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We investigate the influence of an external magnetic field in a
tube on the vacuum of a massive charged scalar field for arbitrary
space-time dimensions. The tube is considered impenetrable for
the scalar field and obeys the Dirichlet boundary condition on the
bounding surface. It was shown that, for a particular case of the
2 + 1-dimensional space-time, the induced vacuum energy of the
scalar field outside the tube can be numerically calculated without
regularization procedure. The dependences of the induced vacuum
energy upon the distance from the tube at its various transversal
radii are obtained.

1. Introduction

Since Casimir’s seminal paper [1] it is known that the
existence of the external boundary conditions in quan-
tum field theory leads to a non-zero vacuum expectation
value of the energy-momentum tensor (see, e.g., [2, 3]).
This may have far reaching consequences; in particular,
the vacuum energy-momentum tensor serves as a source
of gravitation, and the so-called self-consistent cosmo-
logical models of the Universe are proposed, where mat-
ter is absent, and its role is played by vacuum quantum
effects [4].

In this respect, it seems to be of interest to look for
various situations where the vacuum energy-momentum
tensor is calculable and finite. Let X be the base space
manifold of dimension d, and Y be a submanifold of
dimension less than d. The matter field is quantized
under a certain boundary condition imposed at Y . In
most implications of the Casimir effect, Y is chosen to
be noncompact disconnected (e.g., two parallel infinite
plates, as generically in [1]) or closed compact (e.g., box
or sphere), see [3].

In [5–7], the Casimir effect was considered in detail in
the case where Y is a noncompact connected manifold
that has dimension d − 2, i.e. it is a d − 2-brane in the
d-dimensional space (the manifold is a point at d = 2, a
line at d = 3, and a plane at d = 4). This brane was filled

with magnetic flux lines. In this case, as it was first noted
by W. Ehrenberg and R. Siday in [8], the matter field out
of a brane is affected by the electromagnetic potential of
the brain magnetic field also, and it is a generalization of
a Bohm–Aharonov [9] singular magnetic vortex in the 3-
dimensional space. The condition for the matter field to
vanish at Y was imposed, and the vacuum polarization
of the field was investigated in a space manifold X. So,
in [5–7] was considered the Casimir–Bohm–Aharonov ef-
fect. It should be noted that, in this case, the effect of
vacuum polarization was calculated analytically.

In the 3-dimensional space, a solution of the singu-
lar magnetic vortex problem can be used in astrophysics
(physics of cosmic strings), as well as in condensed mat-
ter physics (Abrikosov vortex in type II superconduc-
tors). But, in both these cases, a magnetic vortex has a
non-zero transverse size that is determined by the Comp-
ton wavelength of a corresponding scalar field in the
phase transition epoch [10] or by the radius of a Cooper
pair [11], respectively. So, it is more interesting to inves-
tigate the Casimir–Bohm–Aharonov effect in the case of
a finite-size magnetic tube. In this context, it is worth to
find out the dependence of vacuum effects on the ratio
of the transverse size of mentioned topological defects
and the Compton wavelength of the field under consid-
eration.

We choose Y to be noncompact connected and pos-
sessing dimension d − 1, i.e. a d − 1-brane in the d-
dimensional space. This brane envelops the part of the
d-dimensional space, in which we fill a d−2-dimensional
brane with a magnetic field (the brane is a circle with an
internal point-like magnetic field at d = 2 and a cylinder
with a magnetic line inside it at d = 3). Throughout the
present paper, we restrict ourselves to the case of scalar
matter.

In the next Section, a general definition of the en-
ergy density for a quantized charged scalar field is re-
viewed, and a starting expression for its regularized vac-
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uum expectation value against the background of a brane
is given in the general case of arbitrary space-time di-
mensions. Unfortunately, we failed to calculate the ob-
tained expressions analytically. So we restrict ourselves
in Section 3 by the simplest case of space-time dimension
2 + 1 and obtain the vacuum polarization numerically.
Finally, the results are summarized in Section 4.

2. Energy Density

The operator of a quantized charged scalar field is rep-
resented in the form

Ψ(x0,x) =
∑∫
λ

1√
2Eλ
×

×
[
e−iEλx

0
ψλ(x) aλ + eiEλx

0
ψ−λ(x) b†λ

]
. (1)

Here, a†λ and aλ (b†λ and bλ) are the scalar particle (an-
tiparticle) creation and annihilation operators satisfying
commutation relation; λ is the set of parameters (quan-
tum numbers) specifying the state; Eλ = E−λ > 0 is
the energy of the state; the symbol

∑∫
λ

denotes the sum-

mation over discrete and the integration (with a certain
measure) over continuous values of λ; the wave func-
tions ψλ(x) are the solutions to the stationary equation
of motion,{
−∇2 +m2

}
ψλ(x) = E2

λψ(x), (2)

∇ is the covariant differential operator in an external
(background) field.

The standard expression for the energy density has
the form

ε =
∑∫
λ

Eλψ
∗
λ(x)ψλ(x). (3)

This relation can be regarded as purely formal and,
strictly speaking, meaningless: it is ill-defined, by suf-
fering from ultraviolet divergencies. The well-defined
quantity is obtained with help of a regularization proce-
dure, especially the zeta function regularization [12–14],
i.e. by inserting the inverse energy in a sufficiently high
power

εreg(s) =
∑∫
λ

E−2s
λ ψ∗λ(x)ψλ(x). (4)

Sums (integrals) are convergent in the case where Re s >
d/2. Thus, the summation (integration) is performed in

this case, and then the result will be analytically contin-
ued to the case of s = −1/2.

We consider the static magnetic field whose covariant
derivative is

∇ = ∂ − iV, (5)

and the magnetic field strength takes the form

Bj1···jd−2(x) = −εj1···jd∂jd−1Vjd(x) , (6)

where V(x) is the bundle connection (vector potential
of the magnetic field), and εj1···jd is the totally antisym-
metric tensor, ε12···d = 1.

As was already mentioned in Introduction, we con-
sider the bundle curvature (magnetic field strength) to
be nonvanishing in the d − 2-brane (i.e. point in the
d = 2 case, line in the d = 3 case, plane in the d = 4
case, and d− 2-hypersurface in the d > 4 case). Denot-
ing the location of the d − 2-brane by x1 = x2 = 0, we
get

B3···d(x) = 2πΦδ(x1)δ(x2) , (7)

where Φ is the total flux (in units of 2π) of the bundle
curvature; then the bundle connection can be chosen in
the form

V 1(x) = −Φ
x1

(x1)2 + (x2)2
, V 2(x) = Φ

x2

(x1)2 + (x2)2
,

V j(x) = 0 , j = 3, d . (8)

We require the vanishing of the scalar field on the
d − 1-dimensional brane Y and within a part of the d-
dimensional region that is surrounded by Y . We define
the location of a d-dimensional region forbidden for the
scalar field (Ψ(x) = 0 in this region) as√

(x1)2 + (x2)2 ≤ r0, −∞ ≤ xk ≤ ∞, k > 2. (9)

Then the location of a d-dimensional region with the
scalar field is

r0 <
√

(x1)2 + (x2)2 < R0, −∞ ≤ xk ≤ ∞, k > 2,
(10)

where R0 → ∞. In Eqs. (9) and (10), the parameters
r0 and R0 define the transverse size of this regions.

As was mentioned above, the scalar field function
obeys the condition Ψ(r = r0) = 0. A condition on the
other border at r = R0 is not substantial. For defi-
niteness, it can be Ψ(r = R0) = 0. In this case, the
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complete set of solutions to Eq.(2) against background
(7)-(8) within region (10) is given by the functions

ψknp (x) = (2π)
1−d
2 ×

×
Y|n−Φ|(kr0)J|n−Φ|(kr)− J|n−Φ|(kr0)Y|n−Φ|(kr)[

Y 2
|n−Φ|(kr0) + J2

|n−Φ|(kr0)
]1/2 ×

×einϕeipxd−2 , (11)

where 0 < k < ∞, n ∈ Z, −∞ < pj < ∞, j = 3, d;

r =
√

(x1)2 + (x2)2, ϕ = arctan(x2/x1), xd−2 = (0, 0,
x3, . . . xd); Jµ(u) and Yµ(u) are the Bessel functions of
order µ of the first and second kinds, respectively, and
Z is the set of integers. Since solutions (11) in the
limit R0 → ∞ correspond to the continuous spectrum
(Eknp =

√
p2 + k2 +m2 > m), they obey the orthonor-

mality condition∫
ddx ψ∗knp (x)ψk′n′p ′ (x) =

1
k
δ(k − k

′
)δnn′ δ(p− p

′
) .

(12)

To compute the zero component of the vacuum expec-
tation value of energy density, we have to substitute (11)
in Eqs. (4). We obtain

εreg(s) = (2π)1−d
∫
dd−2p

∞∫
0

dk k
(
p2 + k2 +m2

)−s×
×S(kr, kr0,Φ), (13)

where

S(kr, kr0,Φ) =

=
∑
n∈Z

[
Y|n−Φ|(kr0)J|n−Φ|(kr)−J|n−Φ|(kr0)Y|n−Φ|(kr)

]2
Y 2
|n−Φ|(kr0) + J2

|n−Φ|(kr0)
.

(14)

As a result of the infinite range of summation, the last
expression depends only from the fractional part of the
flux

F = Φ− [[Φ]], (0 ≤ F < 1), (15)

where [[u]] is the integer part of a quantity u (i.e. the
integer which is less than or equal to u).

We can also rewrite (14) in the form

S(kr, kr0, F ) = S(kr, F )z.s. + S(kr, kr0, F )corr., (16)

where S(kr,Φ)z.s. corresponds to the appropriate series
in the case of vacuum polarization by a magnetic tube
of zero transverse size [5–7]

S(kr, F )z.s. =
∞∑
n=0

[
J2
n+F (kr) + J2

n+1−F (kr)
]

=

=

kr∫
0

dτ [JF (τ)J−1+F (τ) + J−F (τ)J1−F (τ)] , (17)

and a correction term

S(kr, kr0, F )corr. = 2
∞∑
n=0

[
Jn+F (kr0)Yn+F (kr)×

×Jn+F (kr0)Yn+F (kr)− Jn+F (kr)Yn+F (kr0)
J2
n+F (kr0) + Y 2

n+F (kr0)
+

+Jn+1−F (kr0)Yn+1−F (kr)×

×Jn+1−F (kr0)Yn+1−F (kr)−Jn+1−F (kr)Yn+1−F (kr0)
J2
n+1−F (kr0) + Y 2

n+1−F (kr0)

]
−

−
∞∑
n=0

[
J2
n+F (kr0)

J2
n+F (kr) + Y 2

n+F (kr)
J2
n+F (kr0) + Y 2

n+F (kr0)
+

+J2
n+1−F (kr0)

J2
n+1−F (kr) + Y 2

n+1−F (kr)
J2
n+1−F (kr0) + Y 2

n+1−F (kr0)

]
. (18)

In the absence of a magnetic flux in the tube (i.e. at
F = 0), Eq. 13 takes the form

εreg(s)|F=0 =(2π)1−d
∫
dd−2p

∞∫
0

dk k
(
p2 + k2 +m2

)−s×
×S(kr, kr0, F = 0). (19)

The function S(kr, kr0, F = 0) can be also split into two
parts

S(kr, kr0, F =0)= S̃(kr)z.s.+S̃(kr, kr0)corr., (20)
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where S̃(kr)z.s. corresponds to the appropriate series in
the case of vacuum polarization by a magnetic tube of
zero transverse size [5–7]

S̃(kr)z.s. = J2
0 (kr) + 2

∞∑
n=0

J2
n(kr) = 1, (21)

and a correction term

S̃(kr, kr0)corr. =

= 2

[
J0(kr0)Y0(kr)

J0(kr0)Y0(kr)− J0(kr)Y0(kr0)
J2

0 (kr0) + Y 2
0 (kr0)

+

+2
∞∑
n=1

Jn(kr0)Yn(kr)
Jn(kr0)Yn(kr)−Jn(kr)Yn(kr0)

J2
n(kr0) + Y 2

n (kr0)

]
−

−

[
J2

0 (kr0)
J2

0 (kr) + Y 2
0 (kr)

J2
0 (kr0) + Y 2

0 (kr0)
+

+2
∞∑
n=1

J2
n(kr0)

J2
n(kr) + Y 2

n (kr)
J2
n(kr0) + Y 2

n (kr0)

]
. (22)

Expression (19) is still a bad quantity even after the
analytical continuation to the case of s = −1/2. We need
a renormalization procedure. So, we define the renormal-
ized vacuum energy as a variation of the vacuum energy
in the case of the finite transverse size tube with a mag-
netic flux (F 6= 0) and the same tube without magnetic
flux (F = 0):

εren = lim
s→− 1

2

[εreg(s)− εreg(s)|F=0] =

= (2π)1−d
∫
dd−2p

∞∫
0

dk k
(
p2 + k2 +m2

)−s×
×G(kr, kr0, F ), (23)

where the function G(kr, kr0, F ) is independent of the
space dimension d,

G(kr, kr0, F ) = S(kr, kr0, F )− S(kr, kr0, F = 0), (24)

and S(kr, kr0, F ) is defined by (16) and (20). It should
be noted that εren is a periodic function of the flux Φ,

since it depends only on F (being symmetric under F ↔
1− F ).

Here, we will consider the simplest situation for a
magnetic tube of finite transverse size, i.e. we consider
the situation for half-integer values of the magnetic flux
F = 1/2 (in this case, we expect the maximal effect of a
vacuum polarization by analogy with [5–7]) in the 2+1-
dimensional space-time, in order to avoid the additional
integration over pd−2 components of the momentum. In
this case, relation (23) becomes

εren = lim
s→− 1

2

1
2π

∞∫
0

dk k
(
k2 +m2

)−s
G(kr, kr0), (25)

where we denote, for simplicity of notation, G(kr, kr0) =
G(kr, kr0, F = 1/2).

We met some difficulties in the analytical evaluation of
G(kr, kr0) and, unfortunately, cannot obtain the induced
energy density (25) in an analytical form. But we found
that this problem can be solved numerically. To do it,
we have to introduce the dimensionless variables

kr = z, λ = r0/r, (26)

where z ∈ (0,∞), λ ∈ [0, 1]. The case of λ = 1 corre-
sponds to r = r0, i.e. the point on the tube boundary,
and the case of λ = 0 corresponds to the point at infinity
r →∞ or to the case of a singular tube (r0 = 0). In this
variables, Eq. (25) becomes

r3εren = lim
s→− 1

2

1
2π

∞∫
0

dz z

(
z2 +

(mr0
λ

)2
)−s

G(z, λz). (27)

3. Numerical Evaluation of Energy Density

Before performing a numerical analysis, let us point out
some analytical properties of the integrand: straight on
the brane (λ = 1), the function is zero

G(z, z) = 0; (28)

at small values of z,

G(z, λz)|z→0 = −[ln(λ)/ ln(λz)]2; (29)

at small values of λ (i.e. at a large distance from the
brane or in the case of a singular tube), the function
corresponds to the case of a singular tube:

G(z, λz)|λ→0 = S(z, F = 1/2)z.s. − S̃(z)z.s.. (30)
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Fig. 1. Behavior of G(z, λz) at various values of λ.

The numerical analysis indicates that, in the calcula-
tion of the function G(z, λz), one can use the series in
(18) and (22) with finite limits. For the calculation of
G(z, λz) at a point z = z′, it is enough to cut off the
summation limits by n = [[z′ + 30]]. In this case, the
relative error is∣∣∣∣G(z, λz)|n∈(0,[[z+30]]) −G(z, λz)

G(z, λz)

∣∣∣∣ < ε(λ),

ε(λ) < 10−17, λ ∈ [1/10, 9/10]. (31)

One can make sure that the envelope of G(z, λz) is an
exponentially decreasing function at large z, see Fig.1,
except the case where λ = 0 (i.e. in the case of a singu-
lar magnetic tube). So, for the finite-size magnetic tube
(27), we can immediately take s = −1/2 and evaluate
the values of dimensionless quantity r3t00ren (27) for var-
ious (not very small) λ. To do it, we have to be able
to perform integration in (27) with high precision. We
make it in the following way.

As one can see from Fig. 2, the function G(z, λz) is
negative from z = 0 to the first function root at z = z1
(z1 6= 0). So, the appropriate integral in (27) is negative
also. Because of the decreasing character of the envelope
function, the integral from z1 to z3 will be positive. It
is useful to define the period of the function G(z, λz)
as an interval between two nearest roots with positive
derivative. Then the full integral in (27) will be the sum
of the negative integral from z = 0 to z = z1 and the
multitude of positive values of integrals over periods1.

1 The above description is correct in the case where mr0 ≥ 1.
In the case of a small transverse size of the tube (mr0 < 1),
the integrals over some finite number of first periods may be
negative. But, after it, they become and remain positive.

Fig. 2. Location of G(z, λz) roots at λ = 0.7

For small z (z . 20), we make a direct integration
of the function G(z, λz) over periods using 25 digits of
precision in internal computations.

For large z, we make integration for each period sepa-
rately. To do it, we create a table of values of the func-
tion G(z, λz) for a separated period and replaced this
function by a more simple function in the form

Gint(z, λz) = a
e−bz

zc
Aq(z2)
Bq(z2)

sin(kz + j ln z + φ0), (32)

where the sine function ensures that the roots of G(z, λz)
coincide with roots of Gint(z, λz); Aq(x) and Bq(x) are
q-degree polynomials, q can be 3, 4 or 5; all unknown
parameters can be found by interpolation. We allow the
relative error of interpolation to be of∣∣∣∣Gint(z, λz)−G(z, λz)

G(z, λz)

∣∣∣∣ < 10−8 (33)

for each period. The function Gint(z, λz) can be immedi-
ately integrated with the required accuracy. In this way,
we made integration up to z ' 100/λ with an absolute
accuracy up to 10−17.

With the help of the above procedure, we obtain a
table of contributions from the integration over each pe-
riod, extrapolate this table to infinity, and then find the
full integral in (27) as the sum of the negative integral
over the first negative period(s), a multitude of positive
integrals over periods up to z ' 100/λ, and the inter-
polation term. The absolute accuracy of the obtained
result is 10−13. It should be noted that nearly 99 % of
the integral value in (27) is obtained by the direct cal-
culation, and only nearly one percent is a contribution
from the interpolation.

In contrast to the case of a singular tube [5–7], where
the dimensionless energy density r3εren under a fixed
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Fig. 3. The case of mr0 = 3/2

Fig. 4. The case of mr0 = 1

magnetic flux depends only on the dimensionless dis-
tance from the tube in the transverse direction (mr),
the dimensionless energy density (27) depends in our
case on two dimensionless parameters, namely the pa-
rameter that defines the field mass or the tube radius
(mr0) and the distance from the tube (λ = r0/r). For
comparison with the singular case, we represent the re-
sult for the energy density as a function of the distance
from the tube mr − mr0 = mr0(1/λ − 1) for various
values of mr0.

In this paper, we made calculations for particular cases
where the tube transverse size is comparable with the
Compton wavelength of a scalar field and for distances
from the surface of the tube in the transverse direction
(r̄=r−r0) up to2 r̄ = 3r0. The values of energy density
obtained by using the above-described procedure are il-
lustrated in Figs. 3–7. Here, the variable mr̄ is along

2 A further increase of the distance from a brane results in a sig-
nificant increment of the computation time, because the enve-
lope of the function G(z, λz) at these distances is not a so good
decreasing function, as that at big λ (small distances from a
brane).

Fig. 5. The case of mr0 = 1/2

Fig. 6. The case of mr0 = 10−1

the x-axis, and the dimensionless quantity r3εren is pre-
sented by a solid line. The dots on the solid line corre-
spond to points that were calculated.

4. Summary

We have shown that the vacuum of a quantized charged
scalar field is polarized against the background of a d−1-
brane with a static magnetic field inside in the flat d+1-
dimensional space-time. We have considered a situation
where the brane is impenetrable for the scalar field and
obeys the Dirichlet boundary condition on the bound-
ing surface. The vector potential of the brane induces
a finite energy-momentum tensor in the vacuum; there-
fore, this effect may be denoted as the Casimir–Bohm–
Aharonov effect. We have shown that the induced vac-
uum energy (23) depends periodically on the brane flux
and possesses a large-distance asymptotics like that in
the case of a singular magnetic tube [5–7].

It is shown that the vacuum polarization (25) in a
space-time of arbitrary dimension is determined by the
above-introduced function G(z, λz). Unfortunately, we
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could not perform the required integration of this func-
tion in analytical form. We restrict ourselves by the
simplest case of a space-time of 2+1 dimension (a circle
with a point-like magnetic field inside) and find out that
the energy density can be numerically calculated with-
out regularization procedure. We have directly obtained
the behavior of the energy density at small transverse
distances from the brane for the particular case of a half-
integer magnetic flux and when the transverse size of the
tube is comparable with the Compton wavelength of the
scalar field, see Figs. 3–7.

Qualitatively, as one can see from Figs. 3–5, the en-
ergy density (r3εren) is zero at the brane (because of the
Dirichlet boundary condition), increases with increase in
the distance, reaches a maximum at r̄∼m−1, decreases,
and reaches zero asymptotically from above. One can
see that, as the parameter mr0 decreases, the maximum
of r3εren essentially increases.

For mr0 � 1 (see Figs. 6 and 7), we expect the simi-
lar behavior, but it needs the additional numerical con-
firmation. Notably we expect that, while moving away
from the tube, the energy density (r3εren) rises up to its
maximum value at large distances from the tube3 (see
Fig. 8) and then slowly decreases to zero. At the de-
crease of mr0, the maximum of r3εren will increase and
move away from the tube. If the field is massless, then
we expect that the energy density (r3εren) rises up to
the greatest of all possible constant values, which cor-
responds to the case of a massless field in the case of a
singular topological defect [5–7].

Let us suppose the physical situation where the topo-
logical defect in the 2 + 1-dimensional space-time was
created under a phase transition of some scalar field
with mass mh. Then the tube radius is of the order of
the Compton wavelength of the scalar field that yields a
string at the corresponding phase transition. It is con-
nected with the dimensionless transverse size of the tube
by the obvious relation mr0 = m/mh. Such a statement
of the problem allows us to study the dependence of the
vacuum polarization on the ratio of the Compton wave-
lengths of the scalar field that yields a string and the
scalar field under consideration. So, in the case where
mh . m (mr0 & 1), the vacuum effects can be neglected.
But, in the case where mh � m (mr0 � 1), the vacuum
effects are essential and are similar in magnitude to the
case of a singular topological defect. We hope that these
results can be applied also for a 3+1-dimensional space-

3 We expect it will be at a distance of the order of the Compton
wavelength of the field. So, if mr0 = α, α � 1, then the maxi-
mum of r3εren will be nearly at r/r0 = 1/(mr0) = α−1 � 1.

Fig. 7. The case of mr0 = 10−4

time, where the radius of a tube (cosmic string) is de-
fined by an energy scale or in the grand unification time
or in the electroweak phase transition time. Then the
appropriate phase transition will affect only the vacuum
of the field with a mass smaller than the energy scale of
a phase transition.

Comparing our results with those in the case of a sin-
gular magnetic tube [5–7], one can see the next general
distinguishing characteristics. First, the induced vac-
uum energy in the case of an impenetrable magnetic tube
is zero on the bounding surface in contrast to the case
of a singular magnetic tube. Second, one can see the
striking dependence of magnitudes of induced vacuum
energies on the tube radius (mr0). Third, the vacuum
energy density integrated over transverse coordinates is
infinite in the case of a singular magnetic tube, but it
is finite for an impenetrable finite-size magnetic tube.
The origin of this difference is in different topologies of
the bounding surface and in different conditions on it:
in the case of an impenetrable magnetic tube, the scalar
field obeys the Dirichlet boundary condition; in case of
a singular magnetic tube – the regularity condition4.

It should be noted that the energy densities for the
quantized scalar and spinor matters in magnetic back-
grounds inside the tube of a finite transverse size in low-
dimensional spaces (d = 2, 3) were considered in [15–
19]. Since the authors of these works are concerned with
the case where the region of a nonvanishing background
field is overlapped with that of the nonvanishing quan-
tized matter, their results considerably differ from ours:

4 In the case of a singular tube with a not integer magnetic flux
(F 6= 0), the regularity condition coincides with the Dirichlet
boundary condition, see (17). But, without a magnetic flux
(F = 0), it is not true, see (21). So, after the renormalization,
the analog of the function G(kr, kr0, F ) (24) for a singular tube
does not satisfy the Dirichlet boundary condition.
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Fig. 8. Dimensionless energy density r3ε as a function of r/r0 =

1/λ

in particular, the dependence on the flux of the back-
ground magnetic field is not periodic.

From the general features of the Bohm–Aharonov ef-
fect, it is known that, in our case (i.e. where the region
with the scalar field do not overlap with the region with
the magnetic field), the effects outside the brane is de-
termined only by the fractional part of the brane flux.
The interesting question for a further investigation is the
dependence of the induced vacuum energy on the distri-
bution of a magnetic field inside the tube at a fixed flux.
Another question is the investigation of vacuum effects
under various boundary conditions on the brane.
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ПОЛЯРИЗАЦIЯ ВАКУУМУ СКАЛЯРНОГО ПОЛЯ
НЕПРОНИКЛИВОЮ ТРУБКОЮ З МАГНIТНИМ ПОЛЕМ

В.М. Горкавенко, Ю.О. Ситенко, О.Б. Степанов

Р е з ю м е

У роботi дослiджено узагальнену на випадок простору-часу до-
вiльної розмiрностi задачу про вплив на вакуум зарядженого
масивного скалярного поля зовнiшнього магнiтного поля, роз-
ташованого в трубцi скiнченого радiуса. Трубка є непроникли-
вою для бозонного поля та має на поверхнi граничнi умови
типу Дiрiхле. Показано, що для часткового випадку простору-
часу розмiрнiстю 2+1 iндукована густина енергiї вакууму ззов-
нi трубки може бути знайдена чисельними методами без за-
стосування процедури регуляризацiї. Отримано залежностi iн-
дукованої густини енергiї вакууму вiд вiдстанi до трубки при
рiзних значеннях її поперечного радiуса.
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