different concentrations n of Pbl_2 impurity were investigated (n = 0, $0.0\overline{5}$, 0.10, 0.20, 0.30, 0.40 and 0.50). The measured frequency values v_1 and v_2 of the 127 NQR corresponding to transitions $\pm 1/2 \leftrightarrow \pm 3/2$ and $\pm 3/2 \leftrightarrow \pm 5/2$, provided, proceeding from the tabular data [7], determination of the concentration dependences of the quadrupole coupling constant $e^2Qq_{zz}(n)$ and asymmetry parameter $\eta(n)$ of the electric field gradient tensor ($\eta=(q_{xx}-q_{yy})/q_{zz}$) on $^{127}{\rm l}$ nuclear resonance. The NQR data are presented in Table. The determination accuracy of the asymmetry parameter and quadrupole coupling constant were defined by the line width and did not exceed ± 1.5 % and ± 0.1 % of absolute values thereof.

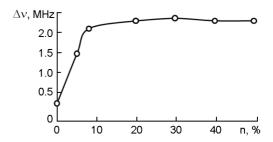


Fig. 2. Concentration dependence of the width of 127 I NQR spectrum line corresponding to transition $\pm 1/2 \leftrightarrow \pm 3/2$.

3. Results and discussion

It was found that for chemically pure Bil_3 crystal (n=0) at 77 K, the 127 l NQR frequencies $\upsilon_1{}^0$ and $\upsilon_2{}^0$ corresponding to two transitions make 111.320 and (201.380±0.010) MHz, respectively. The presented frequencies $\upsilon_1{}^0$ and $\upsilon_2{}^0$ correspond to the quadrupole coupling constant $e^2Qq_{zz}{}^0=(682.18\pm0.01)$ MHz and the tensor asymmetry parameter $\eta^0=0.29\pm0.1$. The results obtained agree with experimental data [5].

It is to note that the constant $e^2Qq_{zz}^I$ and asymmetry parameter η^I change insignificantly, when concentration value n of Pbl₂ impurity in the basic Bil₃ matrix increases from 0.05 to 0.10 (Fig. 1). The observed changes for the frequencies υ_1^I and υ_2^I do not exceed 10 % of their absolute values (Table). While the width $\Delta\upsilon^I$ of the υ_1 line in the ¹²⁷| NQR spectrum changes by one decimal order in the same concentration n interval: $\Delta\upsilon^1|_{n=0} \sim 0.24$, $\Delta\upsilon^1|_{n=0.10} \sim 2.20$ MHz (Fig. 2). These experimental data evidence that in concentration range $0 \le n \le 0.10$, the reduction of intralayer sym-

Table.

n	υ ₁ , MHz	υ ₂ , MHz	Δυ ₁ , MHz	η	$e^2 Q q_{zz}$, MHz	Interpretation NQR Spectra
0	111.32	201.38	0.21	0.29	682.18	v^0
0.05	111.4	201.3	1.46	0.287	682.75	υΙ
0.08	111.601	201.2	2.1	0.285	682.97	υ1
0.20	111.4	201.2	2.3	0.29	682.2	υΙ
0.20	104.35	204.2	2.3	0.15	684.01	υΠ
0.30	104.325	204.1	2.36	0.15	684.005	υ ^{II}
0.40	104.3	204.15	2.3	0.15	684.02	υΠ
0.50	104.35	204.17	2.3	0.15	684.025	υ ^{II}

metry is insignificant while the interlayer symmetry does not change. The C_{3i}^2 symmetry for crystal $(Bil_3)_{(1-n)} \cdot (Pbl_2)_n$ in the concentration range $0 \le n \le 0.10$ does not change as a whole. This assumption is based on the fact that x and y axes of q_{xx} and q_{yy} components of the electrical field gradient tensor lie in the plane of crystal layers and axes z are perpendicular to the layers [5]. Therefore, the layered structure of $(Bil_3)_{(1-n)} \cdot (Pbl_2)_n$ crystals can be supposed to be maintained for the concentration range 0 < n < 0.10 with impurity groups Pbl_2 being situated within the crystal layers. Moreover, Pbl₂ groups may form interlayer clusters of "island" type with dimensions increasing with the increase of concentration n.

For the Bil $_3$ crystals with the concentration n of Pbl2 impurity 0.20, 0.30, 0.40 and 0.50, we have revealed a new line $v^{\rm II}$ in the 127 NQR spectrum at 77 K. So, for n=0.20, the line $v^{\rm II}$ at 77 K is characterized by the following parameters: $v_1^{\rm II}=105.027$, $v_2^{\rm II}=204.150$ MHz, $e^2Qq_{zz}^{\rm II}=684.01$ MHz, $\eta^{\rm II}=0.15$. It is important to note that for this new line of NQR spectrum of 127 , the asymmetry parameter $\eta^{\rm II}$ becomes approximately halved: $\eta^{\rm I}=0.29$ and $\eta^{\rm II}=0.15$. Thus, the constant e^2Qq_z of the electric field gradient on 127 nuclei does not change considerably: $e^2Qq_{zz}^{\rm II}=684.01$ MHz. This allows to conclude that with growing n, the crystal interlayer symmetry increases.

In addition, at increasing concentration n of Pbl₂ impurity in the interval 0.20 < n < 0.50, the width $\Delta \upsilon^{II}$ of the new υ^{II} line in the 127 NQR spectrum remains essentially unchanged ($\Delta \upsilon^{\rm II} \sim \Delta \upsilon^{\rm I}|_{n=10\%} \sim 2.30$ MHz). It is also of interest that the line v^{I} in the 127 I NQR spectrum with the parameters $e^{2}Qq_{zz}^{I} = 682.18 \text{ MHz}$ and $\eta^{I} = 0.29$ in the $n \ 0.10 < n < 0.50$ range is not observed. It is known [7] that for the chemically pure samples with a rather high perfection of crystal lattice, the width of resonance line Δv of the NQR spectrum must as a rule be very small as compared to frequency υ of the NQR line: $\Delta v/v \sim 10^{-3}$. Indeed, the presence of distortions in the lattice results in that the intermolecular distances r of the same type in the crystal are not strictly identical. There appears some variation Δr of r distances. This may, in turn, cause some variation of the field tensor components Δq_{xx} , Δq_{yy} and Δq_{zz} of the electric

field gradient q_{zz} and increasing width Δv_1^{II} of NQR spectrum line. It was also shown in [7] that for $\Delta v/v \sim \Delta r/r \sim 10^{-1}$, the nuclear quadrupole resonance signals become unobservable.

It is known [7] also that the product of width and intensity of NQR line is proportional to the number of resonant nuclei which form this line. Therefore, the fact that in the concentration range 0.10 < n <0.50, the line v^1 of ¹²⁷ NQR spectrum with the parameters $e^2Qq_{zz}^{I} = 682.18$ MHz and $\eta^{I}=0.29$ becomes unobserved, can testify about considerable reduction of number of ¹²⁷ resonant nuclei which form the line v^1 . We have found that in the interval of Pbl2 impurity concentrations 0.20 < n < 0.50 in the Bil_3 crystal, the width Δv_1^{II} of the line v₁II in 127 NQR spectrum does not change essentially. The ratio $\Delta v_1^{\text{II}}/v_1^{\text{II}}$ is independent of the concentration n and makes ~ 10^{-2} . This enables to record the rather wide lines $\upsilon_1^{\;II}$ of ^{127}I NQR spectrum in the concentration range 0.20 < n < 0.50.

Analysis of the obtained experimental concentration dependences both of the asymmetry parameter and of the υ_1 line width (Figs. 1 and 2) indicates that at the concentration $n \sim 0.20$, the so-called "concentration" phase transition occurs in the $(\text{Bil}_3)_{(1-n)}\cdot(\text{Pbl}_2)_n$ crystal. Taking into account that the total number of resonant ^{127}I nuclei in the $(\text{Bil}_3)_{(1-n)}\cdot(\text{Pbl}_2)_n$ crystal should be constant, the new line υ^{II} in the ^{127}I NQR spectrum at $n\geq 0.20$ is formed at the expense of resonant nuclei forming the line υ^{I} . In addition, at $n \sim 0.20$, the concentration dependences of frequencies υ_1 and υ_2 show a jump (Table).

4. Conclusions

Thus the results obtained show that in the concentration range $0.05 \ge n \ge 0.10$, Pbl_2 impurity islands or clusters can be formed in the $(Bil_3)_{(1-n)} \cdot (Pbl_2)_n$ structure which are disposed within Bil_3 crystal layers. The symmetry of impurity Bil_3 crystal as a whole does not change. It is shown that in the concentration range $0.10 \ge n \ge 0.20$, the $(Bil_3)_{(1-n)} \cdot (Pbl_2)_n$ crystal under study exhibits the properties of $Bil_3 \cdot Pbl_2$ solid solution of substitution type. The appearing virtual crystal $Bil_3 \cdot Pbl_2$ is characterized by isotropic glassy properties. As a result, due to distortion of transmission symmetry of the isotropic mixed crystal $Bil_3 \cdot Pbl_2$, the ^{127}l

NQR spectrum is not observed. At the concentration value $n \sim 0.20$, the mixed $(Bil_3)_{(1-n)} \cdot (Pbl_2)_n$ crystal undergoes a concentration phase transition. An evidence thereof is, for example, the disappearance of low-concentration v^{I} line and appearance of a new high-concentration v^{II} one in the 127 NQR spectrum. In this case, the impurity crystal $(Bil_3)_{(1-n)} (Pbl_2)_n$ (at $n \ge 0.20$) changes intothe mixed crystal $(Bil_3)_{(1-n)}(Pbl_2)_n$, where the translational symmetry of crystal as a whole can be retained.

References

- V.M.Koshkin, V.V.Kukol, A.P.Milner, Fiz. Tverd. Tela, 91, 1608 (1977).
- M. Watanabe, A. Ishibashi, T. Hayashi, J. Luminescence., 48&49, 87 (1991).
- T.Hayashi, P.Gu, M.Watanabe, J. Phys. Soc Japan, 63, 2089 (1994).
- Yu.P.Gnatenko, I.A.Beynyk, P.A.Skubenko, in: Materials of the Intern. Confer. on High Mat. Tech., Kyiv (2007), p.402.
- 5. Yu.P.Gnatenko, A.I.Barabash, I.G.Vertegel, Functional Materials, 15, 175 (2008).
- R.Barnes, P.Bray, J. Chem. Phys., 23, 1177 (1955).
- 7. E.I.Fedin, A.I.Kitaygorodskiy, Krystallografia, 6, 406 (1961).

Дослідження спектрів ЯКР 127 І змішаних шаруватих напівпровідникових кристалів (Bil_3) $_{(1-n)}$ ·(Pbl_2) $_n$

Ю.П.Гнатенко, О.І.Барабаш, І.Г.Вертегел, Є.Д.Чесноков, О.І.Овчаренко, С.В.Погребняк.

Досліджено спектри ЯКР 127 І при 77 К напівпровідникових змішаних шаруватих кристалів (Bil₃) $_{(1-n)}$ ·(Pbl₂) $_n$ у широкому інтервалі концентрацій $0 \le n \le 0.50$ з дискретністю 0.10. Показано, що у діапазоні концентрацій від $0.05 \le n \le 0.10$ кристал (Bil₃) $_{(1-n)}$ ·(Pbl₂) $_n$ має властивості домішкового кристала Bil₃ з внутрішньошаруватими кластерами Pbl₂. При $0.01 \le n \le 0.20$ кристал (Bil₃) $_{(1-n)}$ ·(Pbl₂) $_n$ має властивості ізотропного змішаного кристала типу заміщення. При $n \simeq 0.20$ домішки Pbl₂ у кристалі (Bil₃) $_{(1-n)}$ ·(Pbl₂) $_n$ відбувається концентраційний фазовий перехід і при $0.20 \le n \le 0.50$ утворюється новий кристал (Bil₃) $_{(1-n)}$ ·(Pbl₂) $_n$ з повністю або частково впорядкованими групами атомів Pbl₂.