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The one dimensional stationary problem of heat radiative conduction is solved used
Stefan-Boltzmann approximation in the case of optical semi-transparent media. The case
of the specimen large optical length A is investigated. In frameworks of the perturbation

theory on the parameter A1, the asymptotically exact formulas are obtained in main
approximation. The nonlinear integral and differential equation for the temperature
distribution in the specimen is derived. It is done on the basis of strict account of the
radiation transfer in the geometric optics approximation.

Pemraerca ogHoMepHasa cranuoHapHadA 3ajada PafUalllOHHO-KOHAYKTUBHOIO TEIJIO0OMeHa
B T.H. CEPOM IPUOJMIKEHUU B cJyuae ONTUYECKU IOJYIPO3PAauyHOil cpenabl. Paccmorpen ciy-
yail GOJIBIIION ONTUYECKOH NJMHEI A oOpasna. B paMKax Teopuu BO3MYIIEHUI IO ITapaMeTpy
2! monyuensl acHMITOTHUECKH TOUHBIE (OPMYJIBI B TIJIABHBIX NPUOIMKEHHAX. BEIBELEHO
HeJnHellHOe HHTerpo-guddepeHnuaIbHOe ypPaBHEHHUE [JId pacIPeeseHNus TeMIIepaTypbl B
o0pasile Ha OCHOBE TOYHOI'O yUuéTa IIepeHOCa WHBJIYyUYEeHUsS B IPUOJMIKEHHN IeOMEeTPHUYECKON
OITUKMU.

1. Introduction. The problems of the heat radiative conduction calculation are mainly solved by
numerical methods in the physical literature (see, for example, [1, 2]). The main difficulty of the numerical
analysis of such problems that distinguished their from standard boundary and initial boundary problems
which are set in mathematical physics consists of the radiation transfer account. It is connected with the
fact that the heat radiative conduction problem is decomposed by natural way into two different problems
according with it mathematical formulation (see, Sec.2). First of them consists of the calculation of the
radiative energy flux that is transferred in optical semi-transparent specimen at an arbitrary temperature
distribution in it. In one-dimensional case, this problem is reduced to the calculation of the function P(z),
(z is the moving coordinate of the point in the specimen). It is equal to the energy that is flowed through
the point « during the time unit with the account of the flow direction. If the specimen is optically uniform
so the dependence on z in the flux P(z) takes place only by the functional dependence of the energy flux
on the temperature distribution T'(z) in the specimen. The calculation of the function P(z) is realized
on the basis of the kinetic equation of the radiation transfer in the geometric optics approximation
with the account of boundary conditions for rays at the specimen boundary. This equation has the
radiation source that depends on the temperature distribution. The formal solution of the radiation
transfer equation with the account of boundary conditions leads to the system of integral equations for
the function P(z) determining it at an arbitrary temperature distribution (see, for example, monographs
[3, 4] where these equations are given in the most general form). The evaluation of the function P(z) on
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the basis of these equations leads to the second problem when the thermal conductivity equation with
the source is solved. Such a source is performed by the divergence of the energy flux (it is the derivative
dP(z)/dx in one-dimensional case). This equation represents itself the evolution nonlinear integral and
differential equation in general case. However, its solving is the standard problem of mathematical physics
at the given initial and boundary conditions. This problem is sufficiently complicated and it have no the
strict analytic solution with the exception of the trivial situation when the temperature distribution is
constant at constant and uniform boundary conditions. At the same time, the described problem has
the nonstandard form since the integral equations for the energy flux contain the unknown functional
variable, i.e. the temperature distribution. In one-dimensional case, their solution is represented by a
functional on T'(z) and some difficulties arises at the realization of their analytic solving. Moreover, it is
desirable to solve the first problem by explicit way in frameworks of the analytic approach. In other case,
some supplementary obstructions arise when the thermal conductivity equation is solved. The pointed
out circumstances complicate essentially the solving of the heat radiative conduction problem in the
framework analytic approach. Just due to this reason, such a problem is usually solved numerically. It is
done by the algorithm construction of numerical procedure for the simultaneous solving of the radiation
transfer equation and the thermal conductivity one (see, [3, 4, 5]).

In this work, in one-dimensional variant of the heat radiative conduction problem, it is succeeded
to solve by relatively simple way the first problem of the above-described ones. Taking into account the
radiation energy transfer, we determine the energy flux P(xz) as the functional P[T'(#)] on the temperature
distribution T'(x) in the specimen and calculate the flux divergence of the radiation energy in the explicit
form at an arbitrary temperature distribution. This gives the possibility to set and to solve in one-
dimensional case some problems with different sources of the radiation energy.

In Sec.2 the function P(z) is calculated in the one-dimensional specimen at an arbitrary temperature
distribution. In Sec.3 the nonlinear thermal conductivity equation for the function T'(z,?) is derived.

2. The radiation transfer problem in the one-dimensional case.

Let there exists the distributed radiation source on the segment [0, L]. Tt has the intensity Po(y) in
each point y € [0, L] where the function Py(y)/2 represents physically the electromagnetic energy value
relating to the unit cross-section area element being perpendicular to the segment. It may flow in both
possible directions (on the left and on the right) during the unit time. The multiplier 1/2 arises in the
connection with the fact that, in the stationary case under consideration, the source irradiates uniformly
in time with the identical intensity in both directions. We put that the distribution density of such
irradiation sources on the unit length is equal «, i.e. the distribution measure on the segment with the
length dy is equal ady. Each ray moves uniformly into the segment with the light rate and, after the
boundary attaining, it reflects with the probability (the reflection coefficient) r. Further, it continues the
moving in the opposite direction. The ray motion, i.e. its part which remains into the specimen at each
reflection of all subsequent reflections from boundaries is continued unboundedly.

We denote by Q4 (s|ly) < 1 the contributions of the parts of electromagnetic energy having arisen in
the point y to the common flux, i.e. the parts relative to the initial flux Po(y), which are taken place after
rays went the distance s. Signs + (-) denote the contribution to the energy flux of the ray that is irradiated
to the right (to the left) from the source in the point y. Thus, the rays irradiated out the point y in the
directions + which, have intensities Q41 (s|y), after they pass the distance s, correspondingly. The energy
value losing by them after the passage of the segment having the length ds, is equal aQ 4 (s|y)ds. Tt is done
due the radiation absorption by the medium. The absorption coefficient o coincides with the irradiation
coeflicient which defines the distribution of sources. These coincidence is justified by the Kirchhoff law.
It states that the radiation absorption intensity in each space point coincides with the intensity of its
irradiation.

Functions Q4 (s]y) satisfy the kinetic equation of the heat transfer

0
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at the initial condition Q41 (0]y) = 1/2 where the time is measured by units of distance having passed
by the ray with the constant light rate. Therefore, Q4 (s|y) = exp(—as)/2, if the ray have no reflections
from segment boundaries. In general case, at the account of boundary reflections, we have

Q+(sly) = e (s]y) exp(—as)/2

where ny (s|y) is the number of ray reflections from specimen boundaries. This ray is irradiated from the
point y in the direction + (-) and passes the distance s. It takes place since the ray loses the part of
intensity which is determined by the reflection coefficient » < 1 at each boundary reflection.

Further, we denote by Py (x) the irradiation energy flux in the point  passing to the right and to the
left, correspondingly. We consider the pair of these functions as the two-component vector (Py (), P_(xz)).
At this time, the total energy flux P(x) in the point z is equal to the difference of introduced fluxes

P(2) = Py() - P_(). (1)

In stationary state, each of fluxes P (z) represents the sum of fluxes Q4 (s]y) of all rays irradiated
from all points y in different directions with different number of reflections from specimen boundaries
during time s. Then, the following conditions should be fulfilled for all rays when the point y is fixed:
1) rays come to the point # from the left/from the right; 2) the total distance length of each ray is
determined on the basis of the conditions of its outcome from the point y and its income to the point x.
In connection with this fact, we denote by Q.. (z,y) those parts of the irradiation energy flux which are
transferred by rays outcoming from the point y in the direction v and incoming to the point z moving in
the direction p. It is done for each fixed pair of points (z, y) and for each pair of signs (y, v) pointing out
the directions p, v = . The collection of introduced functions composes the 2 x 2-matrix with indexes
w,v. We call it the transfer matriz.

Since, according to the definition of the matrix (... (2, y) (its elements describe the parts of the energy
flux), it is necessary to integrate over all parts of the total energy flux from all points y and to sum over
both irradiation directions ¥ = % in order to obtain the vector (Py(z), P_(z)), then it is connected with
the irradiation intensity function Pp(y) by the relation

Py(z) = % > a/QW(x,y)Po(y)dy- (2)
v==%

0

Therefore, on the basis of Eq.(1), the irradiation energy flux P(x) in the point z is expressed by the
following way

L
Py =50 X i [ Quie )Py )
mr==£ 3

We calculate the matrix Q. (2, y) by the direct recount of contribution parts of each ray but we does
not solve the integral equations of the radiation transfer which are mentioned above in the introduction.
It may be done due to the one-dimensional geometry of the problem under consideration.

Let X, (s|ly) be the moving point coordinate attained by the ray which has passed the distance s
outcoming from the point y in the direction v and incoming to the movin% point going in the direction p.
This ray comes to the point z after the passing of distances equal to 55}1, , 555), .... They are determined
as solutions of the equation

XHV(SLZ;”y) =, 1= 1,2,... (4)

and, therefore, they are the functions on x and y. But further, we do not denote explicitly this dependence.
Then, the functions Q. (z,y) are represented by the formula

Quoles) = 3 Qusflly)- 6)

Thus, for the calculation of the matrix Q.. (z,y), it is necessary to find the trajectories X, (s]y).
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Let us calculate the number n,(s|y). If the ray has been irradiated to the right, then, after ny(s|y)
boundary reflections, we have

(L =) +ny (sly)L < 5 < (L =) + (n (sly) + 1)L

Therefore, taking the integral part, we obtain

[ 0] =), (6)

Strictly by the same way, after n_(s]y) reflections from boundaries, we have for the ray which is irradiated
to the left

y+(n_(sly) — )L <s<y+n_(sly)L.
Therefore,

Ty L)| =n_(sly). (7)
| ]
(7)

Now, let us calculate the distances s;p, ¢ = 1,2,.... The trajectories X, (s|y) are periodical on s
with the period 2L. Due to this reason, each trajectory X, (s|y) is built at s < 2L and, after that, it is
continued periodically. We note that, for the calculation of values 55}3, it is important to know not the
trajectories but the equations connected them with the distance s.

The function X (s|y) is defined by the equality X, (s|y) = s+y if s < L —y. Further, the function
X, (s|ly) have no sense at 2L — y > s > L — y. The periodical continuation of the function X__ (s|y)
from the region s < L — y for s satisfying the condition 2nL —y < s < 2n+ 1)L —y, n = 1,2, ... gives
the equation

X (sly)+(2n =1L+ (L—-y) =s. (8)
The function X (s|y) is not defined for s satisfying the condition (2n + 1)L —y < s < 2(n+ 1)L — y,
n=20,1,2,...

The function X__ (s|y) does not exist at s < L — y and, therefore, it have no sense at arbitrary shifts
of this region which are equal to 2Ln, n = 1,2,...,i.e. at 2nL —y < s < (2n+ 1)L — y. Otherwise, it has
the sense at 2L — y > s > L — y and it is defined by the equation

(L—-X__(sly)+(L—y)=s, X_,(sly)y=2L-y.
In this case, due to the periodicity, we have the equation
(L—-X_,(sly))+(L—y)+2nl =5 (9)

at L—y+@2n+1)L>s>2n+1)L—y, n=0,1,2,....
The functions X__(s|y), X4_(s|y) are calculated by the analogous way. If s < y, then

X_ _(slyy=y—s

and the function X, _(s|y) have no sense.
At the shift on 2nL, we have the equation for the function X__ (s]y),

(L=X__(sly)+y+(2n—-1)L=s (10)

for all s satisfying the inequality y+ 2n— 1)L <s<2nL 4y, n=1,2,...
Vice versa, the function X _(s|y) has the sense at the condition y +2nl < s < y+ (2n + 1)L,
n=0,1,2,... and it satisfies the equation

y+2nL + X, (sly)=s. (11)

It have no sense at y+ (2n — 1)L <s < y+2nL, n=1,2, ...
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Thus, it follows from the fulfilled analysis that Eq.(4) has the following solutions. For the simplicity,
we do not point out explicitly those variables from which the reflection numbers n,, depend on. Putting
that X, (s|y) is equal to x in Eq.(8), we have the expression

sf_:_l) =2nL+x—y, ny=2nn=0,1,2,.., (12)

for values sﬂ_, t=1,2,...at e > yand at v < y sf_l)_ =2l 4+x—y, ny =2n, n=1,2,...,

correspondingly. By the analogous way, we obtain
(n+1) _ _ _
st =2n+1)L-—z—y, n_=2n4+1, n=0,1,2,.. (13)

from Eq.(9) at any relation between z and y. From Eq.(10), we find

s — nL4+y—z, n_=2n, n=0,1,2,.. (14)

at ¢ < y and 5(_n_) =2nL4+y—=x, n_=2n, n=0,1,2,..at x> y, correspondingly. From Eq.(11), we
obtain the expression

sV =yl +e, np=@2n41), n=0,1,2,.. (15)

(n)

for the function s}
Now, we may to calculate the transfer matrix @), (2, y). According to the definition (5), we have

at any relation between z and y.

EOO i n() _qs(
Quu($ay) = Qy(SLg|y) = E rltuve py
i=1

7

where values nw = nl,(sgjmy), i =1,2,... are given by formulas (12)-(15). Substituting the corresponding
expressions and producing summations, we obtain

Qs () = 0(x — yle=oC=9) 4 3 p2memalamito-y)

m=1
— e—olE-y) [9(1‘ —y)+ r26—2aL(1 _ r26—2aL)—1] ’ (16)
Q—+(l‘a y) — Z r2m+1e—oc(2(m+1)L—x—y) —
m=0
— re—oc(ZL—x—y)(l _ rze—ZocL)—l , (17)

Q__(z,y)=0(y— x)e_o‘(y_x) + Z p2me—a(Zmlty—z) _

m=1
= e WD [9(y — x) + rle7 2L (1 — pRem2ol)~1] (18)
Qi (z,y) = Z p2mtlo—a(@mltaoty) _ re—oc(x+y)(1 _ r26—20<L)—1’ (19)
m=0

where 6(-) is the Heaviside function.
On the basis of the calculated matrix elements, we count the kernel of the integral transformation

1 1
Qy) =5 D #u(®y) =5 Q4 - Q- +Q1- - Q1) (v,y) =
wv==%
re~ b
1— r26—204L

= lsgn(m - y)e_o‘lx_yl + [sha(L —z —y) 4 re *Lsha(x — y)] . (20)

2
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This kernel defines according to Eq.(3) the expression of the desired irradiation energy flux in each space
point  in dependence on the temperature distribution T'(y) in the specimen,

L
a/@ 2,y) Poly)dy (21)
0

where Py(y) is the functional on T'(y), Po(y) = Po[T(y)]-

3. The problem setting of the heat radiative conduction. After the solving of the radiation
transfer problem, to set the problem of the self-consistent determination of the temperature distribution
in the specimen which is taken place due to thermal conductivity and radiation transfer, it is necessary to
reformulate the evolution equation of the temperature distribution at the given radiation energy flux. We
suppose that such an equation for the instant temperature distribution T'(z, ) is the thermal conductivity
equation with the source having the form of the energy flux divergence [3]. In the one-dimensional case
under consideration, it has the form

aT T  9P()

P90 =" 0a? T e

(22)

where ¢ is the specific heat of the mass unit, p is the density of the material, k is the thermal conductivity
coefficient. On the basis of Eq.(22), the balance principle has been found. It is supposed that the outcome
of the energy flux in each space point is spent on the local increase of the internal energy in this point
and the thermal conductivity process sends away the heat from it.

To turn the equation into the self-consistent one, it is necessary to define the functional Py[T]. The
form of this functional is determined by the optical properties of the specimen material. Further, we
analyze the simplest model, i.e. such an approximation, when it is put that Po[T] = oT*, where o is the
Stefan-Boltzmann constant.

In the one-dimensional case, the heat radiative conductivity problem consists of the solving of the
initial boundary problem of the Eq.(22) at the fixed temperature boundary conditions at specimen
endpoints (but not at the fixed energy flux when the energy transfer is found). In this work the boundary
conditions are confined in the form of the temperature constancy at the endpoints, i.e. those values
T_=1T(0), Ty =T(L) are fixed.

At the equilibrium state, Eq.(22) has the form

d2 dP(x)
= dz
or, taking into account our irradiation model,
L
S =aoe [ @t rtway. (23)
0
This equation has the first integral
L
K?——O[O'/Q z, )T (y)dy + C (24)
0

with an indefinite constant C' = const. But one may calculate this constant on the basis of the boundary
conditions only after the construction of the general solution of Eq.(24). This fact is inconvenient when
the formulated boundary problem is solved. However, in the frameworks of a perturbation theory, one
may find this constant together with the functional dependence T'(y).

4. The large absorption approximation. In this work we use the large absorption approximation
for the equilibrium state calculation. However, the subsequent solving of this problem in the form of
the asymptotic series on inverse o powers or, that is equivalent, on inverse powers of the optical length
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A = al, reduces to some tedious calculations. Therefore, we simplify the problem in this work and we
have calculated first terms of the decomposition pointed out up to a2 inclusively using the supposition
of the reflection coefficient smallness. This supposition permits to simplify the kernel Q(x,y). Namely,
one may be restricted only by one term

[e4e)

L
= 7/sgn z—ye O‘lx_le4(y)dy
0

in the flux expression at r» < 1. As a result, we obtain the integral and differential equation

L

ao d

== — y)e—elz—ylpt
_de/sgnx y)e T(y)dy .
0

We differentiate explicitly the right-hand side of it,

L L
d
d—/sgn T —ye O‘lx_le4(y)d =27 (x a/ —ale- y|T4 (y)dy .
x
0 0
Then, we obtain the equation for the determination of the equilibrium temperature distribution in the
form

L
d*T 1
k= = acT*(x) — §a20'/e_°‘|x_y|T4(y)dy. (25)
x
0

Now, we build the solution of Eq.(25) in the form of asymptotic decomposition on the inverse
absorption coefficient. From the formal mathematical point of view, the building of such a decomposition
corresponds to the study of the temperature distribution in the limit o — co.

We decompose the following integral on the powers o~ !,

L a(L—1x)
/e_o‘lx_le4(y)dy =a7! / e_|y|T4(a_1y + x)dy.
0 —ar

For this, we substitute the following decomposition

T4(a_1y—|— l,) — T4(l‘) 4 Yy <T4(l‘)) + _2 (T4( )) + 6_3 (T4( )>/// 4 O(Oz_4)-

o 202 o3

As a result, we obtain

/e—alx—le‘*(y)dy —= %T‘*(r) + % (T%(2))" + O(a™).

Here, the exponentially small terms which are connected with the continuation of the integration region to
the total axe, are thrown off. Such a neglecting is not justified, generally speaking, at the neighborhoods
of segment endpoints. Besides, we have taken into account that integrals with odd powers are equal to
zero. The substitution of this decomposition into the equation gives

d2 o d?

=———TY2)+ 0(a7?). 26

W =T )+ 00 (26)
We get this equation from Eq.(25) up to a~2. Then, it may be used for the finding of stationary
temperature distribution only up to a~2 inclusively. We have

kT(x) = —2T4(1‘) +Ce+ D (27)
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after the integration of Eq.(26) where C' and D are constant. Substitution of the boundary conditions
gives the equations for the determination of these constants,

KT+ 2T =D, w4+ 2T =CL+D.
[0} [0}

Therefore,
K ag
C=—(Ty —T )+ — (T} —T*) >0.
L( ¥ )+aL( T -T) >

Thus, we determine Eq.(27) for the stationary temperature distribution completely. It represents the
algebraic equation of fourth degree. Since it is obtained up to O(a~2) then it is sufficiently to solve the
equation with the same accuracy. In zero approximation, we obtain

7O (z) = %(ﬁ —T)+T_. (28)

since the constants C' and D have both zero order terms and terms being proportional a~!.
For the obtaining of the next approximations, we substitute the decomposition

T(x) = TO(2) + o 1TW () + a7 2T? () + O(a™?). (29)

in Eq.(27). Selecting the equal order terms on a~! in the obtained expression, we find
T

TW(E) =2 {Tf +2
K

(Tf - T2) — [TO(@))"] . (30)
since C' and D contain terms ~ o~ '. In the next approximation, the constants C' and D have no terms
~ a~?% and, therefore, we obtain from Eq.(27) the expression

70 (2) = - (2—"> 2 [TO@)] |12+ T (1) = 1) - [T @))?] . (31)

We must give one remark relative to the qualitative property of the distribution 7'(z) in used
approximation. From Eq.(26), differentiating of the right-hand side, we find that

d*T dT\?
(K+ 3) IS P <—> <0.
o dzx

dx? «

Thus, the temperature distribution in the specimen is concave it is and increasing since dT(O)(x)/dx > 0.

5. Conclusion. In this work we have investigated the heat radiative conduction problem in the
unbounded layer of semi-transparent medium. Such a problem is reduced effectively to the problem
in the one-dimensional specimen. Solving the last problem, we obtain on the basis of the strict
solution of the radiation transfer problem the integral and differential equation for the equilibrium
temperature distribution determination. We restrict our calculation by large absorption approximation at
the evaluation of this distribution. For the simplicity, we use the smallness of the reflection coefficient. In
order to refuse this assumption when the decomposition on powers of the inverse value A~! of the optical
length is built and when the decomposition on powers of small A is built, it is necessary the reformulation
of boundary problem for the reconstruction of integral and differential equation to the equivalent integral
equation. It is supposed to do in the next publication.
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AHaJdITUYHUNA mMaxia g0 npobjieMn pagiamiiiHo-KOHAYKTUBHOIO TeII000MIHY
y HamiBIpo3opux cepeaopumax. HabimkeHHs BeJMKOI ONITUYHOI JOBXKUHN

10.11. Bipuenxo, O.B.Koxaecnixos

Posp’asyeTbed omHoBHMIpHA cTallioHapHa IpobjeMa pamamifiHO-KOHIY KTHBHOI'O TEILTIOOOMIHY Y
T.3. cipoMy HaAGIUKEHHI ¥ BUMIAIKY ONTUYHO HAINBIIPO30POI0 CEPEIOBUINA. PO3IAHYTO BUMAIOK BEIUKOL
OITHYHO! TOBZKHUHE A 3paska. B paMkax Teopil 36ypeHb 3a mapaMeTpoM A, oNepIKaHo aCHMIITOTHYHI
dopmynn y ronosHoMy HabsrkenHi. Buseneno HesiHiiine iHTErpo-andepeHinaibHe PIBHAHHS TJIA PO3-
HOMLYy TeMIEPATYPH ¥ 3pasKy Ha OCHOBI TOYHOrO OOJIKY I€PEHOCY BHIIPOMIHIOBAHHA y HAOJIMKEHHI

TeOMETPIYHOI ONTHKH.
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