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The renormalization of the effective mass of an electron due to
the small polaron formation is studied within an extended Hol-
stein model. It is assumed that an electron moves along a one-
dimensional chain of ions and interacts with ions vibrations of
the neighboring chain via a long-range density-displacement type
force. By means of exact calculations, the renormalized mass of
a nonadiabatic small polaron is obtained in the strong coupling
limit. The obtained results are compared with analogous ones
within the ordinary Holstein model. The effect of the polarization
of vibrations of ions on the small polaron mass is discussed.

1. Introduction

A model of a polaron with a long-range “density-
displacement” type interaction was introduced in Ref.
[1] by Alexandrov and Kornilovitch. The model by it-
self represents an extension of the large Frohlich polaron
(LFP) model [2] to a discrete ionic crystal lattice or an
extension of the Holstein polaron model (HM) [3] to a
case where an electron interacts with many ions of the
lattice due to the long-range electron-phonon interac-
tion. Subsequently, the model was named an extended
Holstein model (EHM) [4]. In the model, a polaron has
an internal structure different from those of both HM
polaron and LFP. In the HM, a carrier is coupled to in-
tramolecular vibrations and self-trapped on a single site.
The size of a Holstein polaron is the same as the size of
the phonon cloud, both are about the lattice constant. In
the case of large Frohlich polarons, the size of a polaron
is also the same as the size of the phonon cloud, but
the polaron extends over many lattice constants. The
size of a polaron in EHM is about the lattice constant,
but its phonon cloud spreads over the whole crystal. As
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was shown in Ref. [1] in the strong-coupling limit of
EHM, a polaron consists of an electron localized on a
site n and the phonon cloud spread over other lattice
sites m. The mass enhancement of such a quasiparticle
increases exponentially with coupling as in the standard
small polaron theory. In EHM, one has to work with a
new situation where the electron wave function size in a
polaron and the size of a lattice deformation surrounding
an electron are different. The former is the atomic size,
while the latter is spread over the whole crystal. Accord-
ing to Ref. [1], we use the term small polaron for such
a quasiparticle (for an alternative viewpoint, see Ref.
[4]). Within the model, a renormalized mass appears to
be much smaller as compared with that in the ordinary
Holstein model. Conclusions of [1] were confirmed later
on by other authors [4-6]. In addition, Fehske, Loos,
and Wellein [4] investigated electron-lattice correlations,
a single-particle spectral function, and the optical con-
ductivity of a polaron in EHM in strong and the weak
coupling regimes by means of the exact Lancroz diag-
onalization method. Other properties of EHM such as
the ground-state spectral weight, the average kinetic en-
ergy, and the mean number of phonons by means of the
variational and Quantum Monte Carlo simulation ap-
proaches were studied in [7, 8]. All numerical and ana-
lytical results in [1] were obtained in the nonadiabatic
or near-nonadibatic regime. In work [9], we extended
this model to the adiabatic limit and found that the
mass of a polaron in EHM is much less renormalized
than the mass of a small Holstein polaron in this limit
as well. Work [1, 9] considered an electron interacting
with vibrations of ions of an upper chain which are po-
larized perpendicularly to the chain. This case mimics
high — T, cuprates, where the in-plane (CuQOs) carriers
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Fig. 1. Electron hops on a lower chain and interacts with vibrations
of ions of the upper infinite chain via a density-displacement type
force fm,a (n). The distances between chains and between ions are
assumed equal to 1

are strongly coupled with the c-axis polarized vibrations
of apical oxygen ions [10]. A more realistic case where
apical ions vibrate in all directions and their effect on
the mass of a small polaron in EHM were studied in [11].
At the same time, polarons were experimentally recog-
nized as quasiparticles in novel materials, in particular,
in superconducting cuprates and manganites with colos-
sal magnetoresistance [12-20]. In the previous papers
[9, 11], the mass renormalization of an electron due to
the formation of a small polaron in EHM was restricted
only to a simple two-site model. Here, we extend these
studies for a many-site system and derive an analytical
expression for the mass of a nonadiabatic small polaron
in EHM in the strong coupling regime and compare it
with that in the ordinary Holstein model. In addition,
the effect of polarized vibrations and their contributions
to the mass of a polaron are discussed within EHM.

2. The Model

We consider an electron performing the hopping motion
on a lower chain consisting of static sites, but interacting
with all ions of an upper chain via a long-range density-
displacement type force, as shown in Fig. 1, similar to a
case considered in [5,6]. So, the motion of an electron is
always one-dimensional, but vibrations of upper chain’s
ions are isotropic and two-dimensional.
The Hamiltonian of the model is

H=H.+ th + He—pha (1)
where

H,=-t Z(chnJra +H.c.) (2)
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is the electron hopping energy,

ﬁ262 Mw2u12n o
H,, = — o 3
b g( oMoz, 2 ®)
is the Hamiltonian of vibrating ions, and
He pn = Z f o () ~um7achn (4)

describes the interaction between an electron that be-
longs to lower chain and ions of the upper chain. Here,
cl (cn) is the creation (annihilation) operator of an elec-
tron on the site n, uy, o is the a = y, z-polarized dis-
placement of the m-th ion, fy, o(n) is an interaction
density-displacement type force between the electron on
site n and the « polarized vibration of the m-th ion, M
is the mass of vibrating ions, and w is their frequency.
The explicit dependence of the interaction force on the
y and z coordinates is

yln -
fm,y(n) = (|nfn,l:|2 _:r;l)?,/g (5)
and
2b
fmz(n) = (In — mTQ + b2)3/2’ (6)

where k, and k, are some coeflicients. The distance
along a chain |n — m| is measured in units of the lattice
constant |a] = 1. The distance between the chains is b.

3. Strong Coupling and Nonadiabatic Limit

In the strong coupling limit (A = E,/D > 1) and the
nonadiabatic approximation, the wave function of the
system is presented as a superposition of normalized
Wannier functions W (r — n) localized on the site n,

U=>" Ap(Uma)W(r—n). (7)

For a convenience, we consider 2NV + 1 ions in the lower
chain. Then the Schrédinger equation HV = EV is re-
duced to a system of coupled second-order differential
equations with respect to the in finite number of vibra-
tional coordinates um o

(E — Hpn — Z fm,a(ni) : umu) An, (um’a) =

m,x

=t An(Uma) (8)

n#n;
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with ¢ =0,£1,42,...,£(N —1),£N. Further, we omit
the argument Um, o of A,, but keep in mind that it de-
pends on them. The common tool to investigate (8) is a
perturbation approach with respect to the hopping inte-
gral. In the zero order (¢ = 0), the system is (2N +1)-fold
degenerate with the electron localized, for example, on
site n;, so that A, = A,, if n = n;, where

~ Mw fn o (1) 2
Al’li = exp [_% 2 (um’a + W (9)

and zero otherwise. In the first order in the hopping inte-
gral t, we are looking for a solution of system (8) as a sin-
. T
gle column matrix (An_N sAnniayro s Angy s AnN)
(T stands for a transposed matrix) which is a linear com-

bination of Ap;:

(An_n Ang sy -- Anie 1y Any) ' =
~ T ~ T
—oa_y (AM,O ,o) + oy (o,...,Am,...,o) n
~ T
+a_n (07 e 7O7AHN) . (10)

Substituting (10) into the system of equations (8), we
get a system of linear equations for the coefficients

OéfN7OZ7N+1, o, N—1, N,

Em)An,a; =ty An,, aitr =0, (11)
ki

where

E(n;) = <E — Hpn = _fma(ny) - um@) . (12)

The system of equations (11) have a square (2N + 1) X
(2N + 1) matrix. Diagonal elements of the matrix are
products of (9) and (12). Then we introduce the Born—
von Karman boundary condition A, , = A, which
ensures the translation invariance of the system and en-
ables us rewrite the system of equations (11) as

EO&Z' - Zti’kak =0.
k#i

(13)

Here, F = E — N'hw/2 — E,, N' is the number of ions

in the upper chain,

fAnkAnk./dum,a
J [An, [*dum o

thg =t (14)
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are the renormalized hopping integrals and

E, = Ey(n;) = (15)

is the polaronic shift which is independent of n;. Ex-
pressing all nondiagonal elements ¢y of the matrix
through t = ¢; 2, we find

Ea; — tNZ Girar =0 (16)
ket

and

gir = —(1/2Mhw?)x

x Z fm,o (1) (fm,a(Mit1) — fm o (0'k)). (17)

m,«

It appears that the matrix of the system of equations
(16) is symmetric. Then the system of equations is sep-
arated into block 2 x 2 diagonal matrix equations that
couple only a; and a4 as

B —FeThit ai ) _,
—fe i E ait1 )

From (18), we obtain a secular equation for the energy

(18)

E—Nhw/2+ E, —t
2 =0. 1
’ —t E—-Nhw/2+ E, 0 (19)
The energy levels of the system are found as
Ey=Nhw/2—-E, +t (20)

The evaluation of (14) with regard for (9) results in

e (21)
where
1
= gapos 2 (Fa(m) — fin o (W)fmo(n +2).)
(22)

Formulas (15) and (21) are the main analytical results
of the present work.
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Fig. 2. Schematic representation of the extended Holstein model
and the ordinary Holstein model for a two-site system. The elec-
tron on site 1 interacts (a) with sites m = —1 and m = 0 and (b)
with only site m = 1 of the ion chain, in the extended Holstein
model and the Holstein model, respectively

4. Results

Analytical expressions for the polaronic shift (15) and
the renormalized hopping integral (21) were obtained
early in Ref. [1] by using the canonical Lang—Firsov
transformation. Work [1] studied the renormalization of
the effective mass of an electron due to only z-polarized
vibrations of the upper chain. However, a role of y-
polarized vibrations of the upper chain and their influ-
ence on the mass renormalization in EHM was not dis-
cussed, and no quantitative results were presented. In
this section, we calculate the small polaron mass in EHM
for both density-displacement type interactions (5) and
(6). Moreover, we calculate the mass of a small polaron
in EHM with two-dimensional isotopic vibrations of ions
of the upper chain as well. In our model, the electron-
phonon coupling constant A = E,/2t, and the polaron
mass

" el (23
my = —— =m €Xx y
P 2ta? Pl
where m* = h?/2ta® is the bare electron band mass.

One can express the polaron mass in terms of A and t/w
(parameter of nonadiabaticity) as

mp/m* _ e2fy)\t/hw’ (24>

where

-1 Zm,a fm#l (1’1) ’ fm’a (1’1 + a)
YEEM = 1 — S 2 () .

m,o Tm,x

(25)

The dimensionless parameter « in the exponent of (24)
depends on the type of interacting force and the geom-
etry of a lattice. For the ordinary Holstein model, it
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Fig. 3. Ratio of the masses of nonadiabatic small polarons in EHM
and HM with the only z— polarized vibrations of ions as a function
of the electron-phonon coupling constant A at different values of
t/hw. Open (filled) circles and squares show ~ calculated within
two models (for a whole chain)

is always equal to 1 (yum = 1). So the ratio of small
polaron masses in EHM and ordinary HM is given by

Mp EHM t
—22 = exp |2A(YEHM — YHM)

26
" o (26)

We would like to stress that the model yields a less renor-
malization of the effective mass than the Holstein model.
This is true not only for c-axis polarized vibrations of
apical oxygen ions, but for their isotropic vibrations as
well [11]. For simplicity, let us first consider z-polarized
vibrations of ions of the upper chain and only nearest-
neighbors interactions, as in Fig. 2,a. In this case, our
model yields E, = f&,(1)/Mw? and the mass renor-
malization mp/m* = exp(E,/2hw), while the Holstein
model with the local interaction, Fig. 2,b, for the same
E, yields mp/m* = exp(E,/hw).

The factor 1/2 in the exponent provides much lighter
small polarons in EHM as compared with those within
the Holstein model. If one considers the Coulomb-like
interaction with the whole upper chain, one gets the fac-
tor v, = 0.28 [6] instead of 0.5 in the exponent, which
means an even less renormalized effective mass. The
results for the mass of a nonadiabatic small polaron in
EHM with the only z-polarized vibrations of ions in com-
parison with those of HM are presented in Fig. 3.

Now we discuss the influence of y-polarized vibrations
of the upper chain on the small polaron mass in EHM.
In this case, the density-displacement type interaction

force (5) is longer ranged than (6), as it decays as 72,
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Fig. 4. The mass ratio for nonadiabatic small polarons in EHM
and HM with only y— polarized vibrations of ions as a function
of the electron-phonon coupling constant A\ at different values of

t/hw

while force (6) decays as r~3. For a lattice in Fig. 1, one
finds v, = 0.652657. The results for the mass of a small
polaron in EHM with only y— polarized vibrations of
the upper chain and their comparison with those of HM
are given in Fig. 4.

The comparison of curves in Figs. 3 and 4 shows that
the effective mass of an electron is more renormalized
with y-polarized vibrations of ions than with z-polarized
vibrations. For example, at A = 1 and t/hw = 1,
Mp EEM,. =~ 1.77m*, while m, gam,y ~ 3.68m*. If
we switch-on both z- and y-polarized vibrations, then

T able 1. Calculated masses of polarons for the same
polaron shift with z- and y-polarized two-dimensional vec-
tor vibrations of ions in EHM. The fifth column presents
the polaron mass in HM

A t/hw = 0.50

UL Mp,y ‘ Mp EHM Mp HM
1 1.33213 1.92064 1.47995 2.71828
2 1.77457 3.68885 2.19025 7.38906
3 2.36396 7.08494 3.24146 20.0855
4 3.14910 13.6076 4.79720 54.5982
5 4.19501 26.1353 7.09961 148.413
A t/hw = 0.75

Mmp, 2 Mp,y ‘ Mp, EHM Mp HM
1 1.53752 2.66175 1.80041 4.48169
2 2.36396 7.08494 3.24146 20.0855
3 3.63462 18.8584 5.83594 90.0171
4 5.58829 50.1963 10.5071 403.429
5 8.59209 133.610 18.9130 1808.04
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Fig. 5. The mass ratio for nonadiabatic small polarons in EHM
and HM with vector vibrations of ions as a function of the electron-
phonon coupling constant A at different values of t/hw

each of them contributes to the mass renormalization.
The overall effect of both contributions of vibrations
of ions to a small polaron mass in EHM depends on
the ratio x,/ky. In the case where k, = k,, ions are
isotropic oscillators. The calculations of (25) with a vec-
tor fm(n) force (taking both (5) and (6) into account)
yields v = 0.392008. This result shows that a nonadia-
batic small polaron in EHM remains lighter than a small
polaron of HM. The comparison of the results of EHM
with two-dimensional vector vibrations of ions and ordi-
nary HM is given in Fig. 5. For the illustrative purpose,
the calculated masses of small polarons (i) for each type
of ions vibrations in EHM and (ii) in HM are presented
in Table 1 at the same polaron shift. As many exper-
iments with cuprates show, the polaron mass is of the
order of ~ (2 +5)m* [21]. In our model, such values of
mp can be explained in the xk, > &, limit.

It should be emphasized than the full polaron mass m,,
can be presented as a product of my, , and mp 4 mp =
Mmp,» XMy (see Table 2). However, the full polaron shift
E, is given as the sum of E, . and E, ,: E, = E,, +
E, . The same is true for the electron-phonon coupling
constant \: A = A, + Ay, A\, = E, /2t = dp A and
Ay = Ep /2t = 0 4\ Here, A, and A, are the electron-
phonon coupling constants due to only z- and y-polarized
vibrations of ions of the upper chain, respectively, and

Y S SR (1)
P2 TR, (AL )+ f2 ()

(27)
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5E7y =

are the relative contributions of z- and y-polarized vi-
brations to a full polaron shift. In the case of isotropic
vibrations of the upper chain ions and s, = k,, we
find 0g , = 0.712393 and dg, = 0.287603 (within HM,
dp, = 6g,y = 0.5). As one can see, the main contri-
bution to a full polaron shift comes from z polarized
vibrations. In general, ég o (@ = z,y) depends (i) on
the ratio k,/ky, (ii) on the type (range) of interaction
forces fim o (1), and (iii) on a lattice geometry. For the
ordinary Holstein model, dg . depends only on the ratio
K/Ky. As far as the effects of polarized vibrations on a
small polaron in HM and EHM are concerned, there are
qualitative and quantitative differences that can be seen
in the following:

— in the Holstein model: polarized vibrations of both
types contribute to the mass renormalization and a full
polaron shift my . = mp ), Ep . = Ep y if 6, = Ky

— in the extended Holstein model: as in HM, both types
of polarized vibrations contribute to the mass renormal-
ization and to a full polaron shift but now with a different
weights. mp . # mpy and Ep , # Ep, even if £, = ky.
z-polarized vibrations of ions give rise to a mobile po-
laron, while y-polarized vibrations give rise to a heavy
polaron. When both types of polarization are switched
on, the full polaron shift is mainly determined by the z
contribution ~ 71%, and the value of my, , exceeds that
of mp,, (Table 2). So, the anisotropic properties of a po-
laron due to polarized vibrations are more pronounced
in EHM.

T able 2. Calculated masses of polarons in EHM with
regard for z-, y-polarized, and two-dimensional vector vi-
brations of ions

A t/hw = 0.50

Mp,z=Mp,y

Mp,z ‘ Mp,y ‘ mpy Mp = Mp,z X Mp,y
1 1.22667 1.20648 0.01673 1.47995
2 1.50471 1.45560 0.03374 2.19025
3 1.84577 1.75615 0.05103 3.24146
4 2.26415 2.11877 0.06861 4.79720
5 2.77735 2.55626 0.08649 7.09961
A t/hw = 0.75
Mp,z ‘ Mp,y ‘ W Mp = Mp,z X Mp,y
1 1.35859 1.32520 0.02520 1.80041
2 1.84577 1.75615 0.05103 3.24146
3 2.50765 2.32725 0.07752 5.83594
4 3.40688 3.08408 0.10467 10.5071
5 4.62856 4.08702 0.13250 18.9130
340

5. Conclusion

We have solved the extended Holstein model with a
long-range density-displacement type interaction in the
strong coupling limit and in the nonadiabatic regime.
We have found the mass of a small polaron in the ex-
tended Holstein model and compared it with that in
the ordinary Holstein model. It is established that y-
polarized vibrations of ions give a more renormalization
of the polaron mass than z-polarized vibrations. In gen-
eral, both y- and z-polarized vibrations contribute to the
mass renormalization. The overall effect of both types
of polarized vibrations depends (i) on the ratio k,/ky,
(ii) on the type (range) of interaction forces fi o(n),
and (iil) on a lattice geometry. In the limit k, > k,, it
is found that a small polaron in EHM is lighter than a
small Holstein polaron in the nonadiabatic regime.

This work is supported by the Uzbek Academy of Sci-
ence (Grant No. FA-F2-070) and the Ministry of Public
Education of Uzbekistan.

1. A.S. Alexandrov and P.E. Kornilovitch, Phys. Rev. Lett.
82, 807 (1999).

2. H. Frohlich, Adv. Phys.3, 325 (1954).
3. T. Holstein, Ann. Phys. 8, 325 (1959); 8, 343 (1959).

4. H. Feshke, J. Loos, and G. Wellein, Phys. Rev. B 61,
8016 (2000).

5. J. Bonca and S.A. Trugman, Phys. Rev. B 64, 094507
(2001).

6. S.A. Trugman, J. Bonéa, and Li-Chung Ku, Int. J. Mod-
ern Phys. B 15, 2707 (2001).

7. C.A. Perroni, V. Cataudella, and G. De Filippis, J. Phys.:
Condens. Matter B 16, 1593 (2004).

8. M. Hohenadler, H.G. Evertz, and W. von der Linden,
Phys. Rev. B 69, 024301(2004).

9. A.S. Alexandrov and B.Ya. Yavidov, Phys. Rev. B 69,
073101(2004).

10. T. Timusk, C.C. Homes, and W. Reichardt, in Anhar-
monic Properties of High-T. Cuprates, edited by D. Mi-
hailovic et al., (World Scientific, Singapore, 1995), p. 171.

11. B. Yavidov, Zh. Eksp. Teor. Fiz. 135, 1173 (2009).

12. D. Mihailovic, C.M. Foster, K. Voss, and A.J. Heeger,
Phys. Rev. B 42, 7989 (1990).

13. P. Calvani, M. Capizzi, S. Lupi, P. Maselli, A. Paolone,
P. Roy, S.-W. Cheong, W. Sadowski, and E. Walker, Solid
State Commun. 91, 113 (1994).

ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3



EXTENDED HOLSTEIN POLARON MASS

14.

15.

16.
17.

18.

19.

20.

G. Zhao, M.B. Hunt, H. Keller, and K.A. Miiller, Nature
(London) 385, 236 (1997).

A. Lanzara, P.V. Bogdanov, X.J. Zhou, S.A. Kellar,
D.L. Feng, E.D. Lu, T. Yoshida, H. Eisaki, A. Fujimori,
K. Kishio, J.I. Shimoyama, T. Noda, S. Uchida, Z. Hus-
sain, and Z.X. Shen, Nature (London) 412, 510 (2001).

T. Egami, J. Low Temp. Phys. 105, 791 (1996).

D.R. Temprano, J. Mesot, S. Janssen, K. Conder, A. Fur-
rer, H. Mutka, and K.A. Miiller, Phys. Rev. Lett. 84,
1990 (2000).

Z.X. Shen, A. Lanzara, S. Ishihara, and N. Nagaosa, Phil.
Mag. B 82, 1349 (2002).

A. Bussmann-Holder, H. Keller, A.R. Bishop, A. Simon,
and K.A. Miiller, J. Supercond. Nov. Magn. 21, 353
(2008).

Polarons in Advanced Materials, edited by A.S. Alexan-
drov (Springer, Berlin, 2008).

ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3

21. S. Uchida, T. Ido, H. Takagi, T. Arima, Y. Tokura and
S. Tajima, Phys. Rev. B 43, 7942 (1991).

Received 21.04.09

MACA IIOJISIPOHY B PO3LINPEHIN MOJIEJII
XOJICTEIMHA

B.A. Heudos
Pezmowme

Busueno nepenopMyBaHHSI MacH €JIEKTPOHA B Pe3y/IbTaTi yTBOPEH-
HsI MaJIOTO MOJISIPOHY B M€KaX po3IIupeHol mojesti XoJicreitna. [le-
pebavaEThCH, IO eJIEKTPOH PYXAETHCS IO OJHOMIDHOMY JIAHITIOXK-
Ky iOHIB i B3aeMozi€ 3 KOJIMBaHHAMH iOHIB CyCiJIHBOI'O JIAHIIIO?KKA
BHACJIJIOK JtajieKoaiitnux cuil. [InsxoM npsaMux o64uciieHb OTpu-
MaHO II€EPEHOPMOBaHY MacCy HeiabaTHTIHOrO MAaJIOrO IOJIIPOHY B
MeXKaxX CHIIbHOrO 3B’a3Ky. OTpuMani pe3yIbTaTu NOPIBHAHO 3 aHa-
JiTHaHEME pe3ysibraTamu XosicreiiHa. OOGroBOpeHO BILUIMB KOJIH-
BaHb i0HIB 3 PI3HMMU NOJIAPUIAIIAMYE Ha MacCy MAaJIOIO IIOJIAPOHY.
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