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This is a review of theoretical works on spin resonance in a quantum wire associated with the spin-orbit inter-
action. We demonstrate that the spin-orbit induced internal “magnetic field” leads to a narrow spin-flip reso-
nance at low temperatures in the absence of an applied magnetic field. An applied dc magnetic field perpendicu-
lar to and small compared with the spin-orbit field enhances the resonance absorption by several orders of 
magnitude. The component of applied field parallel to the spin-orbit field separates the resonance frequencies of 
right and left movers and enables a linearly polarized ac electric field to produce a dynamic magnetization as 
well as electric and spin currents. We start with a simple model of noninteracting electrons and then consider the 
interaction that is not weak in 1d electron system. We show that electron spin resonance in the spin-orbit field 
persists in the Luttinger liquid. The interaction produces an additional singularity (cusp) in the spin-flip channel 
associated with the plasma oscillation. As it was shown earlier by Starykh and his coworkers, the interacting 1d 
electron system in the external field with sufficiently large parallel component becomes unstable with respect to 
the appearance of a spin-density wave. This instability suppresses the spin resonance. The observation of the 
electron spin resonance in a thin wires requires low temperature and high intensity of electromagnetic field in the 
teraherz diapason. The experiment satisfying these two requirements is possible but rather difficult. An alternative 
approach that does not require strong ac field is to study two-time correlations of the total spin of the wire with an 
optical method developed by S.A. Crooker and coworkers. We developed theory of such correlations. We prove 
that the correlation of the total spin component parallel to the internal magnetic field is dominant in systems with the 
developed spin-density waves but it vanishes in Luttinger liquid. Thus, the measurement of spin correlations is a di-
agnostic tool to distinguish between the two states of electronic liquid in the quantum wire. 

PACS: 73.21.Hb Quantum wires; 
76.20.+q General theory of resonances and relaxations; 
71.70.Ej Spin-orbit coupling, Zeeman and Stark splitting, Jahn–Teller effect. 

Keywords: quantum wire, electron spin resonance, spin-orbit interaction, Luttinger liquid. 

1. Introduction

In my youth I had a happiness and privilege to be a stu-
dent with Professor Ilya Lifshitz, the great scientists and a 
brilliant personality. His influence on my life was rather 
deep, sometimes decisive. I am deeply obliged to our 
teachers and first of all to Ilya Mikhailovich who displayed 
fearlessness and uncompromiseness in all what concerned 
the science. 

In this article dedicated to his memory I present a re-
view on a topic associated with scientific interests of Ilya 
Mikhailovich: physical properties of extremely anisotropic 
materials, namely the so-called quantum wires (QW). 
Quantum wires are effectively one-dimensional systems 
that can be treated as waveguides for the de Broglie waves 
so narrow that only one mode propagates in it. It happens 

when the linear size of the wire cross section is about 1 nm. 
The QW can be created by special growth processes in 
which the wires appear suspended onto the relief of a sub-
strate. Alternatively a narrow conducting channel can be 
created in a semiconductor film by applying a proper con-
figuration of gate electrodes. In the beginning of the 21st 
century nanodevices have been engineered using the QW 
with predesigned properties [1–8]. These advances excited 
a new interest in comparatively weak electron interactions 
in nanowires, the most important weak spin-orbit interac-
tion (SOI). The SOI is especially important in a media with 
violated reflection symmetry where it produces the mo-
mentum-dependent effective field acting on the electron 
spin known as Dresselhaus interaction [9]. Another im-
portant manifestation of the SOI proposed by Rashba 
[10,11] appears in thin films and wires due to the contact 
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with the interface that violates the reflection symmetry and 
is referred as Rashba interaction. Together they give a 
combined SOI-induced effective “magnetic” field linearly 
dependent on the electron momentum. In a QW the direc-
tion of this field does not vary and corresponding compo-
nent of the total spin is conserved. In two and three dimen-
sions all three components of the total spin are not 
conserved. 

If the electron gas (liquid) is degenerate, low-energy 
electron-hole excitations play the dominant role in the pro-
cesses induced by low-frequency electromagnetic field. In 
this situation the value of the electron momentum p in the 
SOI can be replaced in 1d systems by the Fermi-
momentum Fp . Thus, the absolute value of the SOI field is 
determined in addition to its direction and it becomes a 
well-defined vector. The absolute value of the SOI field 
determines the resonance frequency of a new type of reso-
nance, electronic spin resonance on the SOI field. We will 
call it inner resonance. Sometimes it is called chiral reso-
nance. For two dimensions such a resonance was predicted 
by Shekhter et al. [12], but only in the case when 
Dresselhaus SOI is absent. This condition is not realistic. 
In the combined Dresselhaus–Rashba SOI the resonance 
frequency in two dimensions depends on momentum direc-
tion. It leads to the smearing of the inner resonance line. 
This smearing is absent in one-dimensional case. 

The resonance frequency can be regulated by an exter-
nal magnetic field B . Its component ||B  parallel to the SOI 
field creates difference between the resonance frequencies 
of the left and right movers and in this way the ac field 
induces direct electric and spin currents. The perpendicular 
component B⊥ induces the electric dipolar mechanism of 
the spin-flip transitions instead of magnetic dipole acting 
in its absence. Since electric dipole is much more efficient 
for resonance absorption than magnetic ones, the reso-
nance absorption grows very rapidly with B⊥. 

In Sec. 2 of this review we analyze the resonance phe-
nomena employing a simple model of the ideal gas with 
SOI for electrons [13]. In Sec. 3 we consider a more realis-
tic model of Luttinger liquid (LL) for electrons [14]. It is 
well known [15,16] that in 1d even a weak interaction de-
stroys Fermi excitations in a vicinity of the Fermi point. 
Instead the collective Bose excitations — the charge and 
spin waves — play role of low-energy carriers of charge 
and spin, respectively. The SOI resonance can be treated as 
the excitation of a spin wave with the wave vector equal to 
the difference of the Fermi momenta for electrons with the 
same direction of the velocity but opposite directions of their 
spins. A new phenomenon caused by interaction together 
with the SOI is the appearance of a weak coupling between 
charge and spin channels and as a result the appearance of a 
new singularity (cusp) in the spin-flip response. 

Usally experimenters observe the resonance attenuation 
of the electromagnetic wave. In the QW this experiment is 
difficult because it requires sufficiently low temperature to 

distinguish the split Fermi points and rather high power of 
the incident electromagnetic wave. The high power is nec-
essary to enhance a weak signal from a not very big num-
ber of carriers in the wire. In a semiconductor wire of the 
length 10 µm with the bulk density of carriers 1018 cm–3 
the number of electrons is about 1,000. The necessary power 
in the teraherz range is available only with free electron la-
sers. The necessary temperatures are in the He range. These 
rather exotic requirements can be avoided employing quite 
different experimental tool: the real-time measurement of 
the two-time correlators of the total electron spin of the wire 
proposed and realized by S.A. Crooker [17]. This method 
employs the Faraday rotation of the light polarization by 
magnetized sample. High sensitivity of this method allows 
to avoid large power of incident light beam. With this 
method it is possible to distinguish two competing states of 
the elctron liquid in the QW. One of these states is the LL. 
The second one was proposed by O.A. Starykh and his 
coworkers [18] is the static spin-density wave with the 
wave vector 2 Fp . They proved that it wins at sufficiently 
large ratio || /B B⊥ . We analyze the properties of the two-
time spin correlators in the Sec. 4 of our review. 

2. SOI spin resonance in ideal electron gas 

In this section we consider electron spin resonance (ESR) 
in nanowires with SOI. It is based on the article [13]. For 
ESR in metals or semiconductors an applied magnetic field 
B  splits the unique Fermi surface for both spin directions 
into two different Fermi surfaces for up and down spins, 
with the same Zeeman splitting for all electrons. An almost 
uniform applied ac field of frequency equal to the Zeeman 
energy then induces sharp transitions between states with the 
same momentum and opposite spin. 

Even a weak SOI changes this picture. It creates an in-
ternal “magnetic field” soB  that depends linearly on the 
electron momentum for both Rashba and Dresselhaus SOI 
[9–11]. Therefore, for large enough SOI the ESR is 
smeared out. As indicated by Shekhter et al. [12], for 2D 
systems with only a Rashba interaction, the smearing is 
comparatively small at temperatures well below the Fermi 
energy, leading to a narrow ESR — a “chiral resonance”. 
However, noted that simultaneous presence of both Rashba 
and Dresselhaus interactions smears out the resonance 
since the SOI resonance frequency rω  depends on the 2D 
momentum direction. 

This anisotropic broadening is completely absent for a 
QW (1D) as soB  has the same direction for all right-
moving particles and the opposite direction for the left-
movers. Since the Rashba–Dresselhaus SOI is much less 
than the Fermi energy, the spin-flip energy is well defined. 
Thus the ESR line is narrow at low temperatures. The spin-
flip resonance adsorption in the wire in the absence of an 
applied magnetic field B  is very weak since it is magnetic 
dipole induced. The main predictions of the theory of ESR 
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in free-electron systems with the SOI are: i) A component 
of B  perpendicular to soB  activates electric dipole spin-flip 
transitions and therefore strongly enhances the resonance 
effects. Typically a B  that is a tenth of soB  increases the 
resonance absorption by 4 orders of magnitude, while 
changing rω  by only 1%. ii) The component of B  parallel 
to soB  has little effect on the absorption, but it does sepa-
rate the resonances of the right and left movers. Linearly 
polarized resonance radiation then produces a net magneti-
zation and dc electric and spin currents. 

The SOI-induced dipole spin-flip excitation in 2D by an 
ac electric field E polarized in plane was considered in 
Ref. 12. Since, because of the SOI, spins in 2D are not 
collinear the excitation probability is almost independent 
of B . Rashba and Efros [19] considered a similar problem, 
but with an ac E polarized perpendicularly to the plane. To 
ensure a narrow resonance in this system, B  must signifi-
cantly exceed soB . The authors concluded that a tilted B  is 
necessary to activate the electric-field-spin interaction. Due 
to the very high symmetry of their system, their spin-flip 
probability is proportional to the 6th power of B  (instead 
of the square, as in the present case). The resulting proba-
bility is very small for realistic field values. 

In the following subsections we analyze the electronic 
spectrum and eigenstates with SOI included; the effective 
interaction of the electron spin with an ac electric field; the 
dynamic generation of steady-state currents and magneti-
zation and the relaxation processes. In conclusion some 
numerical estimates are made. 

2.1. Electronic spectrum and eigenstates 

Weak SOI effects are better seen if the Fermi energy is 
not too large in comparison with the SOI energy. There-
fore, it is reasonable to consider the SOI effects in semi-
conductors rather than in metals. Here we consider type 
III–V semiconductors and only their electron bands, to 
avoid complications associated with degeneracy of the hole 
band. In p-doped semiconductors, analogous effects of the 
same order of magnitude should occur for the light holes 
with = 3/2J  and = 1/2zJ ±  similar to the present case of 

= 1/2S , = 1/2zS ± . But in the case of heavy holes with 
= 3/2J  and = 3/2zJ ±  photons cannot cause transitions 

between the two states. The 1D electron density n is as-
sumed to be sufficiently large and the temperature suffi-
ciently low to ensure a degenerate Fermi gas. 

In 1D the most general form of the SO interaction, in-
cluding both Rashba and Dresselhaus terms, is 

= ( )so x yH pασ +βσ , where p is the 1D momentum along 
the wire direction x  [20], and σ are the Pauli spin matrices. 
The total Hamiltonian, without impurity scattering, also 
includes the kinetic energy 2 */2p m  and the Zeeman term 
−bσ , where = /2Bgµb B  has dimensionality of energy. Let 
us introduce a unit vector n in the direction ˆ ˆx yα +β  of soB  
and define the longitudinal and transverse components of 

magnetic field: ||= b ⊥+b n b . With 2 2γ ≡ α +β  the SO 
velocity, the total Hamiltonian then reads  

 ( )2 *
||= /2 .H p m p b ⊥+ γ − −nσ b σ  (1) 

Its eigenvalues are  

 ( ) 2 *, = / 2 ,E p p m qσ +σ  (2) 

where 2 2
||= ( )q p b ⊥γ − +b  and = 1σ ±  gives the projec-

tion of the electron spin along the total effective magnetic 
field e so≡ +B B B  and is the eigenvalue of the operator  

 ||

||
= .

p b

q p b
⊥

γ −  
Σ −  γ − 

bn σ  (3) 

For a nonzero transverse magnetic field ⊥b , the direction 
of spin quantization depends on momentum. Figure 1 gives 
the energy vs magnetic field for small magnetic fields 

2 */2Fp m<<b , with two slightly distorted Rashba parabo-
las shifted vertically in opposite directions and an avoided 
crossing. The parallel component of the magnetic field ||b  
causes the reflection asymmetry, whereas its perpendicular 
component ⊥b  causes the avoided crossing of energy lev-
els. The four Fermi momenta correspond to the left and 
right movers and the two values of σ . 

For a typical experimental setup the SO velocity 
*= /F Fp mγ << v . If Fp<< γb  then the four Fermi mo-

menta differ only slightly from the Fermi momentum in the 
absence of SOI and applied magnetic field = /2Fp n± ±π  
and are given by  

 
( )

2
||*

||
= ,

2F
F F F

b
p p m

p p p b
⊥

στ

 
 τ −σ γ − τ +
 γ − τ 

b  (4) 

Fig. 1. (Color online) Left part: Energy vs momentum according 
to Eq. (1). Shadowed regions of the spectrum are occupied. The 
spin-flip excitations of the occupied states by ac electric field are 
shown by long vertical arrows. Right part: Geometry and direc-
tions of the applied magnetic field B  and internal ||soB n. 
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where = 1τ ±  indicates right (R) and left (L) movers. In the 
ground-state electrons with spin projection σ  fill the mo-
mentum interval from pσ−  to pσ+ . 

All states in the interval ( , )p p−− ++  are doubly occu-
pied. The states in the intervals ( , )p p++ −+  and ( , )p p+− −−  
are singly occupied (Fig. 1). A net spin-flip is possible 
only in the singly occupied intervals and requires energy  

 ( )||= 2 | | .sfE p bγ −τ  (5) 

Thus, for || 0≠b , there are two different resonance fre-
quencies corresponding to the right and left movers = 1τ ± . 
For Fγ << v , the spin-flip energies are centered at 

0
||= 2( )sf FE p bγ − τ  and lie in narrow bands of intrinsic 

width ∆, where  

 ( ) 0 0*
||= 4 / = 2 / .F sf F sfm b p E E∆ γ γ − τ γ <<v  (6) 

Spin-flip processes can be excited by a resonant applied 
field with frequency 0= /r sfEω . The temperature must 
satisfy < /r BT kω  to avoid thermal smearing. 

2.2. Transition rate due to linearly polarized ac electric 
field 

Let an ac field be linearly polarized along x:  

 ( ) ( ) ( )0 00 0ˆ ˆ= e ei t i tE t xE t xE t− ω ω∗+  (7) 

and have spectral intensity ( )I ω  centered at 0ω  with extrin-
sic width 0∆ω << ω . The symbols 0 ( )E t  denote an enve-
lope with frequencies in the interval ∆ω . Averaged over a 
time interval t′ satisfying 12 / r t −′π ω << << ∆ω , the two-
time correlator of field can be represented by an integral: 

( ) ( ) ( )
0 0

1= e .
2

i t tE t E t I d
∞

′ω −∗
ω

−∞

′ ω
π ∫  

In the presence of electric and magnetic fields the momen-

tum p in the Hamiltonian (1) must be replaced by ep A
c

+ , 

where A  is the vector-potential. Thus, the SOI generates 
the spin dependence of the velocity:  

 
*

= =

ep Ac H ec
e A cm

+∂ γ
+ σ

∂
v . (8) 

Here we used the Weyl gauge where the electric potential 
= 0Φ , and thus  

 ( ) ( )( )0 00 0
0

= e e .i t i ticA E t E t− ω ω∗− −
ω

 (9) 

The interaction between the ac electric field and spin ap-
pears from the SOI term of the Hamiltonian. It reads 

 ( ) ( )( )0 0int 0 0
0

= e e .i t i tieH E t E t− ω ω∗γ
− −
ω

nσ  (10) 

For = 0⊥b , the interaction Hamiltonian is proportional to 
the same spin projection nσ  that enters Eq. (1), and there-
fore does not produce spin reversal. Then only magnetic 
dipole transitions can reverse the spin. Thus, there is no elec-
tric dipole contribution to the spin-flip transition in the ab-
sence of perpendicular component of the applied field ⊥b . 

This no-electric-dipole-spin-flip theorem was disputed 
by P. Upadhyaya et al. [21]. They noted that the SOI 
makes the magnetization and the internal “magnetic” field 
vary inside the wire in the direction perpendicular to its 
axis (x) and thus couple the electric field along y  to the 
spin. However, in the article [13] we have found that to 
first and the second order in the small SOI parameter / Fγ v  
the contribution of this variation to the electric dipole cou-
pling vanishes. The remaining, third order, coupling is 
comparable to or less than the magnetic dipole coupling 
and can be neglected. (See the details of our analysis in 
Appendix A.) This property is specific to 1D systems. In 
2D the direction of eB  changes along with the momentum 
direction. Thus almost any spin interacts with a linearly 
polarized electric field. 

In 1d the nonzero perpendicular component of the ap-
plied field 0⊥ ≠b  couples the electric field with the spin 
and induces spin reversals exceeding the magnetic dipole 
spin reversal at rather small values of b⊥. The matrix ele-

ment 0= 2 / sfE⊥+ −nσ b  of the operator nσ  produces 
spin reversal between the two eigenstates of the operator .Σ  
Time-dependent perturbation theory gives that the spin-flip 
transition rate for an electron with momentum p is 

2 2
0 2

(2 / )2 2 0
0

4= ( / )sf p
ew E I⊥ γ −ω
γ

ω
b





. 

On resonance, 2
04 /( )I Eω ≈ ∆ω , which implies that  

 ( )22 2 0 2
04 / / .sf Fw e E E p⊥≈ ∆ωb  (11) 

The ratio of the electric and magnetic transition rates is 
0 2( / )F sfc E⊥b v . For InGaAs the ratio / Fc v  is about 310 . 

Thus, for 1 010 sfb E−
⊥   the transition rate (11) exceeds the 

magnetic dipole induced rate by four orders, whereas the 
resonance frequency changes by only 1%. 

The perturbation theory used above is valid if the aver-
age excited electron occupation number exn  is small, i.e. 

eff 1wτ << , where effτ  is a characteristic lifetime. In the 
ballistic regime the time of flight = /f FLτ v  plays the role 
of effτ . However, in 1D if the back-scattering time bτ  is 
much less than fτ , then diffusion occurs, with lifetime 

2
eff = /f b fτ τ τ >> τ . Saturation occurs for all excitation 

processes subject to recombination at a rate 1
eff
−τ , eff 1wτ  , 

so the probability of excitation is effmin( , 1)wτ . For a nar-
row spectral width ∆ω , Rabi oscillations occur. The density 
of right-moving states subject to spin-resonant excitation is  

 = /4 .sr rn n∆ω ω  (12) 
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2.3. Dynamic generation of permanent currents 
and magnetization 

In the absence of applied longitudinal field the left 
movers with spin up and right movers with spin down have 
the same probability of spin-flip transition by ac field with 
the frequency close to the resonance. The resonance curves 
for both these groups of electrons are identical: they have 
rectangular shape with the width 28mα . The longitudinal 
field b⊥  shifts energy of the spins by ||b− σ . Thus, if 

2*
|| > 4b m γ , then the resonance lines for right and left 

movers do not overlap and can be excited separately. Thus 
a resonant linearly polarized ac field can produce a mag-
netization as well as steady-state electric and spin currents. 

Consider a linearly polarized ac field that causes spin 
flips of right movers, so = =ex R Rn n n↑ ↓δ −δ . For electrons  

 ex eff= min( ,1) ,srn w nτ  (13) 

with equal hole density. The spin per electron is ex= / .s n n  
For eff 1wτ ≥ , ex = srn n . Thus, in the ballistic regime 

 = ( ) =e R R R Rj e n n↑ ↑ ↓ ↓− δ + δv v   

 2
ex= 2 = /f Fen enw− γ − τ γ v . (14) 

Next we consider how diffusion affects the currents. 
For simplicity we neglect spin-flip back-scattering and 
energy relaxation, but retain backscattering by impurities. 
A set of kinetic equations for this simplified model reads  

 1 1 1
eff/ = ( ) ,e e e

sr b bR R Ldn dt wn n n− − −
↑ ↑ ↑

− τ + τ δ + τ δ  (15) 

 1 1 1
eff/ = ( ) .e e e

b bL L Rdn dt n n− − −
↑ ↑ ↑

− τ + τ δ + τ δ  (16) 

The ac field creates equal numbers of electrons and holes with 
parallel spins, and this property is maintained by the back-
scattering if spin-flip processes are negligible. The pumped 
spin is polarized approximately along / Fp⊥+ γn b . Its steady-
state absolute value per unit length is eff eff= 2 srs w nτ . The 
spin current sj  is eff eff= /(2 )s B F sr b bj g wnµ τ τ τ + τv . The 
electric current ej  is  

2
eff eff eff

2
eff eff

(4 )
= 2 .

2 (2 )
b b

e sr sr
b F b

b
j e wn ewn

p
⊥τ τ τ τ + τ

− γ +
τ + τ γ τ + τ

 (17) 

Equation (17) shows that the electric current changes sign 
in the diffusive regime at eff= /2F bb p⊥ γ τ τ . This hap-
pens because back-scattering equalizes the number of left 
and right moving excitations, whose velocities differ. For 
resonance of left movers, at frequency ||= 2( )/L

r Fp bω γ +  , 
the magnetization and currents are reversed. 

The generation of currents by an ac field is similar to 
the photogalvanic effect predicted by Ivchenko and Pikus 
[22] and by Belinicher [23]. More recently many clever 

modifications of this effect have been proposed and exper-
imentally observed (see review [24], and articles [25,26]). 
They are mostly realized in 2D systems, but more im-
portantly, unlike 1D, nonresonant optical or infrared radia-
tion is used. In most cases, dynamic magnetization and 
electric current generation require a circularly polarized 
pumping field, whereas for a quantum wire in ≠B 0 the 
same effect can be produced by a linearly polarized source. 
The 1D geometry implies a strong anisotropic dependence 
of the resonance line and transition probability on B . 

2.4. Relaxation processes 

At low temperature the main mechanism for electron 
energy relaxation is phonon emission. If the correspond-
ing relaxation time epτ  becomes comparable to or less 

than fτ , energy relaxation occurs before electrons and 
holes leave the wire. The total spin is not changed but the 
excitation velocities may decrease because lower energy 
means lower p and lower v. On the other hand, energy 
relaxation removes particles from the excited states and 
fills the depleted states. This makes an increase of power 
in the applied ac field more effective. The electron-
phonon interaction is modeled by a standard Hamiltonian 

†= ( ) ( ) ( )epH U ∇ ψ ψ∫ u x x x , where ( )u x  is the displace-

ment vector, ( )ψ x  is the electron field operator and U  is 
the deformation potential. Electrons in the wire are always 
1D, but phonons can be 1D, 2D, or 3D depending on the 
experimental setup. Let M  and a be the lattice cell mass 
and lattice constant, and let u  be the sound velocity. Then 
for an electron with momentum deviating by ξ  from the Fer-
mi point, and emitting 3D phonons, the relaxation rate is  

 
32

1 = .
6

F
ep

F

aU
Muv u

− ξ τ  π   

v
 (18) 

The detailed calculation can be found in the Appendix to 
the article [13]. 

Thus, even at such high density of energy, the dc elec-
tric current through the QW is rather weak and magnetiza-
tion per electron is small. Though the absolute value of the 
dc current is small, its density is large enough: 2,000 A/cm2 
for the current 1 nA. 

In 2D and 3D systems elastic scattering (diffusion) 
leads to spin relaxation by the Dyakonov–Perel mechanism 
[27,28] because the direction of soB  depends on the direc-
tion of the p and is randomized by diffusion. In 1D for 

= 0⊥b  the direction of soB  is the same for all electrons, so 
the Dyakonov–Perel mechanism does not apply. A sup-
pression of Dyakonov–Perel relaxation in 1D was found in 
numerical calculations [29]. However, for 0⊥ ≠b , spin flip 
does occur in back-scattering, but its probability is of the 
order of 0 2( / )sfE⊥b  and can be neglected. 

Other spin relaxation mechanisms, such as phonon 
emission combined with SOI, are much weaker. 
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2.5. Numerical estimates 

All numerical estimates are for In0.53Ga0.47As. We take 
29* = 4.3 10 g 0.05 em m−⋅ ≈ , 6=1.08 10α ⋅  cm/s, and = 0.5g −  

[30–32]. A typical 2D electron density is 122 10⋅  g⋅cm–2. 
Take wire thickness = 5a  nm and width =d  10 nm. Then 
we find 1D density 6= 10n  cm–1, 21= 1.65 10Fp −⋅  g⋅cm/s 

and 8= 0.38 10F ⋅v  cm/s. Assuming =α β, we have 
12= 4.8 10rω ⋅  s–1 (~ 0.8 THz) and intrinsic width 

11= / 3.8 10δ ∆ ≈ ⋅  s–1. The value 2
0E  in Eq. (11) is deter-

mined by the source power in the terahertz range. Alt-
hough standard cascade lasers have power in the range 
1 mW–1 W [33,34], the power can be strongly enhanced 
by non-linear devices, and in very short pulses (1 ps) it can 
reach 1 MW [35–38]. The free-electron laser at UCSB 
provides a continuous power of 1–6 kW for the frequency 
range 0.9–4.75 THz. On focusing, the energy flux rises 
to 40 kW/cm2 [38]. For the moderate flux = 1S  kW/cm2, 

we find 2
0 = 4 / = 4.19E S cπ  erg/cm3. For = 10B⊥  T we 

have 0/ = 0.05sfb E⊥ , and Eq. (11) yields 10= 0.92 10w ⋅  s–1. 
As noted above, w  can be increased by changing the 
power or the focus area. For length = 1 10L −  µm the 
time of flight is 12 11= 2.6 (10 –10 )f

− −τ ⋅  s. The back-

scattering time bτ  can be estimated from typical mobilities 
4 5*= / = 2 10 –4 10e mµ τ ⋅ ⋅  cm2/(V⋅s) in the bulk or film [39]. 

Since the scattering cross-section area is much less than the 
wire cross-section area, τ can be identified with .bτ  Typical 

values are 13 11= 5 10 –10b
− −τ ⋅  s. In this case the regime is 

either diffusive or marginally diffusive-ballistic. 
First consider a ballistic regime with 11= 1.1 10f

−τ ⋅  s. By 
Eq. (14) the electric current equals 1 nA. The ratio of spin 
current to the electric current in units of elementary charges 
per second is /(2 ) 12f γ ≈v . The magnetization per electron, 

in Bohr magnetons, is eff( / ) 0.004srn n wτ  . Now consider a 

diffusive regime with 12= 1.1 10b
−τ ⋅  s and 11= 1.1 10f

−τ ⋅  s, 

so 10
eff = 1.1 10−τ ⋅  s. By Eq. (17) the electric current is 

= = 0.12eI j  nA and the magnetization per electron is 
0.02 Bµ . The temperature must be maintained below 
2 / 35 KF Bp kγ ≈ . effwτ  in this case is approximately 1, indi-
cating that saturation has been attained. For energy relaxation 
we assume 3D phonons. For InGaAs we take U = 16 eV, 
u = 3.3⋅105 cm/s [40], a = 5 Å, 22=1.8 10M −⋅  g and *= mξ γ. 

Then by Eq. (8) 12= 1.4 10ep
−τ ⋅  s. With 2D and 1D phonons 

the formulae differ, but numerical estimates give the same 
order of magnitude. This result shows that, even in the ballis-
tic regime, epτ  is usually much shorter than fτ , so energy 
relaxation is substantial, which decreases the currents. 

3. SOI-induced resonance in Luttinger liquids 

In previous section we considered electron system in 
a QW as an ideal Fermi gas. However, in 1D systems 
the electron-electron interaction is known to be strong 

/ | ln( ) | /( )FV na naε  , where Fε  is the Fermi energy, n is 
the 1D electron density, 2 2= /( )a meκ  is the Bohr’s radius 
in the material, = 0.05 em m  is the effective electron mass, and 
κ  is the dielectric constant. For typical values n ~ 106 cm–1 
and 20κ   the ratio / 1FV ε  . Therefore, it is important to 
study the effect of interaction on electron spin resonance in 
a quantum wire with the SOI. In the present section we 
demonstrate that the resonance persists despite of disappear-
ance of fermionic excitations. The ESR in the Luttinger 
electron liquid is the excitation of a spin wave by external ac 
electromagnetic field. This resonance would have a simple 
Lorentzian shape in the absence of interaction. 

As we mentioned earlier, the fermionic excitation does 
not exist in the Luttinger liquid. They are replaced by 
bosonic excitations: charge and spin waves [15,16]. The 
standard Luttinger liquid (LL) theory neglects the SOI and 
deviation of the electronic spectrum near the Fermi points 
from the linear behavior. In this approximation the charge 
and spin degrees of freedom do not interact (this is the so-
called spin-charge separation). The SOI splits the Fermi 
points for different spin projections and makes possible the 
resonant spin-flip processes. It was shown that the inter-
play of magnetic field, SOI, and electron-electron interac-
tion leads to the formation of spin-density wave state when 
magnetic field is perpendicular to the effective SOI mag-
netic field [18]. In this section we assume that the magnetic 
field has nonzero component along the SOI field. Such a 
field terminates the spin-density wave instability and sim-
ultaneously separates the spin resonances for left and right 
movers (see the previous section). The Coulomb interac-
tion in the Luttinger liquid usually changes the shape of the 
spin resonance line from simple Lorentzian to a power-like 
one [15,16]. but it does not violate spin-charge separation. 
It is the SOI that violates spin-charge separation and thus 
enables the excitation of the charge waves at spin reversal. 
This process be experimentally observed as a weak reso-
nance (cusp) at a plasmon frequency instead of the spin-
wave frequency. In this section we show that both these 
effects really take place, though both are weak for not too 
strong electron-electron interaction. 

3.1. Model Hamiltonian 

To take in account simultaneously the Coulomb interac-
tion, SOI and external magnetic field, we use a model 
fermionic Hamiltonian:  

 = TL R ZH H H H+ + . (19) 

Here TLH  is the standard Tomonaga–Luttinger Hamiltoni-
an:  
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 † †
, ,, ,= ( )TL F x R x LR LH i dx σ σσ σ

σ
− ψ ∂ ψ −ψ ∂ ψ +∑∫v  

 
2

,
,

( )G dx xσ τ
σ τ

 + ρ ∑∫ . (20) 

The first term in the r.h.s. of this equation is the kinetic en-
ergy, the second term is the interaction between electrons. 
Approximation accepted in Eq. (20) neglects the quadratic 
correction to the kinetic energy of an electron near the Fermi 
point and replaces the long-range Coulomb interaction by a 
short-range interaction with G  being the interaction con-
stant. The summation index σ  corresponds to the spin of 
electrons, the index = ,L Rτ  corresponds to the left or right 
movers. The Hamiltonian TLH  is invariant with respect to 
the group of rotations SU(2) in the spin space. The spin-orbit 
(Rashba) Hamiltonian RH  reads as follows [10]:  

 †=R x zH p dxα ψ σ ψ∫ . (21) 

The Rashba SOI splits Fermi momenta of up and down 
spins so that four Fermi points , = Fp p mρ σ ρ −σα  appear, 
but it leaves Fermi velocities unchanged. The Rashba SOI 
constant α has dimensionality of velocity and we assume 

Fα << v ; zσ  is the Pauli matrix; Fp  is the Fermi momen-
tum at = 0α ; and , = 1ρ σ ±  correspond to right (left) 
movers and up (down) spin projections, respectively. 
Though for brevity we speak about Rashba interaction, 
the Hamiltonian RH  can include the Dresselhaus interac-
tion as well. The only modification that the reader should 
have in mind is that the direction ẑ  in the pure Rashba 
interaction is perpendicular to the wire, whereas in com-
bined Rashba–Dresselhaus interaction this direction is 
tilted to the wire at some fixed angle different from 90°. 
In the absence of external magnetic field the Fermi-mo-
menta splitting can be removed by a single-particle unitary 
transformation = exp ( / )zU i mx− σ α   which shifts the mo-
menta by m±α . After this transformation the electronic 
spectrum becomes the same as without the SOI and the 

(2)SU  symmetry is restored. 
An external permanent magnetic field breaks this sym-

metry. It leads to additional splitting of the Fermi points 
and to a difference in Fermi velocities for up and down 
spins, which cannot be compensated by this unitary trans-
formation. We consider in this article only the magnetic 
field, B⊥, perpendicular to the Rashba field (along z  axis) 
and apply it for definiteness along x  axis. The longitudinal 
field ||B  destroys spin-density wave when its magnitude (in 
energy units) is much larger than the width of the spin res-
onance 24mα  [18]. The latter value is much smaller than 
the resonance frequency 2 Fpα . Therefore, it is possible to 
destroy SDW and still have resonance frequency very 
close to 2 Fpα , i.e., to neglect ||B  in all following equa-
tions. Thus, the Zeeman Hamiltonian reads 

 †

, ,
= ( ) ,

2
B

Z x
g BH dx⊥

′ ′ρσ σσ ρσ
′ρ σ σ

µ
− ψ σ ψ∑ ∫  (22) 

Further we consider the effect of the SU(2) violation by 
external magnetic field employing perturbation theory. 
Therefore it is convenient to divide the total Hamiltonian 
(19) into the SU(2)-invariant part 0 = TL RH H H+  and the 
perturbation. Moroz et al. [41,42] have shown that a veloc-
ity difference , , , ,= =R R L L↑ ↓ ↓ ↑δ − −v v v v v  appears also 
due to the Rashba SOI in the wires of finite width. The 
curvature of the bands near Fermi level [43–48] can also 
be effectively taken into account by the nonzero velocity 
difference δv  on the upper and lower branches of the ener-
gy spectrum. The later effect has a relative value of at most 

/ Fα v . Figure 2 schematically shows the electron energy 
as a function of momentum in the presence of the trans-
verse magnetic field. 

We assume that the magnetic field is weak, 
B Fg B p⊥µ << α , and further consider it perturbatively. The 

residual symmetry in the perpendicular field is the combined 
reflection , ,p pσ→ − −σ. It ensures that the right movers 
with the spin projection σ  along z  axis have the same veloci-
ty as the left movers with the same energy and the opposite 
spin projection , ,=R Lσ −σv v , but , ,R Rσ −σ≠v v . 

3.2. Resonant absorption at spin-flip in the LL 

To calculate the resonant absorption at SOI reso-
nance in the LL we start with the Hamiltonian emH  of 
the interaction between the ac electromagnetic field and 
electrons. It can be found in many different textbooks, 
for example [50]:  

 1= ,em xH jA dx
c

− ∫  (23) 

where † ˆ= ( ) ( )j e x v xψ ψ  is the current, ˆ ˆ= / zp m +ασv  is 
the velocity operator, and xA  denotes the x  component of 
the vector potential of the ac field. As in the Sec. 2 we em-

Fig. 2. (Color online) The up-spin and down-spin branches of the 
electron spectrum with nonzero Rashba spin-orbit interaction α  
and magnetic field B⊥ . 
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ploy the Coulomb gauge, = 0A  and put the scalar poten-
tial zero. In this gauge the electric field is = (1/ ) /c t− ∂ ∂E A . 
The part of the electric current responsible for the spin-flip 
processes is  

 †( ) = ( ) ( ).s zj x e x xαψ σ ψ  (24) 

The absorption power of electromagnetic field is deter-
mined by the real part of the conductivity ωσ  at the fre-
quency ω of the field multiplied by the square of the field's 
amplitude 2| ( ) |xE ω . We employ the Kubo formula for the 
conductivity:  

 ( )

0 0

1= ( )e
l l

i t tdx dx dt t t
l

∞
′ω −

ω
−∞

′ ′ ′σ − θ − ×
ω ∫ ∫ ∫


 

 [ ]( , ), ( , ) ,s sj x t j x t′ ′×〈 〉  (25) 

where l  is the length of the wire. According to Eq. (24), 
( )sj x  is proportional to the density of z  component of the 

spin. Therefore, the spin-flip conductivity (25) can be rep-
resented as  

 [ ]
2

( )4( )= ( ), ( ) e ,
t

i t t
z z

e S t S t dt
l

′ω −
ω

−∞

α ′ ′σ − 〈 〉
ω ∫


 (26) 

where ( )zS t  is the operator of the total spin projection at 
the moment of time t . In the absence of magnetic field B⊥ 
the z  component of the total spin is conserved. Therefore, 
[ ( ), ( )] = 0z zS t S t′  and the conductivity associated with the 
spin flip is zero. The violation of this conservation law at 
small B⊥ in the first-order approximation of the time-
dependent perturbation theory leads to  

 [ ]( ) = ( ), ( ) ,
t

z I z
iS t V t S t dt
−∞

′ ′ ′δ − ∫


 (27) 

where 1
0 0( ) = ( )( ) ( )I B xV t U t g B S U t−

⊥− µ  with 0 ( ) =U t  

0= exp ( / )iH t−  being the evolution operator in the ab-
sence of magnetic field, and xS  is the projection of the total 
spin on the x  axis. It is convenient to write the Rashba 
Hamiltonian as a sum over electrons: ,=R i z iiH pα σ∑ . 

The kinetic and interaction energies commute with xS , and 
therefore the perturbation operator ( )IV t  becomes  

 ( ), ,( ) = cos sin ,
2
B

I x i i y i i
i

g BV t t t⊥µ
− σ ω +σ ω∑  

where = 2 /i ipω α  . Substituting this expression into 
Eq. (27), we obtain  

 ( ), ,
1= e e ,

2
i t i tB i iz i i

ii

g BS
p

− ω ω⊥
+ −

µ
δ σ + σ

α ∑  (28) 

where = x yi±σ σ ± σ . Condition Fα << v  makes it possible 
to replace the factor 1/ ip  in Eq. (28) by 1/ Fp± . Then the 
expression for zSδ  becomes proportional to the sum of the 

operators , ,( ) = exp( )i it i t± ±σ σ ω . In terms of secondary 
quantized operators it reads (we keep here only right movers): 

 †
,,( ) = ( , ) ( , ) h.c. 

2
B

z RR
F

g BS t x t x t dx
p

⊥
↓↑

µ
δ ψ ψ +

α ∫  (29) 

The unitary transformation = exp ( / )zU i mx− σ α   that puts 
the split Fermi points together, modifies this equation by 
multiplying the integrand by factor exp ( 2 / )i mx− α  . As a 
result, we find for the conductivity (25) associated with the 
spin flip [51],  

 
2

( )
2

0 0

( )
= ( )e

l l
i t tB

F

eg B dx dx dt t t
lp

∞
′ω −⊥

ω
−∞

µ ′ ′ ′σ − θ − ×
ω ∫ ∫ ∫


 

 † †
, ,, ,[ ( , ) ( , ), ( , ) ( , )]R RR Rx t x t x t x t↓ ↑↑ ↓

′ ′ ′ ′×〈 ψ ψ ψ ψ 〉× 

 2 ( )/e .i m x x′− α −×   (30) 

This expression for spin-flip conductivity is the basic for 
the following calculation. It is convenient since the aver-
age of four fermions in it must be calculated for the Ham-
iltonian 0H . A little its modification taking in account a 
weak violation of SU(2) symmetry by the SOI will be 
discussed later. 

3.3. Bosonization 

The particles propagating in a narrow channel in one di-
rection with the same or close velocities interact a long 
time. Therefore, the interaction is not weak for fermions, 
whereas their collective excitations do not interact. The 
transformation from fermion to boson operators in 1d 
called bosonization was proposed in 1975 independently 
by elementary particle physicists S. Coleman and S. Man-
delstam and by condensed matter theorists A. Luther and 
D. Mattis. It was repeatedly presented in numerous books 
and reviews. The standard and most informative references 
are already cited books [15,16]. The standard expression of 
fermionic operators in terms of bosonic operators reads 

[ ( ) ( ) ( ) ( )]/ 2
, ,

0

e= e ,
2

i k xF i x x x xc c s sU
a

ρ
− ρϕ −θ +ρσϕ −σθ

ρ σ ρ σψ
π

 

  (31) 

where ,Uρ σ are the Klein factors which ensure the proper 
anticommutation relations between the fermion, and 0a  is 
the ultraviolet cutoff length. The secondary quantized 
fermionic wave functions σψ  can be represented by the 
linear combinations of right-moving and left-moving fer-
mions ,ρ σψ  with the momenta being close to Fk± , i.e., 

, ,= R Lσ σ σψ ψ +ψ . The advantage of this model is that the 
interaction energy becomes quadratic in the charge and 
spin density bosonic operators. The density of fermions 
becomes linear in bosonic fields ,c sϕ ,  
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 , ,
2( ) = ( ).c s x c sx xρ − ∂ ϕ
π

 (32) 

As we have seen already, the SOI leaves the velocities at 
four Fermi points equal in linear approximation, but the 
quadratic corrections make velocities of inner Fermi points 
different from the velocities of outer ones. After the canon-
ical transformation inner and outer Fermi points merge, 
however the velocities all are different. Let they are 1v  and 

2v . Then the kinetic energy should be modified in compar-
ison to that in Eq. (20):  

 † †
kin 1 , ,, ,= ( )x xR LR LH i dx ↑ ↓↑ ↓

− ψ ∂ ψ −ψ ∂ ψ −∫v   

 † †
2 , ,, ,( ).x xR LR Li dx ↓ ↑↓ ↑

− ψ ∂ ψ −ψ ∂ ψ∫v  (33) 

This simple modification of the Luttinger Hamiltonian was 
proposed by Moroz et al. [41,42]. A difference of veloci-
ties 1 2=δ −v v v  appears not only due to quadratic part of 
dispersion, but also due to the SOI effect in a wire of finite 
thickness [14,41,42]. After bosonization the total Hamilto-
nian with kinetic energy given by Eq. (33) takes the form  

 ( ) ( ) ( )2 2 2=
2

c
c c x c x c s s x s

c

dxH K K
K


∂ θ + ∂ ϕ + ∂ θ +π 

∫
v

v v  

 ( ) ( )2s
x s x c x s x s x c

sK


+ ∂ ϕ + δ ∂ ϕ ∂ θ + ∂ ϕ ∂ θ 


v
v , (34) 

where cv  ( sv ) is the velocity of plasmons (spinons). We 
have omitted the term cos[2 2 ( )] /(2 )s x dxϕ π∫  as being 
irrelevant in the renormalization group procedure for the 
repulsive interactions ( < 1cK ) [42]. The reader is advised 
to find the derivation of the main part of the Hamiltonian 
(34) in the cited books on bosonization. The correction 
proportional to δv  directly follows from bosonization 
transformation Eq. (31). 

3.4. Spin resonance as spin-wave excitation 

The bosonization allows us to consider the SOI reso-
nance as the spin-wave excitation. To find the conductivity 
(30) we need to calculate the retarded correlation function 

, ( , ) =RI x t
↑↓ ↓↑

 

† †
, ,, ,= ( ) [ ( , ) ( , ), (0,0) (0,0)]R RR Ri t x t x t↓ ↑↑ ↓

− θ 〈 ψ ψ ψ ψ 〉  

in the ground state of the Hamiltonian (34) with fermionic 
operators ρσψ  given by Eq. (31). Since the perturbation 
theory is developed for time-ordered averages in the imag-
inary time = itτ −  [52], it is necessary to express ( , )RI x t  
in the Kubo formula (30) to the time-ordered product  

† †
, ( , ) = ( , ) ( , ) (0,0) (0,0) .T

R RR RI x T x xτ ↓ ↑↑↓ ↓↑ ↑ ↓
τ −〈 ψ τ ψ τ ψ ψ 〉  

Applying the Wick theorem, we obtain in terms of bosonic 
operators:  

 
( , )

2,
0

e( , ) ,
(2 )

g x
TI x

a

τ

↑↓ ↓↑
τ ∝ −

π
  

 ( )

,
( , ) = [1 e ] ( , ) ( , ) ,i qx

q
g x Y q Y qωτ−

ω
τ − ω − −ω∑  (35) 

where we introduced †( , )
0e /(2 ) = ( , ) ( , )Y x

RRa x xτ
↓↑

π ψ τ ψ τ  

so that ( , ) = 2[ ( , ) ( , )]s sY x i x xτ ϕ τ − θ τ  and > 0τ . After 

obtaining 
, ( , )TI x

↑↓ ↓↑
τ , it can be converted into retarded 

correlator using *
, , ,( ) = ( )[ ( ) ( ( )) ]R T TI t i t I t I t

↑↓ ↓↑ ↑↓ ↓↑ ↓↑ ↑↓
θ − −

[15]. Using standard techniques one can calculate the 
time-ordered fermionic correlation function in real time, 
see the Appendix B for the details of calculation of 
time-ordered fermionic correlation function in real time. 
It can be converted into retarded correlation function as 

, ,( ) = 2 ( )Im ( )R TI t t I t
↑↓ ↓↑ ↑↓ ↓↑

− θ , as shown in the Appendix C, 

and using Eq. (30) we obtain  

 ( )

0
= e [ ( ) ( )] ,i t qxdx K t i K t i dt

∞ ∞
ω −

ω
−∞

σ + δ − − δ∫ ∫  (36) 

 1( ) = ,
( ) ( ) ( )c c s

K t
x t x t x tλ µ ν− + −v v v

 (37) 

where the constant  

 
( )2 2

0
2 3= .

2
B

F

eg B a

p

λ+µ+ν−
⊥µ

π α
  (38) 

We recall that the wave vector q in the above integral is 
equal to 2 /mα  , cf. Eq. (30). The exact numerical factor 
  is obtained here from the comparison with the non-
interacting result of Ref. 13. The integrand in the integral 
over x  has two singularities in the lower half-plane, at 

= sx tv  and = cx tv . The expressions for the exponents 
,λ µ , and ν are as follows [53]: 

 ( ) ( )
( )

2
2

2
1

= ,
8

c

c c s

K

K

+
λ δ

−
v

v v
 (39) 

 ( ) ( )
( )

2
2

2
1

= ,
8

c

c c s

K

K

−
µ δ

+
v

v v
 (40) 

 ( )
( )

( )

2 2 2
2

22 2

1
= 2 .

2

c c c c s c s

c c s

K K K

K

+ + +
ν − δ

−

v v v v
v

v v
 (41) 

To approximate ωσ  close to the spin resonance at frequen-
cy res = = 2 /s sq mω α v v , we take res res| |γ ≤ ω−ω << ω  
with γ  being the width of the resonance which we assume 
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to be small. In the limit res( ) /( ) 1c s s− ω γ >>v v v , it is cal-
culated in the Appendix D and given by 

 
1

Re
( ) ( ) ( )c s c s

qν−
ω λ µ

σ ×
− + Γ ν


v v v v

  

 
12 2 2res

.

( )
λ+µ

−

γ
×

 ω−ω + γ 

 (42) 

Physically Eq. (42) indicates that the chosen momentum of 
the spin wave excited by the electromagnetic field, 2 / ,mα   
is associated with the spin-dependent translation in the 
momentum space needed to put together two SOI-split 
parabolas, see Fig. 2. This momentum defines the frequen-
cy of the excited spin wave. In the absence of SOI this 
momentum is zero and there is no ESR. 

To evaluate ωσ  close to the other singularity, 
= 2 /cmω α v , we use a similar approximation and obtain  

 
( )

12Re
2 ( ) (2 )c c s

qλ−
ω µ ν

πλ
σ ×

− −µ −ν


v v v
  

 
12 2 2

.

( )cq
µ+ν

−

γ
×

 ω− + γ v

 (43) 

The plasmon singularity has a character of a weak cusp 
that can be detected only at nonzero interaction. Physically 
Eq. (43) indicates that the spin-charge coupling in the 
presence of SOI is responsible for this cusp. Experimental-
ly, even at weak interactions, the plasmon cusp can be re-
solved if the maximal derivative of Eq. (43) with respect to 
frequency is larger than the derivative of Eq. (42) at the 
same frequency. This condition is satisfied near the plas-
mon cusp if 2

res( ) ( )/ < 1cqδ −ω γv v . 
Equations (42) and (43) are obtained under the assump-

tion of well separated spinon and plasmon peaks, 
( )c s q− >> γv v  [54]. In the opposite case corresponding to 
the limit of noninteracting fermions, the peaks at res=ω ω  
and = cqω v  merge. According to Eq. (36), the combined 
power of the merged peaks is 

2 2 2= 2 ( ) (1 ) /[8 ( ) ]c c c sK Kλ + ν + δ − +v v v . 

In the limit of noninteracting fermions c s→v v  and 
1cK → , so that the power becomes 2 which corresponds 

to the Lorentzian shape of the spin resonance. For small 
interaction 0g  between fermions, 01 /cK g− π , = ,s Fv v  
and 0(1 / )c F g+ πv v , so that the power deviates from 2 

by 2 2
0( ) gδ v . Therefore, in the framework of perturba-

tion theory the shape of the resonance line near resω  
deviates slightly from Lorentzian. However, generally 

2
0 = ( / ) | ln |Fg e qaκv  can be of the order of 1. For repul-

sive interactions 0 < < 1cK  and for strong fermionic inter-

action 0cK → . In this case the results (42) and (43) show 
that the shape of the absorption line may deviate signifi-
cantly from Lorentzian at sufficiently strong interaction. 

4. Spin fluctuations in a QW 

In previous sections it was shown that the SOI reso-
nance shoud exist at low enough temperature. However its 
observation by the measurement of the ac electromgnetic 
field adsorption is difficult since the signal is too weak to 
be resolved unless the sourse has the highest power 
achievable with modern technique. In addition the sample 
must be maintained at helium temperature. Therefore we 
propose instead to measure the total spin fluctuation in real 
time employing the experimental technique developed by 
S.A. Crooker and his team at LANL [17]. In their method 
the fluctuating spin produces the rotation of the polariza-
tion of light. The measurement of the polarization angle are 
rather sensitive. Therefore, the instant value of spin can be 
measured with high precision. In this method there is no 
need in the powerful incident electromagnetic wave. Instead 
a weak polarization rotation gives necessary information. In 
the original experiments they studied fluctuations of the spin 
in a quantum dot. The number of electrons in such a dot is 
comparable with that in the quantum wire. So far the time 
resolution was in the range about 0.1 ns that corresponds to 
the frequency 10 GHz. An experimental group in Germany 
has developed ultrafast spin spectroscopy and achieved fre-
quency resolution up to hundreds GHz [56]. The SOI reso-
nance will give a singularity in the spin fluctuation correlator 
in this range of frequency. 

But the measurement of the spin correlator of the QW 
in this range of frequency at helium temperature can give 
also another very interesting information on the state of 
electron system. As we mentioned earlier, Starykh and 
coworkers [18] have found theoretically that at large enough 
external magnetic field perpendicular to internal one the QW 
develops a static spin-density wave (SDW) structure with 
the wave vector 2 Fk , an inhomogeneous state with physical 
properties rather different from those of the LL. So far this 
prediction was not checked experimentally. 

In the bulk static magnetic structures with zero total spin 
can be found by applying slow neutron diffraction. In the QW 
the neutron scattering is too weak and the neutron diffraction 
cannot be applied. But spin correlation method is ideal to dis-
tinguish two alternative states of the QW: LL and SDW. 

In this section we calculate spin correlators in the 1D 
interacting electron system with the SOI for both the ordi-
nary LL and the SDW states. 

4.1. Model 

We use the same model of the LL with the SOI of the 
Rashba–Dresselhaus type as in previous section. However, 
some limitation will be imposed on the parameters. Be-
sides of that in this section we study the action of external 
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magnetic field that has both parallel and perpendicular 
components. Therefore we start this subsection again with 
the definition of the model and its Hamiltonian. 

We assume zero temperature and the length l  of the QW 
to be much larger than any other scale of length. We remind 
that the most general SOI Hamiltonian has the form 

 ˆ= ( )SOIH n pα ⋅σ . (44) 

The SOI coupling constant α has dimensionality of veloci-
ty. We assume it to be small: Fα << v . Further in this sec-
tion we put = 1  and apply everywhere wave vector k  
instead of momentum p. We denote the direction of inter-
nal field as z  axis in the spin space and assume that the 
external field lies in the x z−  plane. Then the total Hamil-
tonian of electrons reads 

 
2

|| , , int= [ ( ) ] ,
2

i
i i z i x

i

k
H k b b H

m ⊥+ α − σ − σ +∑  (45) 

where i  labels electrons; intH  denotes the Hamiltonian of 
the electron-electron interaction and = Bb g Bµ . We as-
sume external field to be weak: Fb k<< α . 

The time-ordered spin correlators are defined as 

 | | | |( ) = ( ) (0) = e e ,T iH t iH t
aa t a a a aS t T S t S S S−〈 〉 〈 〉  (46) 

where ( )aS t  is the total spin projection operator along di-
rection = , ,a x y z , and 〈〉  denotes the average over the 
ground state. The retarded correlators can be obtained from 
the time-ordered ones as ( ) = 2 ( )Im ( )R T

aa aaS t t S t− θ  [15], 
where ( )tθ  is the Heaviside step function. 

In the absence of the SOI interaction the Hamiltonian of 
interacting electron system is invariant with respect to the 
group SU(2) of rotations in the spin space. In the presence of 
the SOI interaction (finite value of α) and/or finite parallel 
field ||b  the symmetry is reduced to the group (1)U  of rota-
tions around direction of the internal field. In the presence of 
perpendicular field b⊥ the U(1) symmetry is also broken. 

4.2. Ideal 1d Fermi gas 

Before calculating the spin correlators of interacting 
electrons, it is instructive to solve the same problem for the 
ideal 1D Fermi gas. In the presence of the SOI and the ex-
ternal magnetic field, the spectrum consists of a pair of 
asymmetric parabola with avoided crossing as shown in 
Fig. 3. If Fb k<< α  and Fα << v , the four Fermi momenta 
are approximately 

2
||

||
=

2 ( )F
F F F

b bk k m
k k k b

⊥
στ

 
τ −σ α − τ + 

α − τ  
, 

where =σ ± denotes the spin-up/down bands and =τ ±  
denotes right/left movers. At = 0T  spin correlators can be 
obtained directly by calculating the ground state average. 
The results at = 0b  read 

 
22( ) = ( ) = ( ) sin(2 )sin(2 ),

( ) = 0,

R R
xx yy F

R
zz

lS t S t t k t m t
t

S t

θ α α
πα  (47) 

where l  is the wire’s length, and spins are in units /2 1/2.≡  
The Fourier transforms are 

 
2 2

2 2
( ) [2 ( )]

( ) = ( ) = log ,
2 ( ) [2 ( )]

R R F
xx yy

F

i k mlS S
i k m

ω+ δ − α + α
ω ω

πα ω+ δ − α − α
  

 ( ) = 0,R
zzS ω  (48) 

where = 0+δ . The x  and y  components are equal and the 
z  component vanishes, respecting the (1)U  symmetry. The 
imaginary part of ( )R

xxS ω  has a narrow peak around 
= 2 Fkω α  of the width 24mα . In the resonance interval of 

frequency 2 ( ) < | | < 2 ( )F Fk m k mα − α ω α + α , the absorp-
tion intensity Im R

xxS  is constant, as is seen in Fig. 3. Disor-
der can change this exotic shape of line. 

4.3. Interacting electrons and bosonization 

For interacting electrons we apply the LL theory de-
scribed in the previous section. As it was discussed earlier, 
in 1D the interaction between fermions near Fermi points 
is always strong enough to make the collective Bose exci-
tations almost independent instead of fermionic excitations 
in the Landau–Fermi liquid. Before translation to the 
bosonic language (bosonization), the original quadratic 
spectrum of fermions is linearized around the Fermi points, 
and the infinite sea of negative energy levels is filled. The 
extension of the fermion spectrum to −∞  contrasts with the 

Fig. 3. (Color online). Total spin correlators for ideal 1D Fermi 
gas (Eq. (48)). ( )R

xxS ω , both its real (blue) and imaginary (red) 
parts, are shown in unit /(2 )l πα  as functions of /(2 )Fkω α  at 

/ = 0.2Fm kα . Note that ( ) = ( )R R
yy xxS Sω ω , and ( )R

zzS ω  vanishes. 
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initial spectrum of fermions limited from below. It does not 
lead to mistakes in physical results if the substantial range of 
momenta is close to the Fermi points. However in some prob-
lems a broader range of momentum is important. Namely this 
happens in the case of the total spin correlators as it will be 
shown in this subsection. In this situation the LL theory can 
be used only together with a proper cut-off of negative mo-
menta. In this section we introduce an extension of the LL 
model to take in account more explicitly the interaction of 
electrons at opposite Fermi points. Thus, the interaction Ham-
iltonian in the model has the following form:  

 ††
int

,

1= ( ) ( ) ( ) ( ) ( ).
2

H dxdx U x x x x x x′σ σ σ′σ
′σ σ

′ ′ ′ ′− Ψ Ψ Ψ Ψ∑∫   

  (49) 

The interaction potential ( )U x x′−  will not be specified 
apart of its repulsive short-ranged character. The Fermi-
field operator is the sum of the fields related to right and 
left movers:  

 ,
,

= 1
( , ) = ( , )e ,

ik x
x t x t σ τ

σ σ τ
τ ±

Ψ Φ∑  (50) 

where ,kσ τ are the four Fermi points for electrons with the 
spin projection σ , whereas = 1τ ±  label right and left mov-
ers. After the bosonization described in some details in the 
Appendix E, the resulting Hamiltonian is expressed in 
terms of the charge fields cϕ  and cθ  and spin fields sϕ  and 

sθ . It differs from the Hamiltonian (34) of the Sec. 3 by the 
important term CH  responsible for the formation of the 
SDW (it was omitted in Sec. 3 since it is irrelevant in the 
LL state):  

 ||
2
0

4
= cos 8

2( )
C

C s
F

bg
H x dx

a

 
πϕ − 

π  
∫ v

. (51) 

The connection between the Luttinger constants cK , sK  
and Fourier components ( )U q  of the interaction potential 
are [15,16] 

 { } 1/2
= 1 2 (0) (2 ) / ( ) ,c F FK U U k

−
 + − π 
  v  (52) 

 { } 1/2
= 1 (2 /( ) .s F FK U k

−
− π v

 (53) 

The velocities of the charge and spin waves are 
= /c F cKv v  and = /s F sKv v , respectively. We neglected a 

correction || / F fb kα <<v  in the argument of U  and ig-
nored a term mixing charge and spin fields that has the 
relative order of magnitude / 1Fα << v . The charge and 
spin degrees of freedom in this Hamiltonian are separated. 
The charge Hamiltonian is quadratic, but the spin Hamilto-
nian contains a cosine backscattering term CH . If the latter 
can be neglected, the remaining quadratic Hamiltonian sH  
describes the ordinary LL state. When CH  dominates, the 
field sϕ  becomes pinned to one of the minima of cosine, 
resulting in ordering in the spin sector of the SDW state. 

4.4. SDW in weak magnetic field 

Starykh et al. [18] proved that static SDW appears 
when the external field is directed perpendicular to the 
internal one and strongly exceeds it. We consider a more 
realistic limit Fb k<< α , and first fix = 0b⊥ . The charge 
Hamiltonian cH  is quadratic and does not change in the 
magnetic field. To renormalize the spin part, we define 
following [18] spin currents:  

 †= ,i
iJτ τ τΦ σ Φ  (54) 

where iσ  ( = , ,i x y z) are three Pauli matrices. The two-
component spinors τΦ , with = ,R Lτ  corresponding to the 
left and right movers, are defined by Eq. (50). The spin 
part of the Hamiltonian sH  can be expressed in terms of 
these currents as follows:  

 2= 2 ( )z z z
s s s R LH dx J y J Jτ

τ

′π + +

∑∫v   

 ( )||4
cos y yx x

C R L R L
F

b x
y J J J J


+ + +

 v
  

 ( )||4
sin ,y yx x

R L R L
F

b x
J J J J

+ − 
v

 (55) 

where 2 2= 2 (0) = [1 (2 )/(2 )]s s f F F FU k′ − − πv v v v v . The 

initial values of coupling constants are (0) = (0) =s cy y  

= (2 )/( )F sU k ′− π v . The contants ,s Cy y  are connected to the 

constants sK  and Cg  by relations = (2 )/(2 )s s sK y y− + , 
=C s Cg y′−πv . 

At || = 0b , the Hamiltonian sH  becomes simplifies to 
the following form:  

 ( )20 = 2 z z z
s s s R LH dx J y J Jτ

τ

′π + +

∑∫v   

 ( )}y yx x
C R L R Ly J J J J+ + . (56) 

The renormalization group equations for this Hamiltonian 
in the one-loop approximation are  

 2= ; =s C
C s C

dy dy
y y y

d dλ λ
. (57) 

Here λ is the standard renormalization group running pa-
rameter (logarithm of the length scale l ). The renormalza-
tion group equations have a simple integral of motion 

2 2 = constC sy y− . Since it is zero at initial scale 0=l a , it re-
mains zero at any length scale. The point = = 0s Cy y  is the 
fixed point of the system (57), whereas the pair of the straight 
lines in the plane ,s Cy y  defined by equation 2 2=s Cy y  is the 
separatrix of the trajectories that are generally hyperboles. The 
motion along separatrix at increasing λ leads to the fixed 
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point. Since both charges sy  and Cy  are zero in the fixed 
point, according to the relations written above we find that 
at large length scale 0Cg →  and 1sK → . Thus, at zero 
magnetic field the cosine interaction is irrelevant. The lim-
iting value of sK  shows that the SU(2) symmetry violated 
at small distance is restored on large distances. The system 
remains in the LL state. 

The same answer is correct in the presence of the paral-
lel magnetic field since the oscillations associated with 
rotation of spin around this field stops renormalization at 
the scale || ||= /Fl bv . However, if || = 0b  but 0b⊥ ≠ , the 
situation changes. More complicated analysis shows that in 
this case renormalization leads to = =s Cy Y −∞ at λ →∞. 
Though, this result can be treated as the requirement of 
very precise orientation of the external field for observa-
tion of the SDW, this limitation is much more liberal for 
real QW because of their finite length. Indeed the field 
must be perpendicular if the length of wire is much larger 
than ||l , or || /Fb l<< v . For the length 10 µm it requires 
parallel magnetic field less than 0.6 T. 

4.5. Spin-density correlations 

In this subsection we calculate the spin-density correlators 
for the ordinary LL state and the SDW state. At Fb k<< α , the 
Fermi momenta are approximately , = .Fk k mσ τ τ −σ α  In the 
ordinary LL state, the backscattering term HC can be 
dropped and the Hamiltonian becomes completely quad-
ratic. The Luttinger parameters are given in the previous 
subsection, except of = 1sK  at zero external field. Spin 
density operators read: †

,( ) = ( ) ( )a as x x x′ ′σ σσ σΨ σ Ψ , where 
= , ,a x y z . The time-ordered spin-density correlators are 

( , ) = ( , ) (0,0)aa t a as x t T s x t s〈 〉 . Applying the bosonization 
one can express spin correlators as path integrals over 
bosonic fields. Details of calculation are placed in Appen-
dix F. The results are  

 

1 2
2 2
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Kss
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+ −
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τ τ +

π
+
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0
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,
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Kc Ks
F
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x y x y

+ −

α
+

π + +
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s s
zz

s

K y x
s x

x y
−

τ +
π +

  

 
2

0
2 /2/22 2 2 2

cos(2 )
,

( ) ( )c

K Kc s
F

KK sc s

a k x

x y x y

+ −

+
π + +

  

  (58) 

where / /( ) =s c s cy τ τv , τ is imaginary time, and 0a  is an 
ultraviolet cut-off. Each correlator contains contributions 
from small q and from 2 Fq k . For weakly interacting 
case , 1c sK K ≈ , and both decay as 2x−  and oscillate. 

The SDW state exists at completely perpendicular field, 
when Cy  flows to the strong coupling limit Cy → −∞. CH  
is relevant and dominates the spin Hamiltonian. The field 

sϕ  is pinned to 1= ( )
2 2s N π

ϕ +  (N  is an integer), whereas 

its conjugated field sθ  is completely uncertain. Correlators 
of the charge fields remain the same as in ordinary LL. The 
correlators ( , )xxs x τ  and ( , )yys x τ  decay exponentially to 

zero being averaged with the oscillating factor ei sθ . But 
( , )zzs x τ  survives since sθ  doesn’t appear in its expression:  

 0
2 2 20

2( , ) = cos(2 ) .
( )

Kc

zz F
c

a
s x k x

a x y

 
 τ
 π + 

 (59) 

It is determined exclusively by the charge degrees of free-
dom. It oscillates with the wave vector 2 Fk  and decays 

power-like with 2 2
cx y+ . For 1cK ≈  it decays as 1x−  

which is slower than 2x−  decay of the ordinary LL case. 
This is the result of ordering in the SDW state. 

4.6. Total spin correlations 

The total spin correlator can be obtained by integration 
of spin-density correlators found in previous subsection 
over coordinates. Eqs. (58) and (59) present the time-
ordered spin-density correlators for imaginary time τ. Let 
define the total spin-correlation function with imaginary 
time interval  

 
0 0

( ) = ( , ) ( , )
l l

T
aa aa aaS dx dx s x x l s x

∞

−∞

′ ′τ − τ ≈ τ∫ ∫ ∫   

and their Fourier transforms  

 ( ) = e ( )T i T
aa aaS S

∞
ωτ

−∞

ω τ∫ .  

The Fourier transform of the retarded correlator ( )R
aaS t  is 

the analytic continuation of the time-ordered Fourier trans-
form ( ) = ( )R T

aa aaS S i iω ω→ω+ δ , where = 0+δ  [15]. For 
details of calculation see Appendix G. 

In this point we are faced with a paradox: the integrated 
over x  correlator ( , )zzs x τ  in the absence of the transverse 
external magnetic field is not a constant in contradiction 
with the exact conservation of the z  component of the total 
spin. For the SDW state ( )R

zzS ω  is also not a constant, but 
the SDW appears only in nonzero transverse field that vio-
lates the zS  conservation. Such a contradiction was first 
noted by Tennant et al. [57] (see their appendix) and they 
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treated it phenomenologically assuming that the oscillating 
term is a complete derivative. This discrepancy originates 
in the filling of infinite Fermi sea, a crucial assumption in 
the LL model [15,16]. Electron and hole excitations in this 
model are completely symmetric. In real wires the relativ-
istic particle-hole symmetry is violated. In particular, the 
momenta of holes cannot exceed Fk  by modulus. This 
limitation is not important if only momenta close to Fk±  
are essential. This is the case for the spin-Peierls instability 
leading to the appearance of the SDW. However, the mo-
menta far from Fk  bring a significant contribution to the 
total spin. Therefore, the LL model does not respect the total 
spin conservation. Nevertheless, calculations for the non-
interacting case within the Fermi gas model shows that the 
cut-off of the integration at some negative momentum Dk  
leads to conserving zS  if <D Fk k . This cut-off produces 
additional terms in the spin-density correlator so that at 

= 0Dk ,  

 
2 2

2 2 2 2 2 2 2
cos(2 )1 1( , ) =

( )
F

zz
k xy xs x

x y x y
−

τ + −
π + π +

  

 
2 2 2 2

( cos( ) sin( ))e2 ,
( )

k yFF Fy y k x x k x
x y

−−
−
π +

 (60) 

where = Fy τv . The third term in Eq. (60) is the cut-off 
correction. After integration over x  it completely cancels 
the contribution of the second term. The first term is con-
tribution of small momentum transfer. Its integration 
gives zero. Though it is not clear how to introduce the 
momentum cut-off for interacting electrons, the main 
conclusion that we can extract from the calculations for 
free electrons is that the momentum transfer 2 Fk  does not 
contribute anything to the zz  correlation of the total spins 
at = 0B⊥ . Further we leave only small momentum con-
tribution to this correlator. We then arrive at a simple 
result for the LL state:  

 2 2
0( ) = ( ) = [ ( ) ]R R

xx yy sS S A iω ω ω + ω+ δ ×   
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where = 2s smω αv  and  
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v
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The SDW state that appears only in the transverse field 
violating the total spin conservation does not require such a 
fine tuning. Its total spin correlators are 
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where 0 = 2c F ckω v , and 
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We summarize the major differences between these two 
states in Table 1. The line shapes of the non-vanishing spin 
correlators for both states are shown in Figs. 4 and 5. 

4.7. Relation to the experiment 

The results given by Eqs. (61) and (62) show that meas-
urements of the total spin correlators can be used as a diagnos-
tic tool for identification of the state of the electronic liquid in 
the quantum wire, is it the LL or the SDW. Besides of that we 
predict that in the ordinary LL state the transverse correlators 
display the spin resonance at = 2 2s s Fm kω α ≈ αv . 

Table 1. Major differences of the total spin correlations be-
tween the LL and SDW states 

State Vanishing 
component  

Position of singularity for 
nonvanishing component 

LL zzS   = 2 2s Fm kω α ≈ αv   

SDW xxS ,  yyS   = 2 F ckω v  

 

Fig. 4. (Color online). Total spin correlators for the LL state 
(Eq. (61)). Im ( )R

xxS ω  is shown in unit 0A  as a function of 
/ sω ω  for = 1sK  (blue), 1.2 (red) and 1.4 (black). The = 1sK  

curve is a δ-function spike at = sω ω . ( )R
zzS ω  vanishes for the 

LL state. 
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The position of resonance agrees with the previous non-
interacting result (48). In the SDW state only the z  
correlator survives and it has a peak at a relatively high 

0 = 2 2c F c F Fk kω ≈v v . A typical value for this frequency 
in semiconductors is 1410  Hz. At much lower frequency it 
is almost constant. 

Experimentally, the Faraday rotation method [17,55] 
measures directly the spin correlations in real time. At zero 
field the system is in the ordinary LL state, and we expect 
peaks at = 2 smω αv  for directions perpendicular to the SOI 
axis. The direction of the SOI axis is not a priori known. It 
must be found utilizing the (1)U  symmetry of the trans-
verse spin correlations. Applying the magnetic field per-
pendicular to the SOI axis, one can check whether the wire 
transits to the SDW state. At this transition the longitudinal 
correlator suppressed in the LL state becomes dominant, 
whereas the transverse correlators are suppressed. 

The impurity scattering does not change the results 
significantly if the mean free path is larger than 1/( )mα , 
typically 10–30 nm. The corresponding mobility is  
~(1–3)⋅103 cm2/(V⋅s). 

5. Conclusions 

Our theory is based on conservation of the total spin in 
1d quantum electron system subject to the SOI. The effec-
tive SOI field acting on electron spins has a definite direc-
tion tilted to the direction of the wire. Projection of the 
total spin on this direction is conserved. Theory predicts 
the existence of the SOI-induced spin resonance in semi-
conductors at low temperature 2< 4 3 KT mα  . The reso-
nance can be regulated by external magnetic field. Its 

component perpendicular to the internal field switches on 
the electric dipolar mechanism of the spin-flip transition 
and strongly enhances the probability of the resonance 
absorption. The component of the external field parallel to 
the internal one may separate resonances for the left and 
right movers. In this way the permanent electric current 
can be generated by the resonance ac electromagnetic field. 
These phenomena obtained first in the model of ideal elctron 
gas are confirmed in a more realistic model of LL for elec-
trons. In the framework of this model the resonance excites a 
spinon, an excitation of the spin component of the LL with 
the wave vector equal to the difference between Fermi mo-
menta of the left and right movers due to the SOI splitting. 
An additional effect is the spin-flip process induced by a 
plasmon excitation due to a weak coupling between spin and 
charge degrees of freedom generated by the SOI. 

Experimentally the SOI-induced spin resonance mani-
fests itself most directly in the resonance absorption of 
electromagnetic field with frequency about 1 THz. Such an 
experiment requires large power of the ac field (1 kW/cm2) 
so far available only with free elecron laser. Additional 
requirements of He temperature and magnetic fields in the 
range of several Tesla makes this experiment difficult. 

An alternative idea is to diagnose the LL state in a sem-
iconductor (InGaAs) by measurements of the total spin 
correlation in real time proposed by Crooker at ANL [17]. 
These measurements are less direct. Their preference apart 
of a weak probe light field is that they can distinguish be-
tween the LL state and the SDW state of electron liquid in 
the wire predicted by Starykh and his coworkers at suffi-
ciently strong perpendicular component of external field. 
So far this state was not observed experimentally. Our 
analysis of the total spin correlations shows that the SDW 
supresses fluctuations of the perpendicular to the inner 
field magnetization in the wire leaving only parallel com-
ponents, whereas in the LL state perpendicular fluctuations 
are dominant, whereas the parallel component is sup-
pressed. We hope that this effect can be used for diagnostic 
of the state of electrons in the quantum wire. 
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Appendix A. Spin-flip in a QW of a finite thickness 

In this appendix we present the calculation referred to 
Sec. 2 of the matrix element responsible for the spin flip-
ping due to coupling to the transverse electric field. We 
treat the spin-orbit interaction as a perturbation and show 

Fig. 5. (Color online). Total spin correlators for the SDW state 
(Eq. (62)). Im ( )R

zzS ω  is shown in unit SDWA  as a function of 

0/ cω ω  for = 1cK  (blue), 0.8 (red) and 0.6 (black). ( )R
xxS ω  and 

( )R
yyS ω  vanish for the SDW state. Note that if Fα << v  and 

s c F≈ ≈v v v , we have 0c sω >> ω . 
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that the matrix element is zero in the first and second order 
of the SOI coupling constants α and β. The first nonzero 
contribution comes in the third order in spin-orbit interac-
tion. We start from the same Hamiltonian (1). We intro-
duce the frame of reference with the x axis along the wire, 
y axis along the wide side of the cross-section whose linear 
size is denoted as .W  Because we are only interested in the 
linear coupling to the y  component of the electric field, we 
take xA , zA  and the magnetic field B  to be zero. Then the 
Hamiltonian, up to linear terms in the ac field, reads  

 kin= so acH H H H+ +  (63) 

where  

 
2 2

kin =
2
x yp p

H
m∗

+
, (64) 

 = ( ) ( )so x x y y y xH p pασ +βσ − ασ +βσ , (65) 

 =ac y y
eH A
c

υ . (66) 

Here = ( )y
y x y

p

m∗
υ − βσ +ασ  and we assume that the ef-

fective mass m∗ is the same in both x  and y  directions. Let 
us represent the Hamiltonian (63) without the last term 
as 0= ,H H V+  where 0 kin= ( )x x yH H p+ ασ +βσ  and 

the perturbation is = ( ).y y xV p− ασ +βσ  The stationary 

states 0, ,xn p τ  of the Hamiltonian 0H  are direct products 

of the eigenstates of 2,x yp p  and the spin operator 

= ( )/ .z x yτ ασ +βσ γ  The corresponding wave functions are  

 (0)
, , = ( )eip xxnn px

f y ττψ χ  (67) 

Here ( )nf y  is the transverse part of the wave function,  and 

τχ  is an eigenspinor of zτ  with the eigenvalue = 1.τ ±  The 

energy of the state 0, ,xn p τ  is 0 0
, , ,= Fn p n px x

E E pτ + γ , 

where 0
0 kin, 0= , , , ,x xn px

E n p H n p〈 τ τ . The first-order 

perturbation theory correction to the wave function (67) is  

 (1)
, , 0

,
= , ,xn px m n

m pτ
′≠ τ

′ψ − τ ×∑   

 
0 0

0 0
, ,

, , ( ) , ,x y x y x

n p m px x

m p p n p

E E

′〈 τ ασ +βσ τ〉
×

−
, (68) 

where we neglect the contribution of the first SOI term 
( )x x yp ασ +βσ  to the energies in denominator retaining 

the leading term 0 0
, ,n p m px x

E E− . In order to calculate the 

sum in Eq. (68) we note that kin= [ , ].y
imp H y

∗



 Then this 

equation can be simplified as follows: 

 (1)
, , 0

,
= , ,xn px m n

im m p
∗

τ
′≠ τ

′ψ τ ×∑


  

 0 0, , ( ) , ,x y x xm p y n p′× 〈 τ ασ +βσ τ〉 . (69) 

Finally by choosing the frame of coordinates so that 
= 0n y n  and using the completeness relation 

0 0
,

, , , , = ,x x
m

m p m p I
′τ

′ ′τ τ∑  we find the first order cor-

rection to the eigenstate 0, ,xn p τ   

 1 0, , = ( ) , ,x y x x
imn p y n p

∗
τ ασ +βσ τ



. (70) 

Now we consider the effect of the transverse ac electric 
field. We are interested in the off-diagonal term of the 

operator y y
e A
c

υ  for the states of a fixed band, i.e., in the 

matrix element  

 , , , ,y x y x
e A n p n p
c

− υ + , (71) 

where +  and − represent the up and down eigenstates of 
the spin operator zτ , respectively. Again employing the 

Heisenberg equation kin= [ , ],y so
i H H yυ +


 one can trans-

form the matrix element (71) as follows:  

 , , , ,x y xn p n p− υ + =  

 , , , ,= ( ) , , , ,n p n p x xx x
i E E n p y n p− +− − +


. (72) 

The energies belonging to a fixed band n and different spin 
projections differ only because of the SOI. Therefore, an ex-
pansion of the difference , , , ,n p n px x

E E− +−  in terms of SOI 
coupling constants begins with a linear term of α and β: 
 , , , , 2n p n p xx x

E E p− +− ≈ − γ . (73) 

Thus, to obtain the contribution to the matrix element (72) 
linear in SOI coupling constants, it is necessary to calcu-
late the matrix element of y  with the zeroth-order wave 
function 0, , ( = 1)xn p τ τ ±  for which the space and spin 
variables are factored. Therefore, the matrix element of y  
contains the scalar product − + , which equals zero. To 
find the matrix element in Eq. (72) to second order in α 
and β, we need to use 1, ,xn p τ  for the matrix element of 

.y  Then, using Eq. (70), one finds 

 1 00 1, , , , , , , ,x x x xn p y n p n p y n p− + + − + =  

 0 0= , , ( )[ , ] , ,x y x x
im n p y y n p

∗
− ασ +βσ +



. (74) 
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Since this matrix element is zero, the y  component of the 
electric field produces no spin-flip processes in the second 
order in α and β as well. 

The quickest way to calculate the Hamiltonian acH  in 
the third order or, equivalently, the matrix element of y  in 
the second order goes through a unitary transformation 

= eFU , where = ( ).y x
mF i y
∗

− ασ +βσ


 Applying it to 

the Hamiltonian (without the ac field term), and truncating 
the Baker–Hausdorff series at the second order of α and β 

(recall that 2 2=γ α +β ), we find  

 1
kin= ( ) [ , ]U soH U H H U H F H−+ ≈ + =  

 0= constUH V+ + , (75) 

where  

 
2 2

0 =
2
x y

x z
p p

H p
m∗

+
+ γτ  (76) 

is the starting approximation Hamiltonian introduced earli-
er and  

 2 22= ( )U x z
mV yp
∗
β −α σ



 (77) 

is the transformed perturbation that is proportional to 
squares of the SOI constants. Note that the transformed 
eigenstate , ,x Un p τ  obeys the same boundary conditions 

as the initial one. Thus, the transformed state , ,x Un p τ  

differs from zero approximation state 0, ,xn p τ  by the 
second order correction  

 2 2
,2 0

,

2
, , = ( ) , ,x

x xU
m n

m p
n p m p

∗

′≠ τ

′τ β −α τ ×∑


  

 0 0
0 0
, ,

, , , ,x z x

n p m px x

m p y n p

E E

′τ σ τ
×

−
. (78) 

The state vector we are looking for , , =xn p τ  
1= , ,x UU n p− τ  has an additional term of the second or-

der equal to the operator 2 / 2F  acting on the zeroth order 
state. Since 2F  is proportional to unit operator, it does not 
contribute to the matrix element in Eq. (72). With Eqs. (67), 
(72), (73), (78), we obtain the matrix element to the third 
order in α and β: 

 
2

2 28
, , , , = ( )x

x y x
m n

m pin p n p
∗

≠
− υ + − γ β −α ×∑

 

  

 

2
0 0

0 0
, ,

, ,x x

n p m px x

m p y n p

E E
×

−
, (79) 

where we use matrix elements for spin operator zσ  be-
tween the eigenstates of the operator zτ  = 0z± σ ±  and 

= 1.zσ ±  The zero order off-diagonal matrix element 
reads  

 0 0 2 2 2 2

8 sin( )
2, , =

( )
x x

m nnmW
m p y n p

m n

+
π

−
π −

, (80) 

and  

 
2 2 2 2

0 0
, , 2

( )= .
2n p m px x

n mE E
m W∗

π −
−

  (81) 

Thus, the matrix element of the velocity yυ  from Eq. (72) 
can be expressed in terms of an infinite series:  

 
2 4 2 2

2 2
4 6

1024
, , , , = ( ) x

x y x
m W p n

n p n p i
∗

− υ + β −α γ ×
π

  

 
2

2 2 5
= ( )m n odd

m
m n+

×
−

∑ . (82) 

For = 1n  the sum is 

2 2 2

2 5
=1

4 (15 )= 0.01648.
3072(4 1)k

k
k

∞ π − π
≈

−
∑

 
We can now obtain the coefficient at / y ye cA υ  for the spin-
flip amplitude induced by the transverse electric field and 
it is given by  

 
2 4 2 2 2

4
( )

0.0176xm W p
i

∗ β −α
γ ⋅



. (83) 

If we let = 10 nm,W  21= 1.65 10 g cm/sFp −⋅ ⋅ , 
6= 1.08 10 cm/sα ⋅  and 8= 0.38 10 cm/s,F ⋅v  then we find 

that the upper bound for the coefficient at γ  given by 
Eq. (83) is 510− γ . It is by 5 decimal orders less than the 
coefficient (γ ) of ( / ) x ze c A τ . However, the latter does not 
produce a spin-flip transition. The transverse magnetic 
field makes spin-flips possible but decreases the coefficient 
by a factor 2( / ) 0.01Fb p⊥ γ  . Nevertheless the anisotropy 
ratio of the amplitudes is about 0.001. The anisotropy of 
the spin-flip probability is about 610− . Thus, resonant exci-
tation by an ac electric field polarized along the y axis is 
very ineffective and practically unobservable. However, 
the amplitude (83) depends very strongly on W . Therefore, 
the width can not be increased significantly. On the other 
hand, a significant change of W  would violate the condi-
tion of one channel. 

Appendix B. Calculation of time-ordered averages 
in real time 

To find the correlation functions of fields sϕ  and sθ  in 
Eq. (35) we use the generating functional [ ]J :  

 1= exp .
2i i d dx M J  ϕ θ τ − Φ Φ + Φ    

∫ ∫ ∫    (84) 
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This expression is written in a matrix form with four 
vectors of the field = ( , , , )c s c sΦ ϕ ϕ θ θ  and “current” 

1 2 3 4= ( , , , )J J J J J . The 4 4×  matrix M  describes the sys-
tem Lagrangian and is presented below. After the standard 
Gaussian integration we find  

 ( ) 1/2 11[ ] = det exp .
2

M JM J− − 
 
 

J  (85) 

The bosonic correlation functions from Eq. (35) are repre-
sented in terms of the elements of matrix M  as  

 
2

=0

ln( , ) (0,0) =
( , ) (0,0)i j

i j
x

J x J
δ

Φ τ Φ =
δ τ δ

J

   

 1= e ( , ).
2 2

iqx i
ij

d dq M q− ωτ −ω
ω

π π∫ ∫  (86) 

The matrix M  is symmetric and has the following nonzero 
elements 

2= /( ),c cc c
M q Kϕ ϕ πv    2= /( ),s ss s

M q Kϕ ϕ πv  

2= / ,c cc c
M K qθ θ πv    2= / ,s ss s

M K qθ θ πv  

= = / ,
c c s s

M M iqϕ θ ϕ θ ω π  and  

2= = /(2 ).
c s s c

M M qϕ θ ϕ θ δ πv  

With these expressions, ( , )g x t  in Eq. (35) takes the form  

 1
2( , ) = 2 (1 e )[ ( , )

(2 )
iqx i

s s

dqdg x i M q− ωτ −
ϕ ϕ

ω
τ − ω +

π∫∫   

 1 1 1( , ) ( , ) ( , )].
s s s s s s

M q M q M q− − −
θ θ ϕ θ θ ϕ+ ω − ω − ω  (87) 

At zero SOI ( = 0α ) and magnetic field ( = 0B⊥ ), the 
system has (2)SU  symmetry of spin rotation. This sym-
metry prevents the renormalization of the interaction 
constant in the spin channel and therefore = 1sK  [48]. A 
weak SOI ( )Fα << v  and magnetic field ( /F BB p⊥ << α µ ) 
only slightly violate the (2)SU  symmetry [49], so that 

21 ( / )s FK − α v  [49]. Therefore, in what follows we put 
= 1sK  up to small corrections of order 2α . Thus, with this 

precision up to quadratic in δv  terms we find  

 1 1 1 1( , ) ( , ) ( , ) ( , )
s s s s s s s s

M q M q M q M q− − − −
ϕ ϕ θ θ ϕ θ θ ϕω + ω − ω − ω    

 
2

2
2 2 2 2

( 1) 22 ( ) .
( ) 4 ( ) ( )

c c c

s c s c

K q iKi q
q i q K i q q

+ + ωπ π
− δ

ω+ ω+ ω +


v
v

v v v
  

Performing the integration over frequencies, one finds the 
correlator as a function of imaginary time. Because of fac-
tor e i− ωτ only the poles in the lower half-plane of the com-
plex plane ω contribute to the integral. After the integra-

tion and analytical continuation, expression (87) turns 
into a sum of logarithms of the type ,ln ( )c sC x t± v , where 
C  is a constant. Inserting this result in Eq. (35) we find 
the corresponding time-ordered fermionic correlator but 
in real time. 

Appendix C. Relation between retarded 
and time-ordered spin correlators 

The perturbation theory is valid for time-ordered ave-
rages in imaginary time, whereas what we need to calcu-
late is a retarded average 

, ( )RI t
↑↓ ↓↑

. Therefore, we need a 

relationship between ( , ) = ( ) [ ( , ), (0,0)]R
BAI x t i t B x t A− θ 〈 〉  

and ( , ) = ( , ) (0,0)T
BAI x T B x Aττ −〈 τ 〉 for imaginary time τ 

where 

†
,,( , ) = ( , ) ( , )RRB x t x t x t↓↑

ψ ψ
 

and 

†
,,(0,0) = (0,0) (0,0)RRA ↑↓

ψ ψ
 

are boson-like operators. These two types of averages are 
related by equality [15] 

 
*

† †( ) = ( ) ( ) ( ) ,R T T
BA BA A B

I t i t I t I t
  θ − −  

   
 (88) 

which follows from  

 ( ) = ( ) ( ) (0) (0) ( ) ,R
BAI t i t B t A A B t− θ  −    (89) 

 ( ) = ( ) ( ) (0) ( ) (0) ( ) .T
BAI t t B t A t A B t− θ + θ −    (90) 

For positive time > 0t ,  

 = ( ) (0) ,T
BAI B t A−  (91) 

 
* *† †

† † ( ) = (0) ( ) ,T
A B

I t B A t − − − 
 

 (92) 

and 
*† †(0) ( ) = ( ) (0) =B A t A t B− −  

*† †= (0) ( ) = ( ) (0) .A B t B t A  

In our case, due to the above definitions of A  and B , 
† †( ) (0)B t A  differs from ( ) (0)B t A  by changing the spin 

components σ→ −σ. It is equivalent to ( , ) ( , )Y x t Y x t→ −  

since we introduced †( , )
0e /(2 ) = ( , ) ( , )Y x

RRa x xτ
↓↑

π ψ τ ψ τ . 

However, Y  enters in all correlation functions 
quadratically, see Eq. (35) in the main part, and we con-
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clude that this transformation does not change the correlator. 
Then *( ) = ( )[ ( ) ( ( )) ]R T T

BA BA BAI t i t I t I tθ − , and we find  

 ( ) = 2 ( )Im ( ).R T
BA BAI t t I t− θ  (93) 

Appendix D. Evaluation of conductivity in Eqs. (42) 
and (43) 

To find the absorption power of electromagnetic field 
we need to calculate Re( )ωσ , where the conductivity is 
given by Eq. (36) in the main text. 

The integral in Eq. (36) is  

 ( )= [ ( ) ( )] ,i t qxdx e K t i K t i dt
∞ ∞

ω −
ω

−∞ −∞

σ + δ − − δ∫ ∫  (94) 

 1( ) = ,
( ) ( ) ( )c c s

K t
x t x t x tλ µ ν− + −v v v

 (95) 

where  

 
( )2 2

0
2 3= .B

F

eg B a

p

λ+µ+ν−
⊥µ

π α
   

Since q is positive, the exponent e iqx−  vanishes at large x  
in the lower half-plane of the complex variable x . There-
fore, the integral over real axis x  is equal to the sum of 
two contour integrals in the lower half-plane of x  along 
contours winding around two branch cuts shown in Fig. 6. 
The contour 1C  winds around the branch cut from the 
point = sx t i− δv  to =x i+∞ − δ, and the contour 2C  
winds around the branch cut from = cx t i ′− δv  to 

=x i ′+∞ − δ . (We ignore here the potential singularity at 
= cx t−v  which is associated with the inverse processes of 

spin flip from up to down on the right branch. These pro-
cesses should be suppressed in the approximation of 
small excited-state occupation numbers which we em-
ploy.) We can estimate the integrals over x  around each 
branch cut separately. The conductivity ωσ  has two sin-
gularities: at = sqω v  and at = cqω v . As we show below, 

close to the singularity near = sqω v  the main contribution 
to the integral comes from contour 1C , and the other 
(plasmon) singularity is dominated by the integral over 2C . 

First, we estimate the integral 1I  over the contour 1C . 
After the change of variable = su x t− v  the contour that 
maps 1C  in a complex plane u  winds around the branch cut 
from = 0u  to =u +∞  and will be denoted by the same 
symbol 1C . Thus, the integral 1I  can be written as follows:  

 
( ) ( )

1

1

e= .
iqu i qts

C s c s c

I du
u u t u t

− −

λ µν    + − + +   
∫

v

v v v v
  

We aim to approximate ωσ  very close to the resonance 
at res = sqω v . The closeness is determined by inequalities 
relating to the detuning res= | |δω ω−ω :  

 res ,γ << δω << ω   

where γ  is the attenuation rate mainly due to Cherenkov 
emission of phonons [13]. Then the time during which the 
resonance absorption is accumulated is large enough, 

1/t δω . In this limit, ( ) 1c s qt− >>v v , we approximate the 
above integral as  

 
( ) ( )

1

1
e ( )= e ,

i qts z

Cs c s c

iqI z dz
t t

− ν−
−ν

λ µ
−

   − +   
∫

v

v v v v
 (96) 

where we introduced new variable =z iqu− . As a result of 
this change of variables, the contour 1C  turns into contour 
C  winding around a branch cut going from = 0z  to 

=z i− ∞. The contour C  can be rotated clockwise together 
with the branch cut until the latter coincides with the left 
half of the real axis < 0z . Then the contour integral turns 
into the Hankel's representation of the inverse Gamma 
function and gives 2 / ( )iπ Γ ν . After that we can integrate 
over time with the following final result:  

( ) ( ) ( )

1

, 1
2 (1 ) .

( )
q

s c s c s

i q iI
q i

ν− −ν−λ−µ

ω λ µ −λ−µ
− π Γ −λ −µ

− + Γ ν ω− + γ


v v v v v
  

  (97) 

Then the real part of conductivity near = sqω v  becomes  

 
1(1 )Re

( ) ( ) ( )c s c s

qν−
ω λ µ

Γ −λ −µ
σ ×

− + Γ ν


v v v v
  

 
12 2 2res

,

( )
λ+µ

−

γ
×

 ω−ω + γ 

 (98) 

which for small λ and µ is approximated by Eq. (42). Here 
we used that c s≥v v . The integral 2I  over the contour 2C  
does not contribute to the singularity at = sqω v  and there-
fore can be neglected. 

Fig. 6. The integration contour in the lower half-plane of the 
complex variable x. 
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In addition, there is also a small part of Re ωσ  which is 
independent of γ :  

 
2 1

1
(1 ) ( 2) .

( ) ( ) ( ) | |c s c s res

q
v v v v

ν−

λ µ −λ−µ
π Γ −λ −µ ν + λ +µ −

− + Γ ν ω−ω

  (99) 

It is small in positive parameter 

2 2 22 = ( ) ( 1) /[4 ( ) ]c c c sK Kν + λ +µ − δ − +v v v . 

Nevertheless, 2I  contributes to a singularity at plasma 
frequency = cqω v . Next we analyze this singularity. We 
consider the integral 2I  over contour 2C  similarly to what 
we did for 1I . We change variable in 2I  to = cu x t− v . The 
mapped contour 2C  winds around the branch cut from 

= 0u  to =u +∞ . As a result of winding around the branch 
cut we obtain factor 2 ( 1)(1 e ) 2i i− π λ−− ≈ π λ  and the integral 
over u  from 0 to infinity:  

( )

( ) [ ]
2

0

e= 2 .
2 ( )

iq u tc

c c s

I i du
u u t u t

− +∞

µ νλ
π λ

+ + −
∫

v

v v v
 (100) 

At small detuning =| |cqδω ω− v  from the plasma reso-
nance we expect that similarly to what we observed for 1I  
the accumulation time for the resonance absorption is 
large, 1/ 1/( )ct qδω >> v , and therefore in the factors 

2 cu t+ v , ( )c su t+ −v v  it is possible to neglect 1/u q . 
After this procedure the resulting integral over t  diverges 
at = 0t . This divergence however is spurious. It has hap-
pened because at small < 1/[( ) ]c st q−v v , the variable u  
cannot be neglected. It means that the integration over t  is 
effectively cut off at 0 1/[( ) ]c st q< −v v . To estimate the 
singular part on the background of nonsingular contribu-
tion originated from small t , we represent the exponent 

( )ei q tcω−v  as a sum, ( ) ( )e = [e 1] 1i q t i q tc cω− ω− − +v v , and 
divide the integral over time into two parts:  

 

( )

0 0

e 1
.

i q tc

t t

dt dt
t t

ω−
∞ ∞

µ+ν µ+ν

 −   +∫ ∫
v

  

The second integral is approximately equal to 
1
0 /( 1)t −µ−ν ν+µ−  and has no singularity. The first integral 

converges and can be extended to = 0t  if < 2µ + ν . This 
condition is satisfied in a broad range of not too strong inter-
action as it can be readily checked from Eqs. (18)–(20). The 
first integral after the change of variable = ( )cq tτ ω− v  
turns into  

 ( ) 1

0

( 1) .
i

c
e dq

∞ τ
µ+ν−

µ+ν
− τ

ω−
τ∫v  (101) 

The integral in Eq. (101) is a large number 1(2 )i −≈ −µ −ν  
proportional to 2[ /( )]c s

−δ −v v v . The ratio of the first 
term to the second has the order of magnitude 

2 1[ /( )] [| | /( )]c s c cq q− µ+ν−δ − ω−v v v v v . Thus, the 
nonresonant contribution is comparable with the resonant 
one only in a narrow region close to the resonance 

2[ /( )]c c sqδω ≤ δ −v v v v . Combining all the results, we 
arrive at the expression for the singularity due to spin-flip 
processes at the plasmon frequency:  

( ) 1
1 1

,
2 (1 ) .

2 (2 ) ( )
c

q
c c s

q i
I i q

µ+ν−
λ− λ−

ω µ ν

ω− + γπλΓ −λ
−

−µ −ν −


v

v v v
 (102) 

The calculation of the real part gives the following result:  

 
( )

1

,
2 (1 )Re

2 ( ) (2 )
q

c c s

qI
λ−

ω µ ν

πλΓ −λ
×

− −µ −ν


v v v
  

 
12 2 2

,

( )cq
µ+ν

−

γ
×

 ω− + γ v

 (103) 

c.f. (43) in the main text for Re ωσ . The plasmon singulari-
ty has a character of a weak cusp that can be detected only 
at large enough interaction. 

Appendix E. Bosonization 

The left and right chiral fermionic fields are expressed 
in terms of the bosonic fields as follows:  

 
4 ,

,
0

= e ,
2

i

a
πϕσ σ τ

σ τ
η

Φ
π

 (104) 

where ση  are Klein factors (see Sec. 2) and Bose fields 
,σ τϕ  obey the following commutation relations valid for 

two operators of the Bose field at the same moment of 
time, but different positions: 

 , , , ,( ), ( ) = sign ( )
4
ix y x y′ ′ ′ ′σ τ σ τ σ σ τ τ
τ ϕ ϕ δ δ −  . (105) 

Finally the Klein factors obey the following anticom-
mutation and algebraic relations:  

 { } †
,, = 2 ; = ; = i′ ′σ σ σ σ σ σ +η η δ η η η η− . (106) 

Appendix F. Spin-density correlations 

Here we present calculations of the spin density correla-
tions for the ordinary LL state. In terms of the bosonic 
fields, the spin-density operators reads 
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0 0

1 1( ) = sin[ 2 ( ) 2 ] sin[ 2 ( ) 2 ]x s s s ss x m x m x
a a

π θ −ϕ − α + π θ + ϕ − α +
π π

  

 
0 0

1 1sin[ 2 ( ) (2 2 ) ] sin[ 2 ( ) (2 2 ) ],s c F s c Fk m x k m x
a a

+ π θ −ϕ + − α + π θ + ϕ − + α
π π

  

 
0 0

1 1( ) = cos[ 2 ( ) 2 ] cos[ 2 ( ) 2 ]y s s s ss x m x m x
a a

π θ −ϕ − α + π θ + ϕ − α +
π π

  

 
0 0

1 1cos[ 2 ( ) (2 2 ) ] cos[ 2 ( ) (2 2 ) ],s c F s c Fk m x k m x
a a

+ π θ −ϕ + − α + π θ + ϕ − + α
π π

  

 
0 0

2 1 1( ) = ( ) sin[ 2 ( ) 2 ] sin[ 2 ( ) 2 ].z x s c s F c s Fs x x k x k x
a a

− ∂ ϕ − π ϕ −ϕ + + π ϕ + ϕ +
π π π

 (107) 

________________________________________________ 

Let us define the partition function as a functional integral:  

 
0

= ( , )exp ( ( , )) ,Z x d dx x
β 
 Φ τ τ Φ τ
  

∫ ∫ ∫   (108) 

where = sgn ( )it tτ + ε ( = 0+ε ) is the imaginary time, 
= 1/( )Bk Tβ , = ( , , , )c c s sΦ ϕ θ ϕ θ  is the four vector of 

fields, and ( ( , ))xΦ τ  is the Lagrangian associated with the 
Hamiltonian H . Note that for the ordinary LL state H  is 
completely quadratic and thus invariant under a uniform 
translation of any bosonic fields: ( ) ( )i i ix x AΦ →Φ + , a 
symmetry which we use later. In the functional integral 
language, the time-ordered correlation for operators ( )A Φ  
and ( )B Φ  is 

 ( ) (0) =T A Bτ〈 τ 〉   

0

1= ( , ) ( ( )) ( (0))exp ( ( , )) .x A B d dx x
Z

β 
 Φ τ Φ τ Φ τ Φ τ
  

∫ ∫ ∫    

  (109) 

Later we will drop the time ordering symbol Tτ  and use 
directly 〈〉  to denote the time-ordered average. The 
Lagrangian   can be written as 

1 1( ) = =
2 2 i ij jM MΦ − Φ Φ Φ Φ , 

where the Fourier transform of the matrix ( , )M x τ  is 

2

2

2
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c c
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s s

q
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iq K q
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q
iq

K

iq K q
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ω ω  
 ω 
 
 ω 

v

v

v

v
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Note that here ω is the imaginary frequency associated 
with τ. The inverse of ( , )M q ω  reads 

2 2

2 2
1

2 2

2 2

0 0

0 0

( , ) = ,
0 0

0 0

c c

c c

c

c c c

s s

s s

s

s s s

K i
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i
q K

M q
K i

q
i

q K

−

ω − 
Ω Ω 

 ω −
 Ω Ω

ω  
ω − Ω Ω 

 ω
−  Ω Ω 

v

v

v

v

 (111) 

where we denoted 2 2 2 2
/ /=c s c sqΩ +ωv . Let ( , )i qΦ ω  be the 

Fourier transform of ( , )i xΦ τ . Then 

 1( , ) ( , ) = ( , ).i j ijq q lM q−〈Φ ω Φ − −ω 〉 β ω  (112) 

Correlations for / ( , )s c xϕ τ  and / ( , )s c xθ τ  can be obtained 
from Eq. (112) by inverse Fourier transform. The results at 
zero temperature are 

2 2
2 / /

/ / 2
0

( )
( ( , ) (0,0)) = log ,

2
s c s c

s c s c
K x y

x
a

+ τ
〈 ϕ τ −ϕ 〉

π
 (113a) 

2 2
2 /

/ / 2
/ 0

( )1( ( , ) (0,0)) = log ,
2

s c
s c s c

s c

x y
x

K a
+ τ

〈 θ τ − θ 〉
π

  

  (113b) 

/ / /( , ) (0,0) = Arg [ ( ) ],
2s c s c s c
ix y ix〈ϕ τ θ 〉 − τ +
π

 (113c) 

where / / 0( ) = sgn ( )s c s cy aτ τ + τv . The argument in 
Eq. (113c) is defined with a branch cut at ( ,0]−∞ . 

When calculating the spin-density correlators ( , )aas x t  
employing Eq. (107), there appear terms of three types: 

(a) ( , ) (0,0)x s x sx〈∂ ϕ τ ∂ ϕ 〉 , (b) (0,0)
( , )e

i Ai i
x s x

Φ
〈∂ ϕ τ 〉∑ , 

and (c) 
( , ) (0,0)

e e
i B x i Ci i i iΦ τ Φ

〈 〉∑ ∑ , where , ,i i iA B C  are 
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numerical coefficients. For their calculation we employ 
the invariance of H  and   under the uniform translation 
of iΦ . For terms of type (b) with 0iA ≠ , the translation 

/i i iAΦ →Φ + π  changes the sign of the averaged value 
leaving the Lagrangian invariant. Thus, the average 

(0,0)
( , )e

i Ai i
x s x

Φ
〈∂ ϕ τ 〉∑  must be zero if at least one 

0iA ≠ . For terms of type (c), a similar argument shows 

that 
( , ) (0,0)

e e = 0
i B x i Ci i i iΦ τ Φ

〈 〉∑ ∑  if at least one of the 
sums 0i iB C+ ≠ . As a result, ( , )zzs x τ  reduces to 

_____________________________________________________ 

 2 ( ( , ) ( , )) 2 ( (0,0) (0,0))2
2 2

0

2 1( , ) = ( , ) (0,0) [e e e h.c.]
4

i x x ii k x c s c sFzz x s x ss x x
a

π ϕ τ −ϕ τ − π ϕ −ϕτ 〈∂ ϕ τ ∂ ϕ 〉 + 〈 〉 + +
π π

  

 2 ( ( , ) ( , )) 2 ( (0,0) (0,0))2
2 2

0

1 [e e e h.c.].
4

i x x ii k x c s c sF
a

π ϕ τ +ϕ τ − π ϕ +ϕ+ 〈 〉 +
π

 (114) 

________________________________________________ 

From Eq. (113a) it follows that  

 2 ( , ) (0,0) =x s x sx〈∂ ϕ τ ∂ ϕ 〉
π

  

2
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2 1= ( ( , ) ( ,0)) |
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=02
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s s
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K y x
x y

−

π +
 (115) 

In Eq. (115) we applied the formula 
1 2
2e = e

AiA − 〈 〉
〈 〉  valid 

for any Gaussian distributed variable A . Let calculate for 
example an average:  

 2 ( ( , ) ( , )) 2 ( (0,0) (0,0))e ei x x ic s c sπ ϕ τ −ϕ τ − π ϕ −ϕ〈 〉 =  

 2 ( ( , ) ( , )) 2 ( (0,0) (0,0))= e =i x x ic s c sπ ϕ τ −ϕ τ − π ϕ −ϕ〈 〉   
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0 0= e =
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Similar calculations can be done for other terms in ( , )zzs x τ  
and for the other two spin density correlators, which lead 
to the results (7) in the main text. The z  direction spin den-
sity correlators of the SDW state can also be calculated in 
the same way, with sϕ  replaced by a constant that mini-
mizes CH . 

Appendix G. Total spin correlations 

We calculate the total spin correlators by integration the 
spin density correlators over coordinate. The integrals that 
must be evaluated are of the forms 

 
2 2

1 2 2= e cos ( ) ,
( )

i s
a

s

y x
I d dx kx

x y
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ωτ

−∞ −∞

−
τ

+∫ ∫   

 2 2 2 2 2
1= e cos ( ) ,
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i

b c
c s
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x y x y
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τ
+ +∫ ∫   

 3 2 2
1= e cos ( ) ,

( )
i

d
c

I d dx kx
x y

∞ ∞
ωτ

−∞ −∞

τ
+∫ ∫  (117) 

where 0k ≥  and , , ,a b c d  are constants, and ω is imagi-
nary frequency associated with τ. The integrals 1I  or 2I  are 
parts of the correlations with small q or 2 Fq k  of the 
ordinary LL state, and 3I  corresponds to the z -component 
total spin correlations of the SDW state. 

The calculations are simpler in polar coordinates ( , )r ϕ  
related in the standard way to cartesian coordinates: 

= cosx r ϕ and = sinsy r ϕ. For example, 1I  reads 

 
2 ( cos sin ) 2 2 2

1 2 1
0 0
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v v
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 (118) 

The calculation of the integrals 2I , and also 3I  is simi-
lar, but for them the approximation = =c s Fv v v  is suffi-
cient. The results are 
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Applying these results to the correlations and analyti-
cally continuing to real frequency by i iω→ω+ δ, we ob-
tain the correlations for the ordinary LL state:  

 ( ) = ( )R R
xx yyS Sω ω =  

 

1 2
2 22 2 2 2
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Kss sA
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and those for the SDW state:  

( ) = ( ) = 0,R R
xx yyS Sω ω     

12 2 20( ) = ( ) .
Kc

R
zz SDW cS A

−
ω ω −ω  

  (121) 

In the latter two equations we have defined the frequen-
cies = 2s smω αv , 0 = 2 F Fkω v , = 2( )F Fk m±ω ± α v , 

0 = 2c F ckω v , and the amplitudes  
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K
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v
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 (122) 

In these equations ω is assumed to have a small imaginary 
part. Note that the expressions for the 2 Fq k  parts of the 

ordinary LL correlations are only approximations when cv  
and sv  are both close to Fv . 

We remind that the conservation of zS  requires that 
( ) = 0R

zzS ω  at any ω in the absence of the transverse exter-
nal magnetic field. In the main text we have demonstrated 
that this discrepancy is associated with the inconsistency of 
the LL model at negative, large by modulus k  and how this 
discrepancy can be corrected. 
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