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We consider the effects of intensity fluctuations of an incident elec-
tron flow incoming a double-barrier tunneling structure near an in-
stability point. A simplified Langevin equation with multiplicative
Gaussian white noise is used to describe noise effects in the system
near a resonance under conditions of coherent tunneling. Numer-
ically simulating this equation, we obtained the dependences of
the mean first passage time on the noise intensity and a devia-
tion of the average intensity of the incident electron flow from the
critical value in the deterministic case. The numerical results sat-
isfactorily agree with the theoretical results of Colet et al. The
relaxation time has a maximum value in the absence of noise and
decreases with increase in the noise intensity. Noise favors transi-
tions at those incident intensities, for which the transition in the
deterministic case was impossible.

1. Introduction

One of the important aspects in the study of nonlinear
nonequilibrium systems lies in the allowance for the ef-
fect of external noises on their dynamic behavior. An
external noise can be caused by fluctuations of the en-
vironment or can appear due to the action of a random
force. From the practical point of view, it is important
that parameters of an external noise can be controlled.

The action of external noises affects the nonequilib-
rium systems in a nontrivial way and results in the
dynamics different from a purely deterministic motion
[1, 2]. It is most pronounced at unstable points, where a
system passes from one stationary state to another (bi-
furcation points). In the neighborhood of these points,
external fluctuations can change the lifetime of a state,
which is observed as a shift of the bifurcation point. Such
a behavior is characteristic of bistable systems. The ef-
fect of noise on the behavior of bistable systems in the

neighborhood of unstable points was considered in the
literature for a number of physical systems, in particular
optical [3–5], laser [6, 7, 9, 10], and tunneling ones [8, 21],
some biological systems [11, 12, 14], and others.

Investigating the dynamic behavior of bistable sys-
tems, it is important to analyze the effect of noise on
the process of relaxation from one stationary state to
another. In this case, one can consider either the evo-
lution of the probability density of some dynamic vari-
able [4, 12] or its time correlation function [7, 10, 14] and
the relaxation time related to such function. However,
the relaxation of a system from one state to another
is most often investigated, by using the first passage
time (FPT), i.e. the time, by which a random process
reaches the boundary separating one stable state from
another. In the literature, one can find the studies of
the transitions from an unstable state to a stable one
(for example, in such systems as lasers near the genera-
tion threshold [10,13]), as well as the transitions realized
through marginal points presented, for instance, by the
end points of a hysteresis cycle [15, 16].

In the given work, we consider the influence of ex-
ternal noises on the dynamics of a system describing
the resonance electron tunneling in double-barrier nanos-
tructures. Double-barrier tunnel structures are of great
importance for the use in various electron solid-state de-
vices [17]. They are characterized by the presence of a
negative differential conductivity and a hysteresis loop in
volt-ampere characteristics. The hysteresis behavior is
explained by the intrinsic bistability arising due to the
influence of the electrostatic potential formed by elec-
trons accumulated in a quantum well on the tunnel cur-
rent. Such a behavior was observed experimentally for
the first time by Goldman et al. [18]. Theoretically, the
phenomenon of intrinsic bistability in resonance tunnel-
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ing structures was analyzed in many works, in particular,
in [19, 20, 22].

The effect of external noises on tunnel processes is an-
alyzed with the help of a model used in [22], whose short
description is given in Section 2. We also present there
the simplified Fokker–Planck model describing intensity
fluctuations of an incident electron flow. In Section 3,
we consider the effect of noise on the stationary behav-
ior of a system. Its dynamic behavior under the action
of noise is studied in Section 4. In Section 5, we apply
the numerical modeling method to the calculation of the
relaxation time depending on the noise intensity and a
deviation of the incident flow intensity from the critical
value. The results of our calculations are compared to
the theoretical dependences obtained using the results of
work [15].

2. Model of Nonlinear Resonance Tunneling

The process of electron tunneling through a double-
barrier structure is studied under the assumption that
the coherence length exceeds the dimensions of the sys-
tem, i.e. it is supposed that the tunneling process is
coherent. Such a process is described with the help of
the model presented in [22]. It considers an electron flow
incoming from the left on a tunnel structure consisting
of two identical potential barriers of width a separated
by a potential well of width b. The Coulomb interac-
tion between the incoming electron wave and electrons
accumulated in the potential well was considered in the
single-electron approximation. It was supposed that the
single-electron functions in the regions beyond the bar-
riers (x < 0, x > 2a+ b) depend on the coordinate and
time in the following way:

Ψin(x, t) = [D0(t)eikx +R(t)e−ikx]e−iw0t,

Ψout(x, t) = D(t)ei(kx−w0t).

Here, k =
√

2m∗E/~2 denotes the wave vector of an
incident electron, E is the electron energy, m∗ is its ef-
fective mass, and w0 = E/~ = ~k2/2m∗. The quantities
D0 and R(t) stand for the amplitudes of the incident
and reflected electron wave functions, respectively. The
solution for the amplitude D(t) of the wave function of
an electron going out of the tunnel system was obtained
for the most interesting case – resonance tunneling. In
this approximation, one can introduce a small parame-
ter, namely a deviation of the wave vector k from the
resonance value kr : ξ = k − kr, |ξ|/k � 1. In the
limiting cases of high and narrow barriers, the following

differential equation for the complex amplitude of the
outgoing wave was obtained:

dD

dτ
= −D + iLξD − iLκ|D|2D +D0F0, (1)

where L is the reciprocal half-width of the resonance
level in the k-space (L = ξ−1

1/2) linked with the half-
width in the energy space by the relation δE1/2 =
2~ν = ~kr/(m∗L), κ = κ0L/b is the nonlinearity pa-
rameter (the explicit form of the coefficient κ0 can be
found in [22]), F0 = − exp[−2ik(a + b)], and τ = νt
is the dimensionless time. The presence of the non-
linear term is due to the electrostatic potential formed
by the charge accumulation in the quantum well un-
der the resonance conditions. Representing the complex
amplitude D in terms of its real amplitude and phase,
D = |D(τ)| exp i[η(τ) − 2k(a + b)], we obtained the fol-
lowing system of differential equations:{

dT
dτ = 2[

√
TT0| cos η| − T ],

dη
dτ = z − T −

√
T0/T sin η, −π2 ≤ η ≤

π
2 .

(2)

In order to simplify the analysis, we introduced the fol-
lowing dimensionless variables: T (τ) = κL|D(τ)|2 pro-
portional to the intensity of the electron flow that passed
through the system, T0(τ) = F0|D0(τ)|2 proportional
to the intensity of the electron flow coming to the sys-
tem, and z = Lξ proportional to the deviation of the
electron wave vector from the resonance value. In what
follows for the sake of brevity, T and T0 will mean, re-
spectively, the intensities of the outgoing and incident
electron flows.

Equations (2) imply that the intensities T and T0 in
the stationary case are linked by the functional depen-
dence

T0 = T [1 + (z − T )2] = F (T ). (3)

This equation has three roots at z >
√

3. In Fig. 1,
the dotted line presents the intensity T of the electron
flow that passed through the system as a function of
the intensity T0 of the incoming flow determined for the
stationary case by expression (3) at z = 3.5.

The stability analysis of system (2) performed in [23]
has shown that the roots of its characteristic equation
are determined by the relation

λ1,2 = −1±
√

1− ∂F (T )
∂T

.

Thus, in the case where ∂F (T )
∂T < 1, the roots will be

real, but with different signs, i.e. they will determine
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an unstable state of the saddle type. These states are
marked in Fig. 1 as T2. At ∂F (T )

∂T > 1, the roots will be
complex. They are related to stable states of the focus
type which are located at the lower and upper branches
of the curve (T1 and T3 states, respectively). The T1

and T3 states correspond to the modes with low- and
high-efficiency tunneling, respectively.

We assume that the phase η of the wave function does
not change in the tunneling process. In this case, the sys-
tem of equations (2) is reduced to the differential equa-
tion
dT

dτ
=

√
TT0 − T. (4)

As the dynamics of the process is considered near the sta-
tionary states, the expression on the right-hand side of
Eq. (4) can be expanded in a Taylor series in the neigh-
borhood of the stationary point. Confining ourselves to
two first terms in the expansion and taking expression
(3) into account, we obtain the equation

dT

dτ
= −T +

T0

1 + (z − T )2
. (5)

Solving numerically Eq. (5) at z=3.5 at a successive
slow variation of the parameter T0 in the direct and re-
verse directions, we obtained a hysteresis dependence of
T on T0 shown by the solid curve in Fig. 1. The tran-
sition from the lower stationary state to the upper one
is realized at a certain value of the intensity T0K cor-
responding to the end point of the hysteresis loop (the
so-called marginal point). This transition takes place at
∂F (T )
∂T = 0. The roots of this equation,

TK,k =
1
3
(2z ∓

√
z2 − 3), (6)

determine the magnitude of the outgoing flow at the time
moments of the transitions from the lower state to the
upper one and vice versa, respectively. At z = 3.5, the
critical value of the parameter T0K corresponding to the
transition is equal to 7.593. This value of z will be used
in all further calculations.

In what follows, we consider the behavior of the given
system with regard for effects caused by fluctuations, by
confining ourselves only to fluctuations of the incident
flow intensity. The effect of external noises in the tunnel
system will be investigated, by using an approach based
on the Fokker–Planck equation. If the difference in the
temporary scales between the amplitude and phase fluc-
tuations for the chosen set of parameters is rather large,
the Fokker–Planck model for amplitude fluctuations is a
good approximation.

Fig. 1. Dependence of T on T0 in the stationary case at z = 3.5

3. Effect of Noise on the Behavior of the
System in the Stationary Case

Let us consider the effect of fluctuations of the incident
flow intensity T0 on the behavior of the system. The
intensity T0 will be considered as a stochastic quantity,
T0 = 〈T0〉+p(τ), where 〈T0〉 is the mean value of the in-
tensity, and p(τ) =

√
2qξ(τ) is its noise component. The

quantity ξ(τ) is a Gaussian white noise with zero aver-
age, zero correlation 〈ξ(τ)ξ(τ ′)〉 = 0, and an intensity
equal to 1, and q is the noise intensity. With regard for
fluctuations of the incident flow intensity, Eq. (5) results
in the following stochastic differential equation:

Ṫ = f(T ) + g(T )p(τ). (7)

where

f(T ) = −T +
〈T0〉

1 + (z − T )2
,

g(T ) =
1

1 + (z − T )2
.

The noise term in Eq. (7) is of multiplicative character,
i.e. it depends on the state of the system at a given time
moment.

The process T (τ) can be investigated with the help of
the probability density P (T, τ) that represents the solu-
tion of the Fokker–Planck equation in the Stratonovich
representation [26]:

∂P (T, τ)
∂τ

= − ∂

∂T
K1P (T, τ) +

1
2
∂2

∂T 2
K2P (T, τ), (8)

where

K1 = f(T ) + g(T )g′(T )q =
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Fig. 2. Form of the stationary probability density at а) q = 0.04;
b) q = 0.5. Curves 1 are obtained at 〈T0〉=6.4, curves 2 – at 〈T0〉
=6.7, curves 3 — at 〈T0〉=7.7

−T +
〈T0〉

1 + (z − T )2
+

2(z − T )q
[1 + (z − T )2]2

,

K2 = qg(T )2 =
q

[1 + (z − T )2]2
,

and g′(T ) is the derivative with respect to T .
Equating the time derivative in Eq. (8) to zero, one

obtains the equation for the stationary probability dis-
tribution Ps(T ), whose solution has the form [1]

Ps(T ) =
N0

K2
exp

∞∫
0

K1

K2
dT. (9)

The normalization factor N0 is determined by the nu-
merical integration of Ps(T ) in the range from 0 to ∞
representing the natural limits of the process.

Figure 2,a shows the shape of the stationary prob-
ability density at a low noise level (q = 0.04) in the
cases where the system is far from the transition point

(curve 1) and successively approaches it (curves 2 and
3). Under low-intensity noise conditions, the extrema of
the probability density coincide with the stationary so-
lutions (T1 and T3). An increase of the noise intensity
up to q = 0.5 (see Fig. 2,b) in the case of a large dis-
tance from the transition point (curve 1) results in the
appearance of one peak in the probability distribution
corresponding to T = T1.

As the system approaches the transition point (curve
2), the probability distribution breaks into two peaks in
the neighborhood of T = T1 and T = T3. At 〈T0〉 > T0K

(curve 3), Ps(T ) has again one peak with a maximum
at T = T3. Thus, an increase of the noise intensity (see
Fig. 2,b) results not only in the broadening of the proba-
bility peaks, but also in the appearance of the bimodality
in the probability distribution (curve 2).

4. Time Behavior of the System Under Noise

The time behavior of the system is determined by
the temporal evolution of the probability distribution.
The latter was obtained by numerically integrating the
Fokker–Planck equation (8). The initial condition was
chosen in the form of the delta-function P (T, 0) =
δ(T ) and approximated by the rectangular function
ε/[(π(T 2 + ε2)] with ε = 0.001. Figure 3 presents the
time variation of P (T, τ) in the case where the param-
eter T0 is less than T0K , and the noise intensity equals
q = 1. In this figure, it is easy to distinguish different
time scales in the development of the process. First, the
system relaxes from the initial state to the stationary
state T1 during the short relative time τ1 ≈ 2. After
τ2 ≈ 7.5, the probability distribution becomes double-
peaked. The transition to the state T3 is realized during
the relative time τ3 ≈ 12.

In the next section, we consider the effect of noise
fluctuations on the dynamics of relaxation processes near
the marginal point T0K .

5. Noise Effect on the Relaxation Time Close to
the Marginal Point

The process of transition from a state with low-intensity
tunneling to that with high-intensity one corresponds to
a deviation of the intensity T of the electron flow go-
ing out of the system from the initial magnitude T1 to
that exceeding the limiting value Ttr, at which the sys-
tem passes to the state T3. We introduce the parameter
β = 〈T0〉 − T0K representing a small deviation of the
operating intensity of the incident flow from the criti-
cal value T0K . It is known [24] that, in the deterministic
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case determined as t = 1/ϕ′(x), where ϕ(x) is the system
potential, the relaxation time infinitely increases when
approaching the marginal point. This phenomenon is
called the critical slowing-down. Beyond the marginal
zone, the dynamics of the system obeys deterministic
laws, and noise is of minor importance. However, in
the neighborhood of the marginal point, the dynamics
is mainly determined by noise. Therefore, almost all
its action on the system is concentrated at this point.
The system evolves in two different modes depending on
the difference β = 〈T0〉 − T0K . If β < 0, the transi-
tion can take place only under the action of noise due
to the mechanism of its activation through the potential
barrier.

In the case where a system passes from an unsta-
ble state to a stable one, the relaxation time is most
often obtained, by determining the mean first passage
time (MFPT). One calculates the time interval t1, dur-
ing which a stochastic process starting from some initial
value x0 reaches a certain critical magnitude xF . This
time interval represents a stochastic quantity, whose av-
erage value 〈t1〉 is the MFPT.

The MFPT will be calculated using the method pro-
posed in [15] for a system in the neighborhood of the
marginal point. In its vicinity, the potential related to
the model has a horizontal component. This means that
almost all the action of noise on the system is concen-
trated at this point. Then, investigating the noise effect,
one can confine oneself to only several terms in the ex-
pansion of f(T ) in the neighborhood of the marginal
point TK :

f(T ) = f(TK) + f ′(T − TK) +
f ′′(TK)

2!
(T − TK)2+

+0(T − TK)3. (10)

Let us introduce the change of variables: β = 〈T0〉−T0K

and x = T − TK . Then, with regard for the expressions
for T0K (3) and TK (6), we obtain

f(x) = −αx2 − γβ, (11)

where the constants α and γ can be estimated from ex-
pression (10), by using relation (6). Thus, the dynamics
of the system near the marginal point under the action
of noise can be determined by the Langevin equation

ẋ = ϕ′(x) + g(T )p(τ) ≈ ϕ′(x) + γp(τ), (12)

where the potential of the system ϕ(x) = −αx3 −
γβx, and the function g(T ) is taken at the point TK ,
(g(TK) = γ).

Fig. 3. Time evolution of P (T, τ) at 〈T0〉 = 7.5 and q = 1

The stochastic equation (12) can be converted to the
Fokker–Planck equation

∂P

∂τ
=

∂

∂x
[ϕ′(x)P ] +

∂2

∂x2
(σP ), (13)

where σ = γq, whose stationary solution has the form

Pst(x) = N exp[−ϕ(x)
σ

]. (14)

From the standard theory of stochastic processes [26], it
follows that the mean first passage time 〈t1〉 satisfies the
equation

−1 = −dϕ(x)
dx

d〈t1〉
dx

+ σ
d2〈t1〉
dx2

. (15)

Solving (15) for 〈t1〉, we obtain

〈t1〉 =
1
σ

xF∫
x0

dx1e
ϕ(x1)/σ

x1∫
−∞

dx2e
−ϕ(x2)/σ, (16)

where x0 is the initial value, and xF is the final one.
The asymptotic calculation of expression (16) per-

formed in [15] yielded the approximated formula for the
determination of the MFPT close to the marginal point
at the transition from β < 0 to β > 0:

〈t1〉 = Φ(k)(α2σ)−1/3 + C(x0, R)+

+0(σ/αR3, β/αx2
0), (17)
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Fig. 4. a) Dependence of 〈t1〉 on the parameter β at different noise
intensities (1 – σ= 0.01, 2 – σ = 0.15, 3 – σ= 0.4, 4 – σ = 1.0,
5 – σ = 2.5); b) Dependence of 〈t1〉 on the noise intensity σ at
different β (1 – β =-0.007, 2 – β =-0.002, 3 – β =0, 4 – β= 0.01,
5 – β= 0.1)

where C(x0, R) is the deterministic time, R = xF − x0,

Φ(k) =
∞∑
n=0

Bn
n!

(−k)n, (18)

Bn =
1
3

√
π

3
2

2n+1
2 Γ(

2n+ 1
6

),

k = (β/α)(α/σ)2/3.

The structure of series (18) explains the different behav-
iors of 〈t1〉 at β < 0 and β > 0. At β < 0, all terms
in the expansion are positive, and therefore one obtains
larger values of 〈t1〉. At β > 0, the terms in (18) change
their signs, and 〈t1〉 becomes small.

Using this formula, we obtained the dependences of
the MFPT on the quantities β and σ. They are depicted
in Fig. 4 (a and b) by the solid lines. In our calculations,

we assumed x0 = −2, xF = 2, and R = 4. The constants
α and γ were chosen equal to α = 0.02 and γ = 0.174 in
order that the calculated curves coincide with the results
of numerical simulations.

The results of theoretical calculations were compared
to the data obtained by the numerical modeling of
Eq. (7). The relaxation time from the lower to the up-
per state was determined with the help of a procedure
described in [25]. It was assumed that the bifurcation
took place at the time moment when T (τ) exceeded the
limiting value Ttr = 3.5 for the first time, which ensures
a transition to the upper state. In order to determine
the mean time, we calculated a large number of trajec-
tories (as a rule, 3000) for each set of parameters with
various noise realizations. The results of our numerical
calculations depending on the parameter β at different
noise intensities are presented in Fig.4,a by the dotted
lines.

In the absence of noise, the time necessary for the
system to reach a stationary state increases as far as it
approaches the transition point (see curve 1). In the
subthreshold region β < 0, the relaxation time grows
with increase in a deviation of the control parameter
〈T0〉 from the critical value. At equal deviations, an
increase of the noise intensity results in a reduction of
the relaxation time. In the region beyond the threshold
β > 0, the relaxation time decreases with increase in the
deviation and reaches a stationary value which is very
small as compared with that at β = 0.

One can see from Fig. 4,a that the theoretical calcula-
tions with the use of the approximate formula (17) satis-
factorily agree with the results of numerical modeling of
Eq. (8). The comparison of the results of the numerical
modeling and analytical calculations in the case of the
MFPT dependences on the noise intensity σ is less ac-
ceptable (see Fig. 4,b), though the basic regularity (a de-
crease of the first passage time with increase in the noise
intensity) is conserved. Some difference in the curves is
most probably caused by the multiplicative character of
noise in Eq. (7) used for numerical calculations, whereas
noise in the Langevin equation (12) used to obtain the
analytical expression was of additive character. Such
an assumption is based on the results of works [7] and
[14] dealing with the comparison of the effect of multi-
plicative and additive noises on the relaxation time of
fluctuations in laser and biological systems, respectively.
It was shown that, in the case of multiplicative noise, the
relaxation time at small σ first grows with increase in σ,
reaches a maximum, and then falls at high σ. In the case
of additive noise, the behavior was opposite, namely the
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relaxation time tended to infinity at σ → 0 and fell with
increase in σ.

6. Conclusions

We considered a simplified stochastic model of tunnel
process that allowed us to determine the basic regulari-
ties governing its response to the action of intensity fluc-
tuations of an incident electron flow (characterized by
white noise). In particular, it was found that an increase
in the noise intensity results not only in the broadening
of the probability peaks but also in the appearance of
the bimodality in the probability distribution that was
absent at low noise levels under the same conditions.

The mean first passage time as a function of the noise
intensity was obtained both numerically and using the
theoretical model proposed in [15]. It is shown that,
in the subthreshold region, β < 0, the MFPT grows
with increase in a deviation β of the control parameter
〈T0〉 from the critical value. The increase of the first
passage time to values exceeding the value of critical
slowing-down in the deterministic case practically means
that the process of transition does not take place. At
equal deviations, the MFPT falls with increase in the
noise intensity. The obtained results imply that, with a
rise in the deviation β in the subthreshold region, one
must increase the noise intensity in order to realize a
transition, i.e. the noise assists the transition at the
values 〈T0〉, at which it is impossible in the deterministic
case. This conclusion differs from that made in [12, 28],
where it was stated that the bifurcation point shifted
toward the growth of a control parameter with increase
in the noise intensity.

It can be seen from the obtained results that, for the
proposed model, the process of transition in the neigh-
borhood of the critical point is mainly determined by
additive noise. This conclusion confirms the result of
work [27] about the minimal role of multiplicative noise
in the determination of the first passage time.
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E.A. PONEZHA

ВПЛИВ ЗОВНIШНЬОГО ШУМУ НА ПРОЦЕС
РЕЛАКСАЦIЇ В БIСТАБIЛЬНИХ
ТУНЕЛЬНИХ СИСТЕМАХ

О.О. Понежа

Р е з ю м е

Розглянуто вплив флуктуацiй iнтенсивностi падаючого на дво-
бар’єрну тунельну систему потоку електронiв поблизу точки
нестабiльностi. Для опису ефектiв шуму в системi, що пере-
буває поблизу резонансу в умовах когерентностi тунелювання,

використано спрощене рiвняння Ланжевена з мультиплiкатив-
ним бiлим шумом. Методом чисельної симуляцiї цього рiвнян-
ня отримано залежностi середнього часу першого проходу вiд
iнтенсивностi шуму й вiдхилення середнього значення iнтен-
сивностi падаючого потоку електронiв вiд критичного в детер-
мiнiстичному випадку. Результати чисельних розрахункiв за-
довiльно збiглися з теоретичними розрахунками роботи Коле
i iн. Час релаксацiї був максимальним у вiдсутностi шуму й
спадав iз ростом iнтенсивностi шуму. Для тих значень iнтен-
сивностi потоку, за яких перехiд у детермiнiстичному випадку
був неможливий, введення шуму сприяло переходу.
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