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This paper deals with the problem of information representation into a form that allows to make
associations, measure similarity and integrate new information with respect to previously stored. Several
simple models for encoding information into sparse distributed representation are explored. These models
based on the idea that information about stimuli is stored in the population, not an individual neuron, thus
each neuron learns many partial features. Results show formation of a sparse representation of image data
with high overlap for similar images. Each cell develops multiple receptive fields that together create a
population receptive field. It was possible due to incorporation of dendritic tree into standard neuron model.
Also, models were tested on a classification of handwritten digits from MNIST dataset. Results from
unsupervised representation show poor accuracy compared to the state-of-the-art supervised methods,
however, due to the presence of interesting properties further development of an idea should be continued.
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Crarta posrisimae mpoOieMy mpencTaBlieHHS iHpopMmamii y Qopmi, sSka TO3BOJSE CTBOPIOBATH
acoriiamii, BUMIPIOBATH CXOXICTb Ta IHTErpyBaTd HOBY iH(pOpMAII0 BiJHOCHO paHille 30epexeHoi.
JocimkyoTbest NeKiibKa MPOCTHX MOJAENe Al KOJAyBaHHS iHGOpMalii y po3piPKeHO PO3NOAIIICHOMY
npezcTaBiaeHHl. Moziesni rpyHTyIoThCs Ha izei, 1o iHdopMalis mpo cTuMyu 30epiraeTeCst B MOMYJISLIL, a He
B OKPEMOMY HEHpOHi, TOMy KOXKEH HEHPOH HABUAEThCA HA 0araro 4acTKOBHMX O3HAK. Pe3ynbTaTH MOKa3yroTh
(hopMyBaHHSI PO3PIMKCHOT0 IMPEACTABICHHS 300paKEHHS 3 BHCOKHM MEPEKPUTTIM ISl MOIIOHMX
300paxkeHb. KoxHa kiiThHa (opMmye Kijbka PELUEenTUBHHUX MOJIB, SIKI pa3oM YTBOPIOIOTH MOMYJIsIilHE
peuernTuBHE IOJIC. I_[e CTaJI0 MOJJIMBUM 3aBJSKHW BKJIIOYCHHIO ACHAPUTHOI'O ACPEBA B CTAHAAPTHY MOACIIb
HeripoHa. Takox mozeni Oyimu mepeBipeHi Ha 34aTHICTH 10 KiIacudikaril pyKomucHuX udp 3 HAbopy TaHUX
MNIST. PesynpraTté [Uisi HaBYaHHS O€3 YYMTENs MArOTh IOTaHy TOYHICTh Yy TOPIBHSHHI 3 CYYaCHUMH
METOoAaMM JUIsl HABYAaHHAM 3 YYHTCIIEM, OJHAK 3aBISKA HasiBHOCTI LIiKaBI/IX BJIACTHBOCTEH HO,I[aJ'IBI.HI/Iﬁ
PO3BHTOK i/1ei Mae OYTH POJIOBKECHUIA.

KoarouoBi cioBa: JeHIpUTHI OOYMCIEHHS, PO3piJKEHE INPEICTABICHHS, PO3pPiKEHE KOIyBaHHS,
HaBYaHHs 0€3 yduTes.

Introduction

One of the main problem facing before an intelligent machines creation is finding of a
correct substrate of memory [1]. The question how to encode information and in which form
it should be stored for efficient further processing remains unanswered. A good candidate for
such substrate is hyperdimensional binary vectors [2], [3]. Vectors with dimensions at the
order of 1000 provide a good framework of how to associate, compare and bind information
of different objects. However, an open issue remains how to form such binary vectors from
real-world raw data, such as intensities of pixels, words, and sounds [4].

The standard way to encode something is to create a dictionary, correspondence
between feature and its binary code, like latter “A” encoded with 1000001 according to
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ASCII. This strategy shaped our modern computer science and even was applied to
computer vision problems when a set of features, like the shape of an eye, were
handcrafted and represented with appropriate binary code. However, biological organisms
do not have specified dictionary, they create an internal representation of an environment
by themselves through self-organizing neural networks. If we want to create systems with
artificial intelligence, we should abandon specified dictionaries by humans and provide an
ability to self-generate code of the world.

Recently, it became possible to learn features from raw sensory data by using artificial
neural networks through supervised learning. Deep convolutional networks use small kernels
for the lower layers that through backpropagation become feature detectors [5]. However,
these systems as well require humans to specify dataset and correct labels in contrast to
biological neural networks that use a mixture of an unsupervised and reinforced learning.

Another prominent result came from the field of sparse coding. It was shown that
under a constraint to reliably reconstruct an input image with using a small part of a
dictionary system forms features that resemble receptive fields of simple cells in a visual
cortex [6]. Later, more works appeared that provided framework to form biological
plausible features and adopting a strategy of sparse coding [7]-[9]. There are two main
problems with this approach. The first is that it requires solving the optimization problem
in order to generate features in contrast to biological organisms that uses self-organization.
This leads to complications in implementing online learning algorithms for practical
application in robotics, though recently there was a progress in this direction [10]. The
second is that input is reconstructed using real-valued coefficients, thus it restricts to use
framework for hyperdimensional vectors [3].

The closest models to form desired representation were developed by Foldiak [11]
and Numenta team[12]. They achieved forming a sparse binary representation of an input
with feature learning and homeostatic principles. Nevertheless, in these models cells learn
to represent a limited set of features, thus it limits representation capacity of the network.

The goal of this work is to test simple models that form a sparse representation of
image data based on a dendritic neuron model. These models enable to encode multiple
features by a single neuron that increases a capacity of the network and an information is
spread across a population of neurons. Also, | provide biological background behind an
idea to include dendrites. Models were developed in order to satisfy requirements to work
online, thus excluding solving an optimization problem and to provide a large capacity
through spread features across a population.

The results show the reconstruction of an image into a sparse distributed
representation with high overlap for similar images. Each cell forms multiple receptive
fields and together with other cells form population receptive field. However, unsupervised
models show poor classification accuracy (0.7) compared to supervised state-of-the-art
methods (0.99). This could be due to bad feature extraction; thus it works similarly to
comparison to mean image. Despite, that presented results are worse than existing,
proposed ideas are not fully investigated and further research to be conducted.

The following paper structured as follows. Next, | provide motivation of the work
and its place in a global context. In the “Methods” section, I describe computational
models that were used. In “Biological background”, I provide computational properties of
the dendritic tree, stressing that standard model of an artificial neuron should be extended.
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In “Result” section, I provide figures of pattern representation, patterns overlap and results
of classification accuracy for MNIST dataset for different models. In the end, I discuss
possible reasons for a poor accuracy and future directions of a research.

Motivation

The first and important step that biological organisms do is making a representation
of raw sensory data from an environment into the form of sparse distributed representation.
Recreating this in algorithms will allow to apply efficient association learning and to use
properties of high-dimensional binary vectors. In this form, it will be convenient to check
information similarity simply by computing hamming distance or, in other words, patterns
overlap. As well it will be possible to make sequential memory and to experiment with an
action-perception loop. It will be feasible to use reinforcement learning to select right
action through sculpturing patterns of activation and efficiently predict an outcome of a
planned action. In order to use all of these in real time robotics, it is necessary to develop
an algorithm for sparse coding that works online and that are adaptable to a new incoming
stream of data.

Methods

Handwritten digits from MNIST database were used as an input with applying
thresholding and binarizing. As a result, were obtained binary vector x of size 28*28=784.

Representation layer v was initialized with size nxn and random binary weights to
input layer. Two connection schemes were used, one with random connection all-to-all
with certain percentage g of connected weights (w; = 1), another, with local connections
topographically projected from input to representation layer (Fig.1). Activation is

calculated according to:
¥, = Z wx; + A Z g[z c,i}-x}-] 1. 1)
i k j

Where g(z) = {1, if z > 8, and 0,otherwise}, 8 is a threshold for activation from
clustered synapses, A - constant for regulation of an influence of dendrites, and c;,; stores

synapses in clusters. After ¥ is computed was performed k-WTA operation, when k highest
values of ¥ were set to one and other to zero. Typically value of k was set small
k = 0.1]lyll compare to size of ¥ in order to achieve sparse representation. Result was a
sparse binary vector v.

Learning procedure realizes through learning clusters. Pseudocode is presented below.

for x in images
for i in y size
for j in x size
# retrieval of activation
y i=Wij*x j
for k in y clusters
y i =y i+ g(sum j(c_ijk*x 3j))
y = k_WTA(y)
# learning clusters
for 1 in nonzero(y)
k = number of stored clusters + 1
cluster = select random S indices of active x jJ
c ijk = 1 where j in cluster
return y

© V.M. Osaulenko 103



ISSN 1561-5359. llITtyuHwuii inTesekt, 2017, Ne 2

Sparse distributed representation

Input image
Fig.1. Schematic image of connections

After obtaining a representation for every image it is possible to count pattern
overlap between for different representations. Pattern overlap for two binary vectors we
define as Hamming distance.

To calculate accuracy every representation of test image was compared to mean
pattern for all training images from the same class. The highest overlap of patterns
determines to what class belongs representation for the test image.

Biological Background

The main idea of this paper is to include dendritic computation into neuron model
and to try to receive a sparse representation of raw sensory input based on this model. First
artificial neural networks were inspired by knowledge from biology and were based on
information available 70 years ago. Now we know much more about real neuron
functioning and today we acknowledge the importance of dendritic tree. Synapse from
thousands of neurons terminated on a vast dendritic tree of a single neuron and it is very
important to which part of dendrite each synapse is connected and what are neighboring
synapses. Presence of dendrites makes possible to integrate input not just linearly, as it was
previously assumed, but supra- and sub-linearly (Fig.2B) [13]-[15]. Thus, a small amount
of active neighboring synapses could elicit dendritic spike and depolarize the cell much
larger than if these synapses were distributed on different branches of dendrites (Fig.2A)
[16], [17]. Such close synapses form clusters and the possible computational role for this is
to track coincidence of an activation of particular neurons [18]. Every neuron has a lot of
such clusters thus neuron works as a multiple feature detector. This is in good
correspondence with population coding, where information encoded not in individual
neurons but shared across the population. Every neuron can take part in different
populations thus it needs to learn connections to many populations and clustered synapses
on dendrites makes it possible. This differs from classical Hebbian learning where
connection increases or decreases between two neurons and tracks pair-wise correlation. In
this approach, neuron learns higher-order correlations and connections occur not between
individual neurons, but between populations.
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Fig. 2. A) The depiction of distributed synapses on the left and clustered on the
right side. Modified from [19] B) Difference between
linear and supralinear summation.

In this paper, | try to simulate this ability of a neuron to learn higher-order
correlations and to be sensitive to multiple features. It was shown that such ability
increases the capacity of association memory (results in publishing), but here I check if it
helps with the sparse representation of a sensory data.

Results

Proposed methods are capable to generate sparse binary vectors from image due to
applying k-WTA. In order to see if similar patterns generate similar code pattern overlap
was computed. On Fig.3A presented results for pattern overlap for four different digits, the
darker the higher overlap. The figure shows that digits from same class have higher
overlap, however, this distinction is not totally clear. There are instances that have high
overlap from different classes. This interclass high overlap was the main reason for bad
classification accuracy, that will be described later.

Next, the idea of information spread across population was tested. On Fig.4A
presented collection of receptive fields of encoding cells and on the right overall receptive
field of a population. On Fig.3B presented more images of population receptive fields,
which was computed as the linear sum of receptive fields of individual neurons.

Fig. 3. A) Overlap of patterns from different images. Black shows high overlap.
Visible black squares represent overlap for patterns from similar images
from one class. B) Lower: binary images from handwritten digits.
Upper: receptive field of an entire population
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The main deviation of proposed models from the standard is that each neuron has
multiple receptive fields computed by dendrites. On Fig.4B presented such collection of
receptive fields of single cell and on the right combined total receptive field. Importantly,
that these receptive fields determine activation not through linear summation, but as a
threshold & for coincident detection. This result is very similar to coarse coding [20], [21],
where cells have very wide or coarse receptive field but on the level of population it is
possible to decode precise stimulus.

1 2 3 4 5 6 7 8 combined

Fig. 4. A) Image and receptive fields of individual cells that encode digit. Receptive
field took from activated clusters. B) The receptive field of individual clusters for
one cell and combined receptive field. It looks like coarse coding.

Also, there were performed tests for classification accuracy. For all images from the
same class was computed average representation vector. It was done for every class and as
result 10 mean representation vectors were obtained. Then, representation for every image
from test set was compared to each mean representation by calculating overlap. The
highest overlap determined the recognized class. To test accuracy were used a different
configuration of a model: with random connections, with localized connections, with
clusters of activation that produce multiple receptive field and model without clusters,
merely linear activation, and k-WTA. All four showed similar results with accuracy near
0.7. The same accuracy could be obtained just by comparing the image to mean images
without any representation into a binary vector. This tells that features extracted for binary
representation is not properly learned and representation works just like image transformed
into a different form.

Conclusions

This paper deals with the problem of information representation into sparse
distributed representation in order to use hyper dimensional computing framework.
Existing solutions do not fully satisfy all requirements, they lack online learning, or use
real values, or they have low capacity. The proposed idea is to use the extended model of a
neuron that includes dendritic computation to achieve sparse data representation. It is
assumed that the goal of dendrites is to track coincidence in incoming stimuli, not merely
linear summation. This allows to be responsive to many features that is crucial for having a
large capacity of the network.

Proposed models form sparse representation with high overlap for similar images.
Also, cells were able to form many partial receptive fields using dendrites. Information about
the image was spread across the population that forms combined receptive field.
Furthermore, each cell forms many receptive fields that together form much wider field. This
relates to an idea of coarse coding presented 30 years ago [21] but was not elaborated further.
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Achieved result for classification accuracy with unsupervised representation is near
0.7. This is significantly worse than state-of-the-art learning algorithms with accuracy
more than 0.99. Even simple KNN algorithm gives more than 95% of correct predictions.
However, presented idea shows interesting properties like population receptive field,
coarse coding, multiple receptive fields for a neuron and worth to be developed further.
The reason why accuracy is low could be an absence of inhibition, thus receptive fields are
all positive that leads to false activation. Also, it is possible that to receive higher accuracy
it is not sufficient to compare representation from the first layer, maybe hierarchical
architecture will form more stable representation for similar inputs.

Overall, it forms desired properties: neuron works as multiple pattern detector, information
about an input is encoded into the whole population and it creates sparse code. However, there is
a high overlap between patterns from different classes that limits classification accuracy and
suggests bad feature extraction. More research is needed in this direction.
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PE3IOME

B.M. OcayJjienko

TecTyBaHHA mpocTHX MojeJieil HeiipoHa 3 JeHAPUTAMH [JIsl PO3PiIKEHOro
OiHapHOTro nmpeacTaBJIEHHS 300pasKeHH s

B naniit poGoTi po3rIsmaroThCS MOJeNi HeHpoHa 3 ypaxyBaHHSIM JACHAPUTHOTO
nepeBa. Lle MOTHBOBaHO HEIOIaBHIMU JTOCIIPKEHHSIMH POOOTH 010JIOTTYHOTO HEHpOHa Ta
00YMCITIOBAJIbHUX BJIACTUBOCTEN JCHIPUTHOIO JIepeBa, /e TIOKa3aHo, 0 HEHPOH B LLIOMY
Ma€e 3HA4YHO OUIBITY OOYMCIIIOBAJIBHY 3/IaTHICTh HIK BBaXkanocs paxime. B komOiHarii 3
17Ie€10  PO3PIHKEHOT0 KOJYBaHHS IOKAa3aHO MOMJIMBICTH HeWpoHa (opmyBatu Oarato
pELIENITUBHKUX TOJIIB HA OCHOBI 300pakeHb pykonucHUX 1udp. KoxkHe pernentuBHe 1oje
3aMHUCYEThCS HA OKPEMOMY JICHIPUTHOMY CETMEHTI 1 30epira€ 4acTKOBI PUCH BXITHHX
NnaHuX. Xo4a # 00’€IHaHEe PEelEeNTHBHE T0JIe OJJHOI0 HEWpPOHA HE Ma€ CEJICKTUBHOCTI, aje
BOHA BHHHKA€E HA PiBHI MOMYIIALIL, IO T00Ope Y3roKY€EThCS 3 1/1e€10 TPyOOro KOTyBaHHS.
Takum yuHOM 300paskeHHS OyJU 3aKOJIOBaHI y PO3PIIKEHE MPEICTaBICHHS HEHPOHHOT
MepexXi, Je KOXeH HEWpOH HaBUYEHUH Ha IIMPOKHUH CHEKTp CTUMYJIiB. Takox Oyio
BUIMIPOOYBaHO e€(EeKTUBHICTh KOAYBaHHS B 3a4aui kiacudikamii pyKOmHUCHHUX LUD.
JlocsirHyTa TOYHICTH MEHINIA HIK Yy 1HIIUX METOJIB Ha OCHOBI HAaBYAaHHS 3 yYUTEJIEM, IO
CBITUUTH MPO HEOOXiAHICTh ab0 30UIbIIEHHS PO3MIPy PELENTHBHOIO MOJS HEWpoHa 3
JOJJaBaHHA MIPUTHIYYIOUMX HEHPOHiB, a00 J0/1aBaHHs HOBUX IIapiB HEWpOHIB. PospimkeHe
KOAYBaHHA 3 YpaxyBaHHSIM JEHIPUTIB Mae OUIbII O10JOTIYHY peaTiCTUYHICTh Ta
00YHCITIOBAIIbHY TIEpPEeBary, Tak SK Ja€ 3MOTy 3MEHIIUTH KiJTbKICTh HEUPOHIB. 3MECHIIICHHS
KUTBKOCTI O10JIOTITYHUX HEWPOHIB B MO3KY JIIOJWHUM BHHHMKAE B HACIIJOK ONTHUMI3amii
pecypciB, Ta 3MEHIICHHS HEMpPOHIB B MOJIENI Ma€ IepeBary y ONTHMi3amii pecypciB y
BUMAJIKY IMIUICMEHTAIIIT aITOPUTMY B €JIEKTPOHHHX MPUIIAIaX.
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