Проявление двумерного поведения ҮВСО пленок при исследовании их комплексной восприимчивости

В. А. Хохлов, А. Ю. Прохоров, В. Ф. Дроботько, Г. Г. Левченко

Донецкий физико-технический институт им. А. А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина E-mail: prohorov@levch.fti.ac.donetsk.ua

А. В. Климов

Институт физики ПАН, 12-668, Варшава, Польша

Статья поступила в редакцию 21 января 2002 г.

Исследованы температурные зависимости комплексной магнитной восприимчивости $\chi' + \chi''$ ряда YBCO пленок при различных амплитудах возбуждающего поля H_{ac} . На зависимости температуры T_m , при которой наблюдается максимум на зависимости $\chi''(T)$, от H^{α}_{ac} (параметр $\alpha = 1, 1/2, 2/3$ и определяется характером связей между кристаллитами) обнаружен излом при некотором поле $H_{ac} = H_1^*$. Предполагается, что температура T_{c1} , полученная экстраполяцией зависимости $T_m(H^{2/3}_{ac})$ из области больших полей к нулевому полю, является температурой перехода Березинского-Костерлица-Таулесса (T_{BKT}). Это предположение основано на сопоставлении полученных результатов с литературными данными по исследованию комплексной восприимчивости монокристалла GdBa₂Cu₃O_{6,75} при направлениях H_{ac} параллельно c оси монокристалла и вдоль ab-плоскости, а также совпадении расчетных величин некоторых характерных температур вблизи БКТ перехода с полученными нами экспериментально.

Досліджено температурні залежності комплексної магнітної сприйнятливості $\chi' + \chi''$ ряду YBCO плівок при різних амплітудах збуджуючого поля H_{ac} . На залежності температури T_m , при якій спостерігається максимум на залежності $\chi''(T)$, від H_{ac}^{α} (параметр $\alpha = 1, 1/2, 2/3$ та визначається характером зв'язків між кристалітами) знайдено злом при деякім полі $H_{ac} = H_1^*$. Передбачається, що температура T_{c1} , яка одержана екстраполяцією залежності $T_m(H_{ac}^{2/3})$ із області великих полів до нульового поля, є температурою перехода Березинського-Костерлиця-Таулесса (T_{BKT}). Припущення зісновано на зіставленні отриманих результатів з літературними даними по дослідженню комплексної сприйнятливості монокристала GdBa₂Cu₃O_{6,75} при напрямках H_{ac} паралельно *с* вісі монокристала та вздовж *ab*-площини, а також збігу розрахованих величин деяких характерних температур поблизу БКТ перехода з одержаними нами експериментально.

PACS: 74.76.Bz, 74.60.Ge

Введение

Металлооксидные высокотемпературные сверхпроводники (ВТСП) обладают квазидвумерной слоистой структурой, которая характеризуется высокой анизотропией ряда их физических свойств, в частности магнитных. Таким структурам присущ переход при $T \to T_c$ от трехмерного поведения магнитных характеристик к двумерному — переход Березинского-Костерлица-Таулесса (БКТ) [1,2]. В Си-О слоях ВТСП ҮВСО магнитные диполи возникают под влиянием тепловых флуктуаций только в виде пар двумерных (2D) вихрей (вихрь-антивихрь), магнитный поток которых замкнут двумя джозефсоновскими вихрями, расположенными между сверхпроводящими слоями. Циркуляция тока джозефсоновских вихрей и обеспечивает сверхпроводимость ВТСП материалов вдоль оси *с* кристалла. При температуре T_{BKT} система 2D вихрей становится неустойчивой по отношению к распариванию диполей, критический ток в направлении оси *с* падает до нуля. При $T > T_{BKT}$ в слоях появляются свободные вихри, при этом в *ab*-плоскостях все еще сохраняется сверхпроводимость.

Особенности БКТ перехода в квазидвумерных системах типа ВТСП могут хорошо наблюдаться, если $\lambda >> \xi(T_{BKT})$ [2]. Здесь $\lambda = d\sqrt{M/m}$, где d– межслоевое расстояние между плоскостями Сu–O; *m* и *M* – эффективные массы в плоскости Cu–O и вдоль оси *c*; $\xi(T_{BKT})$ – корреляционная длина ~ $\xi(0)\tau^{-1/2}$; T_{BKT} – температура БКТ перехода. Для YBCO $(M/m)^{1/2} = 5-7$, $d \simeq 4$ Å, $\xi(0) \simeq 13$ Å, $\tau = 1 - T_{BKT}/T_{c0} \sim 10^{-2}$ (T_{c0} – среднеполевая температура перехода) и соотношение $\lambda >> \xi(T_{BKT})$ не выполняется. В то же время в YBCO БКТ переход наблюдается как в гранулярных массивных материалах [3] и пленках [4], так и в монокристаллах [5].

Эпитаксиальные пленки YBCO, полученные лазерным напылением, довольно совершенны. Ось c в них с достаточно высокой точностью ориентирована перпендикулярно плоскости пленки, в то время как ориентация в плоскости ab текстурирована и нет полного соответствия плоскостей Cu–O в кристаллитах или доменах размером 50–100 нм. Наличие такой псевдослучайной сети почти совершенных кристаллитов (доменов) будет, вероятно, влиять на характер БКТ перехода [6].

Обычная процедура определения температуры БКТ перехода T_{ВКТ} состоит в измерении вольтамперных характеристик (ВАХ) и построении температурной зависимости показателя степени n в степенной зависимости ВАХ ($V \propto I^n$). На этой зависимости при n

З наблюдается резкий скачок. Температуру при n = 3 принимают за T_{BKT} , а экстраполяция зависимости n(T) из области $n > 3 \kappa n = 1$ дает величину среднеполевой критической температуры T_{c0}, которая практически равна температуре середины перехода R(T) [7]. Напомним, что разница температур $\Delta T_c =$ $= T_{c0} - T_{BKT}$ непосредственно зависит от величины эффективной анизотропии материала. ҮВСО имеют наименьшую анизотропию по сравнению с другими ВТСП, так как в них сравнительно большая длина когерентности вдоль оси с, которая при низких температурах примерно лишь в два раза меньше межслоевого расстояния сверхпроводящих плоскостей Cu-O [8], поэтому они должны иметь ярко выраженное трехмерное поведение. В то же время на YBCO пленках плохого качества (по транспортным свойствам и величине плотности критического тока) получены большие значения ΔT_c [9].

Для монокристаллов YBCO в работе [5] было определено $\Delta T_c = 0,14$ К, а для качественных YBCO пленок в работе Кима и др. [4] получено значение ΔT_c , равное 0,5 К. Диамагнитная восприимчивость YBCO пленок исследована в работе [10]. Глубина проникновения λ была рассчитана из измерений комплексного импеданса $Z = R + i\omega L$ для высококачественных пленок YBCO толщиной 500 и 2 000 Å. Переход БКТ наблюдался только для пленки толщиной 500 Å.

С помощью диамагнитного отклика на монокристалле GdBa₂Cu₃O_{6.75} измерены температурные зависимости диссипативных потерь χ_1'' и дейчасти восприимчивости ствительной χ₁, отвечающей за степень экранирования образцом величины внешнего поля [11]. Измерения проведены в условиях, когда возбуждающее поле H_{ac} прикладывалось в направлении оси с кристалла и параллельно плоскости аb. Установлено, что при \mathbf{H}_{ac} , параллельном плоскости ab, сигнал χ_1' появляется при более низкой температуре, чем при **H**_{ac} **c**. Именно при этой температуре наступает истинная 3D сверхпроводимость. Поскольку величина диамагнитного отклика пропорциональна площади образца, на ВТСП пленках в случае **Н**_{ac} *аb* подобные измерения в принципе невозможны ввиду чрезвычайно малой площади пленки. Однако некоторые соображения дают возможность предположить, что с помощью измерения полевых и температурных зависимостей χ'_1 и χ''_1 при $\mathbf{H}_{ac} \| \mathbf{c}$ можно зафиксировать 2*D*-3*D* переход также и в пленках ҮВСО. Такие исследования и проведены в настоящей работе.

Экспериментальные результаты и их обсуждение

Исследования диамагнитного отклика пленок YBCO проводились на индукционной установке в диапазоне возбуждающих магнитных полей H_{ac} 0,2–1000 мЭ в основном на частоте 10 кГц. Напомним, что χ_1'' отражает степень потерь на перемагничивание образца и резистивные потери. В настоящей работе получены зависимости температуры T_m , при которой наблюдается максимум χ_1'' , как функции амплитуды возбуждающего поля H_{ac} для трех образцов. Образец № 324 получен методом высокочастотного магнетронного напыления на сапфировую подложку с подслоем ZrO₂, стабилизированным Y. Толщина полученной поликристаллической пленки d составляла

Рис. 1. Зависимости температуры T_m максимума диссипативной части магнитной восприимчивости от амплитуды возбуждающего поля H_{ac} для различных пленок YBCO. Для примера для пленки № 364 приведена зависимость $\chi''_1/\chi'_1(H^{\alpha}_{ac})$. Для других пленок эта зависимость имеет аналогичный вид.

0,8 мкм. Образец № 364 получен методом лазерного напыления на подложку SrTiO₃ и имел толщину 0,3 мкм. Третий образец (№ 3) получен также методом лазерного напыления на подложку LaCaO₃, стабилизированную Nd, и имел толщину 0,2 мкм. Зависимости $T_m(H_{ac}^{\alpha})$ для этих образцов представлены на рис. 1. Показатель степени α обусловлен характером слабых связей между

кристаллитами образца. Видно, что эти зависимости линеаризуются при различных значениях α : $\alpha = 1$ для пленки № 324, $\alpha = 1/2$ для пленки № 364 и $\alpha = 2/3$ для пленки № 3.

Поскольку в теории критического состояния при температуре максимума на кривой $\chi''_1(T)$ выполняется соотношение [12]

$$j_c(T_m) = \frac{8H_{ac}}{2.474\pi d} ,$$
 (1)

то полученные зависимости $T_m(H_{ac})$ связаны с $j_c(T)$. С учетом крипа потока, играющего заметную роль в исследуемом интервале температур, зависимость (1) будет сложнее, однако пропорциональность между j_c и H_{ac} остается.

Как видно на рис. 1, все три пленки, полученные различными методами, в разных лабораториях и на разных подложках, имеют одни и те же характерные особенности.

1. При очень слабых полях существует некоторый интервал значений амплитуды возбуждающего поля $[0, H_2^*]$, когда T_m с точностью до ошибки эксперимента не зависит от H_{ac} . Для гранулированной пленки № 324 величина $H_2^* \approx 1$ мЭ, а для пленки № 3 эта величина достигает примерно 10 мЭ, в зависимости от частоты возбуждающего поля.

2. При более высоких значениях H_{ac} зависимость $T_m(H_{ac}^{\alpha})$ линеаризуется для каждого образца по своему закону вплоть до некоторого поля H_1^* , при котором наблюдается излом и наклон $T_m(H_{ac}^{\alpha})$ становится меньше, чем при $H_{ac} < H_1^*$.

 $T_m(H_{ac}^{\alpha})$ становится меньше, чем при $H_{ac} < H_1^*$. 3. В области полей $H_2^* \le H_{ac} \le H_1^*$ наблюдается значительное увеличение амплитуды χ_1'' , а в полях $H_{ac} > H_1^*$ рост амплитуды χ_1'' незначителен или совсем отсутствует, что соответствует теории критического состояния Бина с учетом крипа потока. При этом величина χ_1' остается постоянной.

4. В области $H_{ac}^{\times 1} < H_2^*$ наблюдается линейный отклик, в интервале $H_2^* < H_{ac} < H_1^*$ — квазилинейный (искажения сигнала отклика χ_1'' от синусоидальной формы незначительны), в области полей $H_{ac} > H_1^*$ отклик существенно нелинеен.

Экстраполяция полученных зависимостей $T_m(H^{\alpha}_{ac})$ от больших полей H_{ac} к нулевому полю дает некоторое значение температуры T_m , назовем ее условно T_{c1} . Подобная экстраполяция из области полей $H^*_2 < H_{ac} < H^*_1$ дает другую температуру, которую обозначим T_{c2} .

Казалось бы, поведение диамагнитного отклика в области полей $H_2^* < H_{ac} < H_1^*$ можно описать теорией обратимого движения вихрей Мацушиты [13], основанной на модели Кэмпбелла [14] и объясняющей рост амплитуды χ_1'' с увеличением

Рис. 2. Температурная зависимость недиссипативной части магнитной восприимчивости χ' монокристалла GdBa₂Cu₃O_{6,75} при различных полях H_{ac} , Э: ($\mathbf{H}_{ac} \parallel \mathbf{c}$) 0,297 (1), 1,11 (2), 4,16 (3); ($\mathbf{H}_{ac} \perp \mathbf{c}$) 0,22 (4), 2,1 (5), 4,16 (6) [11].

поля H_{ac} . Однако эта теория построена исходя из условия линейного отклика (движение вихрей обратимо и гистерезиса нет), причем с ростом H_{ac} должна изменяться и величина χ'_1 , что не наблюдалось экспериментально.

Естественно предположить, что излом на зависимости $T_m(H_{ac}^{\alpha})$ связан с переходом БКТ. Для обоснования этого предположения рассмотрим температурные зависимости χ'_1 для образца GdBa₂Cu₃O_{6,75}, представляющего собой пластину толщиной 0,7 мм с площадью поверхности ~ 4 мм², при ориентации поля $\mathbf{H}_{ac} \parallel \mathbf{c}$ оси кристалла и $\mathbf{H}_{ac} \parallel ab$ -плоскости, полученной в работе [11] (см. рис. 2). Рисунок 2 наглядно демон-

Рис. 3. Схема ҮВСО пленки толщиной d, содержащей сверхпроводящие слои Си–О. При $\mathbf{H}_{ac} \| ab$ -плоскости ток I_{ab} исчезает при температуре разрыва джозефсоновских связей между плоскостями Си–О, т.е. при T_{BKT} . Сигнал диамагнитного отклика в этом случае также исчезает.

Рис. 4. Зависимость температуры максимума T_m на кривой $\chi''(T)$ от плотности критического тока j_c для монокристалла GdBa₂Cu₃O_{6.75}.

стрирует существование двумерности в исследованном образце в области температур 48–58 К. Действительно (см. рис. 3), при $\mathbf{H}_{ac} \| \mathbf{c} \,$ поле H_{ac} индуцирует в образце токи, лежащие в плоскости образца, и сигнал отклика будет существовать независимо от размерности (2D или 3D) структуры в слоях Си–О. При $\mathbf{H}_{ac} \| ab$ -плоскости кристалла сигнал отклика может возникнуть только тогда, когда появится когерентная связь между слоями Си–О, т.е. когда образец будет находиться в трехмерном состоянии.

На рис. 4 показана зависимость температуры T_m , при которой наблюдается максимум на зависимости $\chi''(T)$, от плотности критического тока j_c для монокристалла GdBa₂Cu₃O_{6,75}, снятая при различных амплитудах возбуждающего поля H_{ac} и рассчитанная по известному соотношению [11]:

$$j_c = \frac{H_{ac}^*}{4\pi d} , \qquad (2)$$

где H^*_{ac} — величина возбуждающего поля с учетом размагничивающего фактора.

Отметим, что экстраполяция зависимости $T_m(j_c^{2/3})$ от больших токов к $j_c = 0$ дает температуру ру $T_{c1} = 48$ К (температуру появления диамагнитного отклика при $\mathbf{H}_{ac} \| ab$), а от малых j_c к $j_c = 0$ — температуру T_{c2} , равную 58 К (температура появления сигналов χ''_1 и χ'_1 при $\mathbf{H}_{ac} \| \mathbf{c}$).

Из полученных данных можно сделать вывод, что для монокристалла GdBa₂Cu₃O_{6,75} температура перехода БКТ равна 48 К.

Для эпитаксиальных пленок YBCO при $\mathbf{H}_{ac} \| \mathbf{c}$ зависимость T_m от $H_{ac}^{2/3}$ связана (в случае, когда пленка находится в критическом состоянии) с зависимостью $T_m(j_c^{2/3})$ через простой коэффициент (см. формулу (1)). По аналогии с [11]

можно предположить, что и для пленок YBCO экстраполяция от больших полей H_{ac} к $H_{ac} = 0$ дает значение $T_{c1} = T_{BKT}$, а от полей, меньших H_1^* , — некоторое значение T_{c2} . Ширина перехода *R*(*T*) в эпитаксиальной пленке № 3, по нашим данным, составляет около 1 К. Температуру середины этого перехода обычно принимают равной среднеполевой температуре перехода T_{c0} [7]. Температура появления диамагнитного отклика $(T_c = 89,8 \text{ K})$ практически совпадает с температурой «зануления» зависимости R(T) с точностью не хуже 10^{-3} Ом/см. Отсюда следует, что величина $\Delta T = T_{c0} - T_{BKT}$ должна быть порядка 0,5 + $|T_c - T_{c1}|$. На предположение о том, что $T_{c1} = T_{BKT}$, указывает и величина ΔT , равная 0,9 К, полученная для пленки № 3 с высокой токонесущей способностью, близкая к значению $\Delta T = 0.5$ К, найденному для пленок YBCO [5]. Как видно на рис. 1, с ростом ΔT уменьшается и $j_{c}(0)$ (увеличивается наклон зависимости T_m(H^α_{ac})). Подобную картину наблюдали и в [9].

Проанализируем результаты, полученные для наиболее изученной эпитаксиальной пленки № 3.

Как видно на рис. 1 на зависимости $T_m(H_{ac}^{\alpha})$ четко наблюдается несколько характерных точек:

 T^* — температура, при которой наблюдается излом на зависимости $T_m(H^{\alpha}_{ac})$. Отметим, что T^* одинакова при частотах возбуждающего поля 1 и 30 кГц, хотя при f = 30 кГц индуцированная в пленке эдс (а следовательно, и ток) в 30 раз больше, чем при f = 1 кГц;

 T_{c1} — температура, к которой при $H_{ac}=0$ экстраполируется зависимость $T_m(H^{\alpha}_{ac})$ при $H_{ac}>H^*_1;$

 T_c — температура образования в пленке бесконечного протекательного кластера и появления диамагнитного отклика, T_c совпадает с температурой «зануления» ($R \le 10^{-3}$ Ом/см) зависимости R(T);

 T_{c0} — среднеполевая температура перехода, совпадающая с серединой перехода R(T) [7]. Значения этих температур для пленки № 3 представлены в таблице.

В работе [15] представлена иерархия характерных значений температур (от низких к высоким) для слоистого сверхпроводника со слабыми магнитными связями. Здесь $\tau = (T - T_{c0})/T_{c0}$.

 au_{f} — температура, ниже которой флуктуации параметра порядка значительно меньше его среднего значения;

 τ_{BKT} — температура 3D—2D перехода в отдельном слое;

 $\tau_{\rm cr}$ — температура кроссовера от 3D к 2D поведению;

τ_с – истинная температура перехода;

τ_{c0} – среднеполевая температура перехода.

Закрашенная область соответствует интервалу трехмерных флуктуаций.

Сравнивая приведенную иерархию из работы [15] с нашими результатами, предположим, что T^* соответствует T_f ; $T_{c1} \rightarrow T_{BKT}$; $T_{c2} \rightarrow T_{cr}$. Оценим значения τ_{BKT} и размытие скачка Кос-

Оценим значения τ_{BKT} и размытие скачка Костерлица–Нельсона под действием термических флуктуаций τ_{3D} по формулам, приведенным в работе [15]:

$$|\tau_{BKT}| = \frac{|\tau_c|}{\left[1 - \frac{b}{\ln^2 (J/E_{0j}\xi_{ab}^2)}\right]},$$
 (3)

$$|\tau_{3D}| = \frac{2|\tau_{BKT}|b}{\ln^3 (J/E_{0J}\xi_{ab}^2)}.$$
 (4)

Здесь $J = \Phi_0^2 d_p / \pi \epsilon (4\pi \lambda_{ab})^2 -$ «жесткость», характеризующая флуктуации в плоскости *ab*; d_p – расстояние между плоскостями Cu–O (~4 Å); $\lambda_{ab} = \lambda_{ab}(0)/\tau$ – лондоновская глубина проникновения; $\epsilon \ge 1$ – эффективная «диэлектрическая постоянная», описывающая понижение «жесткости» флуктуационными вихревыми парами [16]; $E_{0j} = \pi \hbar \Delta / 4e^2 R_N$ – энергия джозефсоновского взаимодействия между слоями ($E_j = E_{0j} |\tau|$); Δ – энергетическая щель $\simeq 20$ мэВ [17]; e – заряд электрона; R_N – сопротивление образца вблизи перехода; *b* принимает значения от 2 до 9 [18].

Таблица

Значения ряда характерных температур вблизи *T*_c для эпитаксиальной YBCO пленки № 3

<i>T</i> *, K	τ*	<i>Т</i> _{<i>c</i>1} , К	τ_{c1}	<i>Т_{с2}</i> , К	τ_{c2}	<i>Т_с</i> , К	τ_c	<i>Т_{с0},</i> К	<i>R_N</i> , Ом
89,12	1,3.10 ⁻²	89,4	10 ⁻²	89,6	$0,77 \cdot 10^{-2}$	89,8	$0,55 \cdot 10^{-2}$	90,3	0,7

Если принять b = 9, а $\xi(0)_{ab} = 20$ Å [17], то при этом оценки дают $J = 6 \cdot 10^{-32}$ Дж/ см²; $E_{0j} =$ = 1,5 · 10⁻²⁰ Дж. Используя (3), находим $\tau_{BKT} =$ = 0,95 · 10⁻², откуда $T_{BKT} = 89,44$ К, что близко к значению T_{c1} . Из (4) находим $\tau_{3D} = 0,41 \cdot 10^{-2}$, что соответствует ширине температурного интервала 0,4 К, т.е. ($T_c \pm 0,2$) К и совпадает со значением $T_{c2} = 89,6$ К. Оценка τ_f , приведенная в [15], дает температуру на несколько градусов ниже T_c и явно не совпадает с нашим значением τ^* , так что физический смысл температуры T^* остается пока невыясненным.

Как известно, переход БКТ связан с двумерными вихрями в сверхпроводящих слоях Си–О и их взаимодействием между собой как в пределах плоскости, так и между вихрями в соседних плоскостях Си–О. Ниже T_{BKT} существуют только связанные пары вихрь–антивихрь, а при $T > T_{BKT}$ связь между плоскостями Си–О разрывается и происходит флуктуационный распад вихревых пар. При наличии тока в образце (измерения ВАХ и диамагнитного отклика ведутся с транспортным или индуцированным токами) и при $T < T_{BKT}$ сила Лоренца действует на пары как эффективное отталкивающее взаимодействие и будет существенно распаривать вихри, если ток превышает пороговое значение [19,20]:

$$J = J_{GI} \xi_{ab} (E_i / I) , \qquad (5)$$

где J_{GL} — плотность критического тока Гинзбурга-Ландау; I — удельная энергия 2D вихря. Величина этого тока, оцененная в [6], равна приблизительно 3 мкА. По результатам диамагнитных измерений мы не смогли оценить индуцированный в пленке ток при $H_{ac} < H_1^*$, так как отсутствует теория, описывающая связь между H_{ac} и j_c в этой области температур. Однако мы считаем, что индуцированный возбуждающим полем ток больше 3 мкА, по крайней мере до полей $H_{ac} = H_2^*$. При $T > T_{BKT}$ преобладает термическое распаривание вихрей, ниже T_{BKT} свободные вихри возникают в основном вследствие распаривания индуцированным током.

Таким образом, при конечной величине тока в системе, кроме флуктуационных вихрей, появляются также свободные вихри из разорванных током диполей. Наличие двух механизмов, определяющих сопротивление образца, приводит к тому, что универсальный скачок Костерлица–Нельсона [21] размывается, а показатель степени n в степенной зависимости ВАХ начинает зависеть как от температуры, так и от тока. Такое размытие скачка на зависимости n(T) наблюдали в работах [6,9], когда n начинал уменьшаться не с 3,

а с n = 5,5 [6] и n = 4,2 [9]. Мы считаем, что в нашем случае переход распространяется от T^* до T_{c2} ($\Delta T = 0,5$ K, ΔT — ширина перехода). В [6] ΔT равнялось 0,35 K, в [9] $\Delta T = 4$ K.

Реальные пленки, особенно полученные скоростным лазерным напылением, начинают расти из «островков», образующихся в начальной стадии роста на границе пленка-подложка. Сама подложка не является идеально гладкой, а имеет впадины и бугры, с разницей по высоте, достигающей нескольких постоянных решетки УВСО вдоль оси с. При увеличении толщины пленки островки, ось с которых перпендикулярна плоскости подложки, а оси а и b не строго ориентированы по отношению друг к другу, коалисцируют, образуя сплошную пленку. В местах коалисценции образуются краевые и винтовые дислокации, обогащенные медью [22]. Таким образом, реальная пленка состоит из кристаллитов размером от единиц до десятков нанометров, разделенных дислокациями, причем плоскости Cu-O в соседних кристаллитах (доменах) могут и не совпадать. Транспортный или индуцированный ток течет по плоскостям Cu-O через нормальные или сверхпроводящие, но с пониженным параметром порядка, дислокации. В результате несостыковки плоскостей Cu-O в соседних кристаллитах появляется часть «лишних» или «недостающих» плоскостей. Возникают стопки плоскостей Си-О, разделенных «лишними» или «недостающими» плоскостями Cu-O, не несущими транспортный ток. Таким образом, появляются эффективные сверхпроводящие слои, несущие транспортный ток, разделенные между собой большими (а следовательно, с меньшими E_i), чем в монокристалле, расстояниями. Это, в свою очередь, приводит к увеличению «эффективной» анизотропии пленки.

Оценим размеры таких эффективных слоев. В [23] было показано, что глубина магнитного проникновения $L_s = 2\lambda_{3D}^2/d_{eff}$ связана с T_c соотношением L_s [см] = $2/T_c$ [K], где λ_{3D} — объемная глубина магнитного проникновения, d_{eff} — толщина сверхпроводящего слоя. Следовательно, можно получить эффективную толщину каждого слоя, предполагая, что взаимодействие между слоями отсутствует. Принимая $\lambda_{3D}(T) = 0,15$ мкм × × $(1 - T_{c1}/T_{c0})^{-0,5}$, при $T_{c1} = 89,4$ К получаем величину $d_{eff} \cong 2$ нм. Сравнивая d_{eff} с толщиной пленки, равной 200 нм, можно видеть, что должно существовать квазидвумерное поведение.

Влияние джозефсоновского взаимодействия на трехмерное поведение YBCO пленок проявляется в возникновении дополнительного притяжения между вихрями в паре, имеющего квадратичную

зависимость от расстояния при r << r_c и линейную при $r > r_c$ [15,24]. Здесь $r_c = (I/E_i)^{0.5}$ некоторое характерное расстояние между вихрями в паре, ниже которого можно пренебречь влиянием джозефсоновского взаимодействия между слоями по сравнению с внутрислоевым вихревым взаимодействием. На расстояниях r > r_c джозефсоновский вклад доминирует, запрещая распад пар на свободные вихри. Именно распад на свободные вихри происходит в первую очередь под действием силы Лоренца в присутствии тока, а также при $T \approx T_{BKT}$, когда джозефсоновское взаимодействие между слоями падает до нуля. Для пленки № 3 r_c = 2 мкм, что гораздо больше размера кристаллитов, поэтому размеры границ между кристаллитами, по-видимому, не должны сказываться на БКТ переходе.

Конечно, можно предположить, что в пленках ҮВСО происходит не истинный БКТ переход, связанный с диссоциацией пар вихрь-антивихрь, а переход, обусловленный разбиением плоскостей Си-О вблизи T_с на эффективные сверхпроводящие слои (толщиной ~ 2 нм для пленки № 3), не взаимодействующие между собой. Такая система будет квазидвумерной. В этом случае эксперименты по исследованию ВАХ и восприимчивости «не заметят» подмены истинного БКТ перехода квазидвумерным переходом. Однако наблюдение БКТ перехода в монокристаллах ҮВСО, в которых нет несостыковки плоскостей Cu-O по всему объему образца, находится в противоречии с критерием $\lambda >> \xi(T_{BKT})$ (см. введение). На наш взгляд, требуется уточнение критерия БКТ перехода.

Таким образом, по аналогии с результатами измерений диамагнитного отклика в монокристалле GdBa₂Cu₃O_{6.75} [11], выполненных при $\mathbf{H}_{ac} \| \mathbf{c}$ оси кристалла и $\mathbf{H}_{ac} \| ab$ -плоскости кристалла, хорошего совпадения ряда рассчитанных и экспериментально полученных характерных температур образца вблизи БКТ перехода и близости значений ширины перехода ΔT , полученных нами, к литературным данным дают основание предположить, что изучение зависимостей температур максимума χ_1'' в функции возбуждающего поля H_{ac} дает возможность наблюдать 2D-3D переход. Для подтверждения правильности предположения о наблюдаемом нами 2D-3D переходе в ҮВСО пленках с помощью исследования их комплексной восприимчивости необходимы одновременные исследования одной и той же пленки методами ВАХ и диамагнитного отклика. Такие исследования планируются в ближайшем будущем. Остается также открытым вопрос о физическом смысле температуры T^* и ее независимости от частоты возбуждающего поля H_{ac} . Также нет объяснения логарифмического роста амплитуды χ_1'' в области полей $H_{ac} < H_1^*$ при постоянстве величины χ_1' .

- В. А. Березинский, ЖӘТФ 34Б, 610 (1971); J. М. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181 (1973); Progr. Low Temp. Phys. B7, 373 (1978).
- M. V. Feigelman, V. B. Geshkenbein, and A. I. Larkin, *Physica* C167, 177 (1990).
- D. R. Harshman, G. Aeppli, E. J. Ansaldo, B. Batlogg, J. H. Brewer, J. F. Carolan, R. J. Cava, M. Celio, A. C. D. Chaklader, W. N. Hardy, S. R. Kreitzman, G. M. Luke, D. R. Noakes, and M. Senda, *Phys. Rev.* B36, 2386 (1987).
- J. Kim, H. Lee, J. Chung, H. J. Shin, and H. J. Lee, *Phys. Rev.* B43, 2962 (1991).
- 5. V. Katandella and P. Minnhagen, *Physica* C166, 442 (1990).
- Q. Y. Ying and H. S. Kwok, *Phys. Rev.* B42, 2242 (1990).
- K. Kadowaki, Y. Songlin, and K. Kitazava, Supercond. Sci. Technol. 7, 519 (1999).
- 8. K. H. Fisher, Physica C193, 401 (1992).
- P. H. Mikheenko and I. S. Abaliosheva, *Physica* C214, 393 (1993).
- A. T. Fiory, A. F. Hebard, P. M. Mankiewich, and R. E. Howard, *Phys. Rev. Lett.* 61, 1419 (1988).
- Г. Г. Левченко, А. В. Пащенко, В. П. Дьяконов, В. И. Маркович, И. М. Фита, А. А. Павлюк, Л. П. Козеева, *ФНТ* 18, 1332 (1992).
- 12. E. H. Brandt, Phys. Rev. B58, 6506 (1998).
- T. Matsushita, E. S. Otabe, and B. Ni, *Physica* C182, 95 (1991).
- 14. A. M. Campbell, J. Phys. C4, 3186 (1971).
- Л. И. Глазман, А. Е. Кошелев, ЖЭТФ 97, 1371 (1990).
- 16. P. Minnhagen, Rev. Mod. Phys. 59, 1001 (1987).
- T. Maeno, K. Kagawa, S. Tanda, T. Nakayama, N. Hatakenaka, A. Ohi, T. Matsui, T. Suzuki, and K. Tsuda, *Physica* C235-240, 3321 (1994).
- A. T. Fiory, A. F. Hebard, and W. T. Glaberson, *Phys. Rev.* B28, 5075 (1983).
- H. J. Jensen and P. Minnhagen, *Phys. Rev. Lett.* 66, 1630 (1991).
- P. N. Mikheenko, Yu. A. Genenko, Yu. V. Medvedev, A. I. Usoskin, and I. N. Chukanova, *Physica* C212, 332 (1993).
- D. R. Nelson and J. M. Kosterlitz, *Phys. Rev. Lett.* 39, 1201 (1977).
- Y. Gao. K. L. Merkle, G. Bai, H. L. M. Chang, and D. J. lam, *Physica* C174, 1 (1991).
- 23. B. I. Halperin and D. R. Nelsen, J. Low Temp. Phys. 36, 599 (1970).
- L. N. Bulaevskii, S. V. Meshkov, and D. Feinberg, *Phys. Rev.* B43, 3728 (1991).

Manifestation of two-dimensional behavior of YBCO films in studies of their complex susceptibility

V. A. Khokhlov, A. Yu. Prokhorov, V. F. Drobotko, G. G. Levchenko, and A. V. Klimov

The temperature dependence of complex magnetic susceptibility $\chi' + \chi''$ of YBCO films is studied for different amplitudes of exciting field H_{ac} . The H^{α}_{ac} dependence of T_m at which a maximum in the curve $\chi''(T)$ is observed (the parameter α equals 1, 1/2, 2/3 and is determined by the nature of intercrystallite bonds)

exhibits a kink at $H_{ac} = H_1^*$. It is suggested that the temperature T_{c1} obtained by extrapolating the dependence $T_m(H_{ac}^{2/3})$ from high fields to zero field is the BKT transition temperature (T_{BKT}) . The suggestion is based on the comparison between the data obtained and literature results on complex susceptibility of GdBa₂Cu₃O_{6,75} for H_{ac} directed in parallel with the axis c of the single crystal and along the plane *ab* and on the agreement between some calculated characteristic temperatures near the BKT transition and our experimental data.