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The tunneling density of states of high-T_ superconductors is calculated taking into account the tight

binding band structure, group velocity, and tunneling directionality for s-wave and d-wave gap

symmetry. The characteristic density of states has asymmetry of the quasiparticle peaks, flat s-wave and

cusplike d-wave subgap behavior, and an asymmetric background. We consider that the underlying

asymmetry of the conductance peaks is primarily due to the features of the quasiparticle energy

spectrum, and the d-wave symmetry enhances the degree of asymmetry of the peaks. Increasing the

lifetime broadening factor changes the degree of asymmetry of the tunneling conductance peaks and

leads to confluence of the quasiparticle and van Hove singularity peaks.

PACS: 74.50.+r, 74.80.—g

Introduction

Tunneling measurements on high-T, supercon-
ductors (HTSCs) have revealed a rich variety of
properties and characteristics [1—-4]. They may be
classified according to their low- and high-energy
features. With the low-energy features we may
attribute: (i) variable subgap shape of the conduc-
tance, ranging from a sharp, cusplike, to a flat,
BCS-like feature [1]; (ii) voltage and temperature
dependence of the quasiparticle conductivity [5,6];
(iii) subgap structure [2]; (iv) zero bias conduc-
tance peak (ZBCP) [7]. The high-energy features
include: (i) asymmetry of the conductance peaks
[1]; (i) van Hove singularity (VHS); (iii) conduc-
tance shape outside of the gap region (background
(BG)) and its asymmetry [1]; (iv) dip feature [8];
(v) hump feature [8]. These features are collected
schematically in Fig 1. While the tunneling spec-
troscopy on conventional superconductors allows
one to find directly the energy gap of the supercon-
ductor, the same measurements in HTSCs are not as
easily interpreted. Sometimes the same experiments
on the same samples show different results [9] : a
cusplike or flat subgap feature; symmetric or asym-
metric conductance peaks. Usually the sharpest gap
features are obtained when the BG is weakly de-
creasing. A quantitative measure of it is the ratio of
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the conductance peak height (PH) to the back-
ground conductance: PHB = PH,/BG. When the
BG conductance is decreasing, the PHB > 2, but
when the BG conductance is linearly increasing
(0V), PHB < 2. Kouznetsov and Coffey [10] and
Kirtly and Scalapino [11] suggested that the line-
arly increasing BG arises from inelastic tunneling.
As was mentioned in [1], the conductance is domi-
nated by quasiparticle tunneling, and that the effect
of Andreev reflection is not significant. A theoreti-
cal model for tunneling spectroscopy employing
tight-binding band structure, de—yZ gap symmetry,
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Fig. 1. Schematic dI/dV characteristics of an NIS structure
with the main features.
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Fig. 2. s-wave DOS at A = 46 meV for different values of I, calculated by formula (1).
group velocity, and tunneling directionality was ot
studied by Yusof, Zasadzinski, Coffey and Miya- .
de E-il

hawa [1]. An angle-resolved photoemission spec-
troscopy (ARPES) band structure specific to opti-
mally-doped BSCCO (Bi-2212) was used to
calculate the tunneling density of states for a direct
comparison to the experimental tunneling conduc-
tance. This model produces an asymmetric, decreas-
ing conductance background, asymmetric conduc-
tance peaks, and variable subgap shape, ranging
from a sharp, cusplike to a flat, BCS-like feature. A
standard technique in analyzing the tunneling con-
ductance is to use a smeared BCS function

NE) = N0y — 21 (1)

VE =2 =2

in which a scattering rate parameter (lifetime
broadening factor) ' is used to take into account
any broadening of the gap region in the DOS.
Figure 2 shows the DOS calculated by formula (1)
at A =46 meV and [ =9 meV (a), [ =3 meV (b),
and [ =0 (¢). A characteristic feature of the DOS
is the flat subgap structure at small I'. This method
cannot explain the asymmetry of the conductance
peaks observed in the tunneling experiments.

N(E) = N(0) Re [ — ,
} 2TU[(E =il - B cos” 29)] '/

(2)

and the DOS calculated by this formula are pre-
sented in Fig. 3. The characteristic features of the
DOS is the cusplike subgap structure. As was men-
tioned in [1], this standard technique requires that
the comparison be made with normalized tunneling
conductance data, and since HTSC tunneling con-
ductance can exhibit a varied and complex back-
ground shape, this procedure may <«filter out» too
much information from the conductance data. An
alternative is to simply normalize the data by a
constant.

In [8] the tunneling data were first normalized
by constructing a «normal state» conductance ob-
tained by fitting the high-bias data to a third-order
polynomial. The normalized conductance data were
compared to a weighted momentum averaged d-
wave DOS:

In the case of d-wave symmetry we have E-ir
N(E) = I 1C) d9 . (3)
[(E - iM)? = A% cos” 29)] /2
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Fig. 3. d-wave DOS at A = 46 meV for different values of I, calculated by formula (2).
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Fig. 4. Fermi surfaces (@) and DOS (b) for ¢ = 0 (solid lines) and ¢ = 0.45¢ (dashed lines) in formula (4) at p/2¢ = - 0.187 which

corresponds hole-doped situation.

Here f(g) is an angular weighting function that
allows for a better fit with the experimental da-
ta in the gap region. A weighting function
f(@ =1+0.4 cos (4¢) was used, which imposes a
preferential angular selection of the DOS along the
absolute maximum of the d-wave gap and tapers off
towards the nodes of the gap. This is a rather weak
directional function, since the minimum of f(0)
along the nodes of the d-wave gap is still non-neg-
ligible [8].

Fedro and Koelling [12] have done a modeling of
the normal-state and superconducting DOS of
HTSCs, using a tight-binding band structure, in-
cluding the next-nearest neighbors,

€, = —2t [cos (kxa) + cos (kya)] +

+4t' cos (k, a) cos (kya) -u. (4)

The calculation showed two singularities in the
DOS: a van Hove singularity at the center of the
energy band due to a saddle point near (m, 0) at
t' =0, and another at the lower edge of the energy
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band due to extra flattening out at (0,0). As ex-
tended s-wave and d-wave superconducting DOS
were considered in case of hole-doped situation
(u<0) for different hole concentrations. The
Fermi surface for ¢ =0 and # = 0.45¢ at the same
concentration, corresponding to W2t =-10.187,
that was used in [12] are presented in Fig. 4,a. One
must move up from the Fermi surface (set as the
zero of energy) to reach the point (11, 0) in the case
t' =0 and move down in case ¢ = 0.45¢t. Thus, for
t' =0 the Fermi energy lies to the left of the van
Hove singularity and will move away from it with
increased hole doping, while for ¢' = 0.45¢ it lies to
the right and will move towards to it with increased
hole doping (see Fig. 4,b, where the DOS for ¢ =0
and ' = 0.45¢ are presented). For calculation of the
superconducting DOS Fedro and Koelling used the
formula

1_0 g0 0 g0
N(E) = Ez O+ BE-E)+0-BE+E)) .
0 “rO O “rO
(5)
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Fig. 5. DOS for ¢' = 0 at different I' for s-wave symmetry (a) and d-wave symmetry (b), calculated by formula (5). Curves 1, 2, 3

correspond to the I equal 0.07, 0.1, and 0.2, respectively.
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This formula is the limit of the expression for the
tunneling density of states (6) at ' =0 and
IT,J* = 1, where T, is the tunneling matrix element.
Figure 5,a shows the results of the calculation of
the DOS for ¢ =0 at =0.07, 0.1 and 0.2 meV for
s-wave symmetry, reflecting the results of Fedro
and Koelling. Figure 5,6 shows the same DOS for
d-wave symmetry. In both cases the Fermi energy
(set as the zero of energy) lies to the left of the van
Hove singularity. There is asymmetry of the peaks
which is more pronounced at large I'.

Models and methods

In the present paper we use the method for
calculation of the DOS in [1]. The tunneling DOS
of a superconductor is determined by the imaginary
part of the retarded single-particle Green’s func-
tion,

N(E) = - 111 Im Y [T, GR(k, E) . (6)
k

For the superconducting state

% %
G"(k, E) = —+ (D
E-E, +il E+Ek+i|'
where ui and v% are the usual coherence factors,
[l ¢, 0 g ¢, 0
1 k 1 k
4=30+g0 %=30-g0 ®
[l k[ O k0

and I is the quasiparticle lifetime broadening fac-
tor. The energy spectrum of quasiparticles in the
superconducting state is determined by

£, = VR@T T E ©
with the effective band structure extracted from
ARPES experiments [13],

Ek = Co + ().SC1 [cos (kx a) + cos (ky a)] +
+C, cos (kx a) cos (ky a) +
+0.5C, [cos (ka a) + cos (Zky a)] +
+ O.SC4 [cos (ka a) cos (ky a) +
+ COS(kx a) cos (Zky a)] +

+ C; cos 2k, a) cos (Zky a). (10)

Here &, is measured with respect to the Fermi
energy (§, =0), and the phenomenological para-
meters are (in units of eV) C,=0.1305, C, =
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Fig. 6. 3D plot of energy spectrum of the normal state, accor-
ding to formula (9).

Fig. 7. 3D plot of the coherence factor ui according to for-
mula (8).

Ky

Fig. 8. Fermi surface corresponding to the &, =0 in formula
(10). The heavy straight line shows the line of directional tun-
neling, and the lighter lines show the angular spread 6, .
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Fig. 9. 3D plot of the group-velocity function (a), the directionality function () and the tunneling matrix element (¢) according to

formulas (11), (12), and (13), respectively.

=-0.5951, C,=0.1636,
=-0.1117, and Cs =0.0510.
Figure 6 shows the three-dimensional image of
function (10). There are a saddle point at (1,0) and
a flattening out of the energy band at (0,0), which

C;=-0.0519, C,=

bability of tunneling, the tunneling matrix element
|Tk|2 reveals a need for factors of directionality
D(k) and group velocity vq(k) [1]. The group velo-
city factor is defined by

lead to the van Hove singularities in the DOS. The . EBEk 0Ek %
three-dimensional graph of the coherence factor u? Ug(k) =|0, &, n| = O, cos 0+ e sin 89,
is shown in Fig. 7. [Pk, %
Since quasiparticles with momentum perpendicu- (11)
lar to the barrier interface have the highest pro-
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Fig. 10. The changing of DOS with energy gap A, for s- (4,b) and d-wave (c,d) symmetry at ' =3 meV (a,c) and ' =9 meV (b,d)
without effects of directionality and group velocity.
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where the unit vector n defines the tunneling direc-
tion as shown in Fig. 8, which is perpendicular to
the plane of the junction.

The directionality function D(k) is defined by

0 k* - (k Ch)’O
D(k) =exp [T %;D. (12)
(k On)“6
O 00
Here 6, defines the angular spread of the quasipar-
ticle momentum with non-negligible tunneling
probability with respect to n. The tunneling matrix
element |T,J? is written as

nﬁ:%®0®. (13)

The three-dimensional graphs of the group velocity
v _(k), directionality D(k), and tunneling matrix
elqement |Tk|2 functions are shown in Fig. 9.

Results and discussions

Different factors may lead to the changing of the
energy gap A, in HTSC. In particular, strong effects
are caused by nonmagnetic impurities [14]. In su-
perconductors with d-wave symmetry the nonmag-
netic impurities destroy the superconductivity very
efficiently. The possibility of destruction of Cooper
pairs by impurities leads to their finite lifetime. If
the state with the quasiparticle is not stationary
state, it must attenuate with time due to transitions
to other states. The corresponding wave function
has the form exp (—i&(p)t/% — T't/%), where T is
proportional to the probability of the transitions to
the other states. It may be interpreted as an imagi-
nary addition —iI" to the energy of the quasiparticle.
The relation between I' and lifetime of quasiparticle
T.is [ = /1, . Hence, the impurities lead to chang-
ing of 4, , and we may do modeling of the influence
of impurities on tunneling conductance by numeri-
cal calculations of the DOS N(E) considering differ-
ent values of A, in formula (6). Here we present the
results of a calculation of N(E) at A = a4, , where
a=02,04, 06,08, 1and Ay, = 46 meV.

The peculiarities of the quasiparticle energy spec-
trum (10) play an essential role in explanation of
the conductance features. Here, based on the nu-
merical calculations of the DOS, we consider that
the underlying asymmetry of the conductance peaks
is primarily due to the features of the quasiparticle
energy spectrum. The d-wave gap symmetry simply
enhances the degree of the asymmetry of the peaks.
Thus last is also changed by varying the tunneling
direction.

Figure 10 shows the results of the numerical
calculations of the DOS at 'y =3 meV (a,c) and
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My =9 meV (b,d) without the group velocity and
directionality effects for both s-wave (a,b) and
d-wave (c,d) gap symmetry, respectively for differ-
ent values of the energy gap A, . We have decreased
the energy gap 4 , starting from A, = 46 meV. For
clarity we present only three characteristic curves,
which correspond to al, with a =1, 0.6, and 0.2.
We exclude the group velocity and directionality
effects to demonstrate that they are not responsible
for the asymmetry of the peaks.

There is asymmetry of the quasiparticle peak
heights for both s- and d-wave symmetry. Thus the
origin of the asymmetry of the peaks is not due to
d-wave symmetry of the energy gap of the HTSC.
There is a flatter subgap behavior of the DOS in the
case of s-wave symmetry in comparison with the
d-wave case. The increase of the lifetime broadening
factor I leads to enhancement of the asymmetry of
the peaks. There are van Hove singularities (VHSs)
in the DOS at small . Increasing I leads to
confluence of the quasiparticle and VHS peaks and
this results to enhancement asymmetry of the DOS
peaks due to the saddle point in the energy spec-
trum (10) at (11, 0). Also note the asymmetry of the
background for both s- and d-wave gap symmetry.

Figure 11 shows the A, dependence of the DOS,
taking into account the group-velocity and direc-
tionality effects at ' =3 meV (a,c¢) and I =9 meV
(b,d) for s-wave (a,b) and d-wave (¢,d) gap sym-
metry. As in [1] we have taken 6 =0.25 and
8,=0.1.

There is also asymmetry of the quasiparticle
peaks, similar to the s- and d-wave cases. But in the
d-wave case the asymmetry is stronger than in the
s-wave case. The group-velocity and directionality
effects lead to disappearance of the VHSs in the
DOS. Increasing I' enhances the asymmetry of the
quasiparticle peak. The strongest effect of the en-
ergy band structure on the DOS occurs along the
k. axis due to the van Hove singularity at (11, 0).

Figure 12 demonstrates this effect. We have
presented the DOS at different 6 at I =3 meV
(a,c) and T =9 meV (b,d) for both s-wave (a,b)
and d-wave (c¢,d) gap symmetry. In the case of s
symmetry the position of the quasiparticle peaks is
constant except in the direction along k. (8 =0).
We note the strong asymmetry of the peaks in this
case.

In the case of d-wave symmetry we have practi-
cally the same behavior around the &, direction as
for the s wave, but the energy gap is changed due to
the 6 dependence of A and, correspondingly, the
quasiparticle peaks are shifted to zero energy.
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Fig. 11. The change of DOS with energy gap A for s- wave (a,b) and d-wave (c,d) gap symmetry at ' =3 meV (a,c) and

I =9 meV (b,d) with the effects of directionality and group velocity.
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Fig. 12. Effects of directionality on the DOS for s-wave (@,b) and d-wave gap symmetry at I = 3 meV («,¢) and I = 9 nothing meV (b,d).

Fizika Nizkikh Temperatur, 2001, v. 27, No. 1 21



N w 2
(=] (=] (=]

N, arb. units

—_
o

N w 2
(=] (=] (=]

N, arb. units

—_
o

0

-0.2 -0.1 0 0.1

0.2 -0.2

-0.1 0 0.1 0.2

Fig. 13. Numerical calculation of the quasiparticle DOS with s-wave (a,b) and d-wave (¢,d) gap symmetry at [ =3 meV (a,c) and

I =9 meV (b,d) for different spreads 6 .

Figure 13 shows the change of the DOS with 6,
at T =3 meV (a,¢) and I =9 meV (b,d) for both
s-wave (a,b) and d-wave (c,d) gap symmetry. In-
creasing 6, brings into play the states close to
(1, 0). It is reflected as an appearance of a van
Hove singularity in both the case of s-wave and
d-wave gap symmetry at small . The VHS is more
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pronounced in the d-wave case in comparison with
the s-wave symmetry. Increasing I' leads to conflu-
ence of the quasiparticle and VHS peaks.

We consider that the absence of the VHS peak
on the experimental dI/dV characteristics is in-
dicative of a rather large lifetime broadening factor
N in that HTSC material.
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Fig. 14. ARPES energy spectrum along 8 = 0.25. The values of the coherence factors correspond to E > 0 () and E < 0 (b).
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The origin of the asymmetry of the peaks in the
tunneling DOS was studied in [1] by considering
the role of the tunneling matrix element |Tk|2 in the
clean limit I = 0, where formula (5) was used for
the calculation of N(E).

We repeat the explanation of the paper [1] be-
cause we believe that the conclusion as to the origin
of the peak asymmetry must be different. At E > 0
(positive bias voltages) the first term of (5) con-
tributes to N(E) because of 8(E, — E). In this case,
as one can see from Figs. 7, 9,c, and 14,q, |Tk|2
selects only a relatively short region of states in
k-space in which ui > (). These are the states with
&, > 0 (above the FS). For the majority of states
integrated over at E < 0 (negative bias voltages,
see again Figs. 7 and 9,c¢) the second term of (5)
contributes to the DOS because of &, + E). In
this case, as one can see from Figs. 7, 9,¢, and 14,5,
IT .| selects out a large region of k states where
vik > 0, in fact, equal to one. These states are below
the Fermi surface, where §, < 0. The overall effect
then is to have a large negative bias conductance
compared to the positive one. This is true for both
s- and d-wave symmetry. Hence, the underlying
asymmetry of the conductance peaks is primarily
due to the band structure ,, and d-wave symmetry
simply enhances the degree of asymmetry of the
peaks. So, the asymmetry of the peaks, which exists
for both s-wave and d-wave symmetry, is sensitive
to the band structure &, .

In summary, by changing of the energy gap 4 in
HTSC one may model the influence of nonmagnetic
impurities on the DOS. We consider that the asym-
metry of the quasiparticle peaks is due to the
specific features of the energy spectrum of HTSC
and that the d-wave gap symmetry only enhances
the peaks asymmetry.

Fizika Nizkikh Temperatur, 2001, v. 27, No. 1

The absence of the VHS peak on the experimen-
tal dI/dV charactristics means the large enough
lifetime broadening factor I' in HTSC.
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