Письма редактору

О роли ян-теллеровских колебаний в механизме высокотемпературной сверхпроводимости интеркалированных пленок фуллерита С₆₀ с *р*-типом проводимости

В. М. Локтев

Институт теоретической физики им. Н. Н. Боголюбова НАН Украины ул. Метрологическая, 14-6, г. Киев, 03143, Украина E-mail: vloktev@bitp.kiev.ua

Э. А. Пашицкий

Институт физики НАН Украины, пр. Науки, 46, г. Киев, 03650, Украина

Статья поступила в редакцию 24 декабря 2001 г.

Предпринята попытка объяснения наблюдаемых высоких значений температуры сверхпроводящего перехода в интеркалированных пленках фуллерита. Оно опирается на наличие в заряженных молекулах C₆₀ в гексагональных решетках вырожденных электронных термов и сильную связь последних с ян-теллеровскими внутримолекулярными колебаниями. Обсуждаются также некоторые другие эффекты, способствующие усилению сверхпроводимости в молекулярных металлах.

Зроблено спробу пояснення спостережуваних високих значень температури надпровідного переходу в інтеркалірованих плівках фулериту. Воно спирається на наявність в заряджених молекулах C_{60} в гексагональних гратках вироджених електронних термів та сильний зв'язок останніх з ян-теллерівськими внутрішньомолекулярними коливаннями. Обговорюються також деякі інші ефекти, що сприяють посиленню надпровідності в молекулярних металах.

PACS: 74.70.Wz

1. В серии работ Батлогга и др. [1–3] путем инжекции дырок в тонкие пленки фуллерита C_{60} с помощью внешнего электрического поля критическая температура T_c сверхпроводящего (СП) перехода была повышена от $T_c = 52$ К для чистой монокристаллической пленки до $T_c = 84$, 117 и 146 К в пленках, интеркалированных молекулами CHCl₃, CHBr₃ и CHJ₃ соответственно. Максимальное значение $T_c = 146$ К является рекордным для всех известных ВТСП, включая купраты Bi-Sr-Ca-Cu-O [4], Tl-Ba-Ca-Cu-O [5] и Hg-Ba-Ca-Cu-O [6] при нормальном давлении.

Монотонный рост T_c в пленках C_{60} по мере увеличения радиуса атома галогена G = Cl, Br, J, так же, как и в допированных металлами кристаллах A_3C_{60} (A = K, Rb, Cs, Tl) [7–11], находит естественное объяснение в рамках теории БКШ [12], согласно которой T_c определяется безразмерной константой $\lambda_{\rm ph} = N(\varepsilon_F)g_{\rm ph}^2$ электрон-фононного взаимодействия (ЭФВ), где $g_{\rm ph}$ — матричный элемент ЭФВ, а $N(\varepsilon)$ — плотность состояний (ПС) на уровне Ферми ε_F , зависящая как от степени допирования, так и либо от ширины W_c частично заполненной зоны проводимости (ЗП), либо (в случае проводимости *p*-типа) ширины W_v валентной зоны (ВЗ). При увеличении размеров молекул СНG₃ или атомов А возрастает постоянная решетки молекулярного кристалла C_{60} и уменьшается перекрытие π -орбиталей соседних молекул, что приводит к сужению ЗП и увеличению ПС. То, что в фуллеритовых *p*-пленках T_c выше, чем в *n*-пленках [2], объясняется, на наш взгляд, просто: $W_v < W_c$ в силу уменьшения перекрытия волновых функций более глубоких электронных состояний фуллерена. То же должно иметь место и во всех подобных случаях.

На основе стандартной модели БКШ нельзя, однако, понять отсутствие СП в кристаллах A_3C_{70} и $A_3(C_{60})_y(C_{70})_{1-y}$ [13] и наблюдавшиеся недавно низкие T_c в пленках C_{70} [14], хотя фононный спектр в этих молекулярных системах определяется в основном внутримолекулярными колебаниями (ВМК) и в фуллерене C_{70} он даже богаче, чем в C_{60} .

2. Ранее в работах [15] мы предположили, что в кубических *n*-проводящих кристаллах A_3C_{60} СП обусловлена высокой симметрией как самой решетки, так и молекулы C_{60} (группа икосаэдра Y_h). Первое возбужденное состояние t_{1u} , вырожденное в молекуле, порождает в кристалле три зоны, нижняя из которых двукратно вырождена и имеет долины в симметричных *L*-точках зоны Бриллюэна [16,17].

В соединениях A_3C_{60} все молекулы C_{60} в среднем находятся в трехкратно заряженном состоянии C_{60}^{3-} , образуя либо спиновый дублет с ян-теллеровской (ЯТ) деформацией и полным расщеплением всех уровней, либо спиновый квартет с восстановленной симметрией свободного фуллерена C_{60} [18]. Но в проводящей фазе эти молекулы, образующие узкозонный молекулярный металл с вырожденными коллективизированными электронами, находятся в неопределенном (флуктуирующем) зарядовом и спиновом состояниях. Переходы между разными электронными термами молекул C_{60} сопровождаются ЯТ деформациями, которые соответствуют заданным (как правило, квадрупольным) ВМК^{*}.

Электрон-фононное взаимодействие в фуллерите с ЯТ ВМК описывается в узельном представлении гамильтонианом [15]

$$H_{\rm el-ph} = \sum_{\mathbf{n},\sigma} \sum_{\lambda_1,\lambda_2} \chi_{\mathbf{n}}^{\lambda_1\lambda_2} a_{\mathbf{n}\lambda_1\sigma}^+ a_{\mathbf{n}\lambda_2\sigma} Q_{\mathbf{n}}^{\lambda_1,\lambda_2} , \quad (1)$$

где $\chi_{\mathbf{n}}^{\lambda_1 \lambda_2}$ – константа ЭФВ; $a_{\mathbf{n}\lambda\sigma}^+$ и $a_{\mathbf{n}\lambda\sigma}$ – фермиоператоры рождения и уничтожения электрона в состоянии λ со спином σ на **n**-ом узле. Важной особенностью оператора (1) является одноузельный характер ЭФВ, отличающий последнее от такового в обычных металлах. Согласно [15], ЭФВ именно с ЯТ ВМК, которые описываются обобщенной координатой $Q_{\mathbf{n}}^{\lambda_1,\lambda_2}$, различает кубические кристаллы A_3C_{60} и более низкосимметричные при низких температурах [19] системы А₃С₇₀, в которых все электронные состояния расщеплены и эффект ЯТ отсутствует. Во втором порядке теории возмущений ЭФВ (1) способно обеспечить достаточно сильное межэлектронное притяжение на узлах С₆₀ и СП, характеризующуюся $T_c \approx 19-48$ К [7-11]. Этому также способствует многодолинная структура зоны проводимости [16,17], увеличивающая ЭФВ на фактор, равный, по меньшей мере, числу эквивалентных долин [15].

3. В отличие от кубических кристаллов A_3C_{60} решетки пленок C_{60} /CHG₃ относятся к гексагональной сингонии [2]. В этом случае кристаллическое поле имеет одноосный характер [20], так что все электронные состояния фуллерена сохраняют проекцию L_Z орбитального момента **L** на ось C_6 решетки, разбиваясь на дублеты $\pm L_Z$ (кроме состояния с $L_Z = 0$).

Тогда гамильтониан фуллерена в кристаллическом поле фуллерита C_{60} /CHG₃, где роль лигандов для каждой молекулы играют окружающие ее одноименно заряженные те же молекулы C_{60} [21], может быть записан в виде

$$H_{\rm mol} = B_2^0 \sum_{\mathbf{n}} (L_{\mathbf{n}}^Z)^2 + B_4^0 \sum_{\mathbf{n}} (L_{\mathbf{n}}^Z)^4 , \qquad (2)$$

в котором B_n^m — параметры этого поля. Первым возбужденным состоянием каждой из молекул в кристалле является дублет $L_Z = \pm 1$, который начинает заполняться при концентрациях дырок $n_h \ge 2$ на одну молекулу. Переход в это состояние прямо связан с квадрупольным ВМК, вызываю-

^{*} Например, численные расчеты показали [18], что переход между упомянутыми выше квартетным и дублетным состояниями фуллерена C³₆₀ сопровождается его искажением с эллиптической дисторсией ≈ 9,2% и средней частотой w_{ph} ≈ 533 см⁻¹ квадрупольного ВМК симметрии H_g; переход между квартетом C³₆₀ и триплетами C²₆₀ либо C⁴₆₀ соответствует дисторсии ≈ 5,3% и средним частотам w_{ph} ≈ 556–559 см⁻¹; переход между квартетом C³₆₀ и синглетом C³₆₀ – 11,7% и w_{ph} ≈ 498 см⁻¹.

щим ромбическую ЯТ деформацию молекулы С₆₀ и снимающим вырождение дублета. Гамильтониан соответствующего ЭФВ может быть представлен выражением

$$H_{\rm el-ph} = B_2^2 \sum_{\mathbf{n}} \left[(L_{\mathbf{n}}^X)^2 - (L_{\mathbf{n}}^Y)^2 \right] Q_{\mathbf{n}}^{\rm rh} , \qquad (3)$$

в котором $Q_{\mathbf{n}}^{\mathrm{rh}}$ — нормальная координата ВМК симметрии D_{2h} . Принципиальным здесь является то, что аналогично ЭФВ (2) связь носителей с колебаниями также осуществляется на молекуле, т.е. носит одноузельный характер. Межмолекулярным (другими словами, межузельным) оказывается лишь оператор

$$H_{\rm tun} = \sum_{\mathbf{n}, \rho, \sigma} \sum_{\lambda_1, \lambda_2} t^{\lambda_1 \lambda_2} a^+_{\mathbf{n} \lambda_1 \sigma} a_{\mathbf{n} + \rho \lambda_2 \sigma} \qquad (4)$$

перескоков (туннелирования) фермионов между соседними, разделенными вектором р, молекулами C_{60} , находящимися в состояниях λ_1 и λ_2 , а $t^{\lambda_1\lambda_2}$ задает амплитуду таких прыжков.

Оператор кристалла, как нетрудно видеть, приводится к виду [22]

$$H = H_{\rm mol} + H_{\rm tun} + H_{\rm el-ph} ,$$

$$H_{\rm mol} = \sum_{\mathbf{n},\lambda} \varepsilon_{\lambda} a^{+}_{\mathbf{n}\lambda\sigma} a_{\mathbf{n}\lambda\sigma} + \sum_{\mathbf{n}} \omega_{\rm rh} b^{+}_{\mathbf{n}} b_{\mathbf{n}} , \quad (5)$$

$$H_{\rm el-ph} = \frac{1}{\sqrt{N}} \sum_{\mathbf{n},\mathbf{q},\sigma} \sum_{\lambda_{1},\lambda_{2}} \chi^{\lambda_{1}\lambda_{2}}_{\mathbf{n}}(\mathbf{q}) a^{+}_{\mathbf{n}\lambda_{1}\sigma} a_{\mathbf{n}\lambda_{2}\sigma} \phi_{\rm rh}(\mathbf{q}) ,$$

где $\mathbf{\epsilon}_{\lambda}$ — энергия молекулярных термов, $\chi_{\mathbf{n}}^{\lambda_1\lambda_2}(\mathbf{q})$ — константа ЭФВ с ЯТ модами, $\boldsymbol{\varphi}_{\mathrm{rh}}(\mathbf{q})$ — фурьеобраз оператора ромбического внутримолекулярного смещения терма, пропорционального $b_{\mathbf{n}}^{+} + b_{\mathbf{n}}$, а $b_{\mathbf{n}}^{+}$ и $b_{\mathbf{n}}$ — бозе-операторы рождения и уничтожения квантов ВМК.

Необходимо заметить, что $H_{\rm el-ph}$ в (5) формально совпадает с оператором ЭФВ в манганитах (см. [23]), где оно также имеет ЯТ природу, а основным его следствием служит поляронное сужение ширины зоны свободного движения носителей в недеформируемой решетке. Как известно [22], гамильтониан H с оператором ЭФВ $H_{\rm el-ph}$ вида (5) допускает диагонализацию с помощью унитарного преобразования ехр \hat{S} , в котором антиэрмитов оператор \hat{S} определяется из условия отсутствия в перестроенном гамильтониане \tilde{H} членов, линейных по бозе-операторам. Опуская стандартные выкладки (см. [22,23]), выпишем перенормированный гамильтониан фуллерита:

$$\widetilde{H} = \sum_{\mathbf{n},\lambda,\sigma} \varepsilon_{\lambda} a^{\dagger}_{\mathbf{n}\lambda\sigma} a_{\mathbf{n}\lambda\sigma} + \sum_{\mathbf{q}} \omega_{\mathrm{rh}}(\mathbf{q}) b^{\dagger}(\mathbf{q}) b(\mathbf{q}) +$$
$$+ \sum_{\mathbf{n},\rho,\sigma} \sum_{\lambda_{1},\lambda_{2}} \widetilde{t}^{\lambda_{1}\lambda_{2}} a^{\dagger}_{\mathbf{n}\lambda_{1}\sigma} a_{\mathbf{n}+\rho\lambda_{2}\sigma} -$$
$$- \frac{1}{2} \sum_{\mathbf{n},\mathbf{m}} V^{\lambda_{1}\lambda_{2}}_{\mathbf{n}\mathbf{m}} a^{\dagger}_{\mathbf{n}\lambda_{1}\uparrow} a_{\mathbf{n}\lambda_{1}\uparrow} a^{\dagger}_{\mathbf{m}\lambda_{2}\downarrow} a_{\mathbf{m}\lambda_{2}\downarrow} . \quad (6)$$

В этом выражении

$$\tilde{t}^{\lambda_1 \lambda_2} = t^{\lambda_1 \lambda_2} \exp\left(-\frac{1}{N} \sum_{\mathbf{q}} |\chi^{\lambda_1 \lambda_2}(\mathbf{q})|^2 / \omega_{\rm rh}^2(\mathbf{q})\right)$$
(7)

 перенормированная благодаря упомянутому эффекту поляронного сужения амплитуда перескоков дырок между молекулами, а

$$V_{\mathbf{nm}}^{\lambda_1 \lambda_2} = \frac{1}{N} \sum_{\mathbf{q}} \chi_{\mathbf{n}}^{\lambda_1 \lambda_2}(\mathbf{q}) \chi_{\mathbf{m}}^{\lambda_2 \lambda_1} / \omega_{\mathrm{rh}}(\mathbf{q})$$
(8)

— эффективное межфермионное притяжение, которое в пределе слабой дисперсии (либо бездисперсионности) оптических кристаллических мод, порожденных ВМК, оказывается практически локальным. В результате оно в отличие от, например, кинетических членов гамильтониана (6) не (или относительно слабо) зависит от межмолекулярного расстояния. Из (6)–(8) также следует, что наибольший вклад в значительное (экспоненциальное) уменьшение затравочной ширины ЗП (которая в данном случае есть не что иное, как ВЗ), а значит, рост ПС и увеличение тенденции к СП вносят мягкие «сдвиговые» моды $\omega_{rh}(\mathbf{q})$, отвечающие обычно низкочастотным ЯТ ВМК^{*}

Наконец, в гексагональных решетках фуллеритовых систем ЯТ ВМК должны проявляться при числе дырок $n_h > 2$ на молекулу. Именно с таких концентраций инжектированных носителей наблюдается крутой рост T_c как в чистых, так и интеркалированных пленках C_{60} [2]. С другой стороны, обнаружение СП в гексагональных

^{*} В этой связи уместно заметить, что частоты полносимметричных ВМК, как правило, гораздо выше, а следовательно, их роль в явлении СП в фуллерите должна быть, вообще говоря, менее актуальной.

пленках С₇₀ [14], где также возможен эффект ЯТ, служит еще одним аргументом в пользу справедливости «молекулярного» подхода к описанию свойств фуллеритов, предложенного в [15,21].

4. Высокой Т_с способствуют и другие эффекты. Один из них – неадиабатичность ЭФВ в узкозонном молекулярном металле, когда актуальные частоты ω_{rh} ВМК оказываются сравнимыми с $\mathbf{\epsilon}_F$, так что нарушаются критерии справедливости теоремы Мигдала [24] о малости поправок к нулевой фононной вершине $\Gamma_{\rm ph}^{(0)} = 1$. Применительно к A3C60 этот вопрос обсуждался в работе [25]; в ней учитывались поправки лишь 1-го порядка к нормальной и аномальной собственно-энергетическим частям, приводящие к перенормировке константы ЭФВ $\lambda_{\rm ph} \rightarrow \tilde{\lambda}_{\rm ph} = \lambda_{\rm ph}(1 + 2\lambda_{\rm ph}P)$, где $\lambda_{\rm ph}$ определена выше (п. 1), а Р – некоторая интегральная характеристика электронного и фононного спектров. В нашем случае $g_{\rm ph}^2 \sim |\chi_{\rm n}^{\lambda_1 \lambda_2}|^2 / \omega_{\rm rh} n_{\rm car} (n_{\rm car} - {\rm концент-}$ рация носителей (электронов, дырок) в ЗП либо ВЗ).

Однако приведенная перенормировка $\lambda_{\rm ph}$ не достаточна, если ЭФВ не мало. В общем случае необходим учет всех диаграмм, что приводит к умножению константы ЭФВ, определяющей T_c , на $\Gamma_{\rm ph}^2$ (причем $\Gamma_{\rm ph} > 1$) [26]; при этом $\tilde{\lambda}_{\rm ph} = \lambda_{\rm ph}(1 + \lambda_{\rm ph}P)^2$. В итоге, с учетом эффектов сильной связи [27] величина T_c может быть оценена по формуле [28]

$$T_{c} \approx \overline{\omega}_{\rm ph} \exp \left\{ -\frac{1 + \lambda_{\rm ph}}{\overline{\lambda}_{\rm ph} - \mu_{C}(1 + 0.5\lambda_{\rm ph})} \right\}, \quad (9)$$

где $\overline{\omega}_{\rm ph} \approx \omega_{\rm rh}$, а безразмерное экранированное кулоновское отталкивание $\mu_C = N(\epsilon_F)\overline{V}_C/[1 + 2N(\epsilon_F)\overline{v}_C]$ при $\widetilde{\omega}_{\rm ph} \sim \epsilon_F$ и не превышает своего предельного значения $\mu_C \approx 0,5$ при $N(\epsilon_F)\overline{V}_C >> 1$ (\overline{V}_C — матричный элемент кулоновского взаимодействия носителей).

Выражение (9) показывает, что рост ПС приводит к увеличению $\lambda_{\rm ph}$ и $\tilde{\lambda}_{\rm ph}$, причем квадратичное по $\lambda_{\rm ph}$ возрастание перенормированной константы ЭФВ $\tilde{\lambda}_{\rm ph}$ обгоняет увеличение кулоновского отталктвания $\mu_C(1 + \lambda_{\rm ph})$ и, соответственно, обеспечивает монотонное повышение T_c . В результате при $\lambda_{\rm ph} >> 1$ для (9) имеем $T_c \approx \omega_{\rm ph} \exp{(-\lambda_{\rm ph}/\tilde{\lambda}_{\rm ph})}$, так что при $P \approx 1$ получаем, что $T_c^{\rm max} \sim \overline{\omega}_{\rm ph} \approx \omega_{\rm rh}$. Это, в свою очередь, дает для критической температуры достаточно оптимистичную оценку $T_c^{\rm max} \approx 300-400$ К.

5. Таким образом, в молекулярных металлах типа C_{60} /CHG₃ с аномально узкими (вследствие фононной перенормировки) зонами и существен-

ными неадиабатическими эффектами «локального поля» при $\overline{\omega}_{\rm ph} \sim \varepsilon_F$ и $\lambda_{\rm ph} >> 1$ возможно достижение весьма высоких T_c СП перехода. Наблюдаемая при этом зависимость критической температуры от межмолекулярного расстояния прямо свидетельствует о локальном характере притяжения в этих соединениях, фактически подтверждая предложенный выше (а также в [15]) механизм спаривания. Колоколообразное в зависимости от n_h поведение T_c может быть обусловлено как эффектами заполнения расщепленного терма [21], так и, в принципе, ослаблением ЯТ эффекта по мере роста L_Z .

Работа В. М. Л. выполнена при частичной поддержке грантом Швейцарского научного фонда (SCOPES project 7UKPJ062150.00/1). За частичную финансовую поддержку работы Э. А. П. выражает благодарность Королевской Академии наук (Swedish KVA) и факультету прикладной физики Чалмерского технологического университета и Гетеборгского университета.

- 1. J. H. Schön, Ch. Kloc, and B. Batlogg, *Nature* **408**, 549 (2000).
- J. H. Schön, Ch. Kloc, and B. Batlogg, *Science* 293, 2432 (2001).
- 3. *Перспективные технологии*, С. Т. Корецкая (ред.), **8**, 1 (2001).
- M. A. Subramanian, S. S. Torrardi, J. C. Calabresc, et al., *Science* 239, 1015 (1988).
- Z. Z. Sheng and A. M. Hermann, *Nature* 332, 138 (1988).
- S. N. Putilin, E. V. Antropov, O. Chmaissem, and M. Marezio, *Nature* 362, 226 (1993).
- A. F. Hebard, M. I. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Palstra, A. P. Ramirez, and A. R. Kortan, *Nature* 350, 600 (1991).
- K. Tanigaki, T. W. Ebessen, S. Saito, J. Mizuki, J. S. Tsai, Y. Kubo, and S. Kuroshima, *Nature* 352, 222 (1991).
- M. J. Rosseinsky, A. P. Ramirez, S. H. Glarum, D. Murphy, R. C. Haddon, A. F. Hebard, T. T. M. Palstra, A. R. Kortan, S. M. Zahurat, and V. Makhija, *Phys. Rev. Lett.* 66, 2830 (1991).
- K. Holezer, O. Klein, S.-M. Huang, R. D. Kaner, K.-J. Fu, R. L. Wetten, and F. Diederich, *Science* 252, 1154 (1991).
- Z. Igbal, R. H. Baughman, B. I. Ramakrishna, S. Khare, N. S. Murphy, H. J. Bornemann, and D. E. Morris, *Science* 254, 826 (1991).
- 12. Дж. Шриффер, *Теория сверхпроводимости*, Мир, Москва (1971).
- A. A. Zakhidov, A. Ugawa, K. Imeda, K. Yakushi, and H. Inokuchi, *Solid State Commun.* 79, 939 (1991).

- J. G. Schön, Ch. Kloc, T. Siegrist, M. Steigerwald, C. Svensson, and D. Batlogg, *Nature* 413, 831 (2001).
- В. М. Локтев, Э. А. Пашицкий, Письма в ЖЭТФ 55, 465 (1992); ЖЭТФ 103, 594 (1993).
- Y. Huang, D. F. R. Gilson, and I. S. Butler, J. Phys. Chem. 95, 5723 (1991).
- S. Saito and A. Oshiyama, *Phys. Rev. Lett.* 66, 2637 (1991).
- W. H. Green, S. M. Forum. G. Fitzgerald, P. W. Fowler, A. Ceulemans, and B. C. Titeca, *J. Phys. Chem.* **100**, 14892 (1996).
- 19. А. П. Исакина, А. И. Прохватилов, М. А. Стржемечный, К. А. Яготинцев, *ФНТ* **27**, 1406 (2001).
- 20. С. А. Альтшулер, Б. Н. Козырев, Электронный парамагнитный резонанс, Наука, Москва (1972),
- 21. В. М. Локтев, ФНТ 27, 561 (2001).
- 22. А. С. Давыдов, *Теория экситонов*, Наука, Москва (1968).
- 23. В. М. Локтев, Ю. Г. Погорелов, *ФНТ* **26**, 271 (2000).
- 24. А. Б. Мигдал, ЖЭТФ **34**, 1438 (1998).
- 25. L. Pietronero, Europhys. Lett. 17, 365 (1992).
- 26. О. В. Долгов, Е. Г. Максимов, УФН **138**, 95 (1992).
- 27. Г. М. Элиашберг, ЖЭТФ 38, 966 (1960).
- 28. Проблемы высокотемпературной сверхпроводимости, В. Л. Гинзбург, Д. А. Киржниц (ред.), Наука, Москва (1977).

On the role of Jahn-Teller vibrations in the high-temperature mechanism of superconductivity of intercalated fullerite C₆₀ films with *p*-type conductivity

V. M. Loktev and E. A. Pashitskii

An attempt is made to explain the observed high superconducting transition temperatures of intercalated fullerite films. It is based on the fact that the charge C_{60} molecules in hexagonal lattices have degenerate electron terms which coupled strongly with Jahn-Teller intramolecular vibrations. Some other effects resulting in superconductivity strengthening in molecular metals are also discussed.