Fizika Nizkikh Temperatur, 2000, v. 26, No.12, p. 1197-1201

On the theory of carrier-induced ferromagnetism in
diluted magnetic semiconductors

Yu. G. Semenov

Institute of Semiconductor Physics, National Academy of Sciences of Ukraine
Prospect Nauki 45, Kiev, 03028, Ukraine

S. M. Ryabchenko

Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauki 46, Kiev, 03028, Ukraine
E-mail: ryabch@iop.kiev.ua

Received May 15, 2000

Two different approaches (presented in the literature as alternative approximations) to the problem

of carrier-induced ferromagnetism in the system of disordered magnetic ions of a diluted magnetic

semiconductor are analyzed. They are based on a self-consistent procedure for the mean exchange fields

and the RKKY interaction. Calculations in the framework of exactly solvable model are carried out, and

it shows that these approaches stem from two different contributions to the magnetic susceptibility. One

stems from the diagonal part of the carrier—ion exchange interaction and corresponds to mean field

approximation. The other one stems from the off-diagonal part of the same interaction and describes the

indirect interaction between localized spins via free carriers. These two contributions can be responsible

for the different magnetic properties. Thus, the aforementioned contributions are complementary but not

alternative to each other. A general approach is proposed and compared with different approximations

to the problem under consideration.
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Introduction

In recent years, there has been a substantial
increase of interest in studies of carrier-induced
ferromagnetism in diluted magnetic semiconductors
(DMS). A number of works (see [1] and references
therein) present proof of the existence of a ferro-
magnetic transition in the DMS Pb1_x_ySn Mn Te,
induced by strong exchange interaction ofy the Mn
ions with the band holes. A ferromagnetic phase
transition was also found in p-doped DMS quantum
wells [2]. The carrier-induced ferromagnetism was
observed in the DMS (Ga,_ Mn )As with x of a few
percent, where holes are associated with the Mn
ions in these structures [3].

To describe the transition to a ferromagnetic
(FM) phase induced by free carriers, all of the
authors of the aforementioned works used similar
approaches: the role of band carriers was reduced to
induction of the indirect interaction between loca-
lized spins through electrons (holes) (LeL interac-
tion), known in the physics of metals as the RKKY
(Ruderman—Kittel-Kasuya—Yosida) interaction [4].
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Then magnetic ions were considered as a subsystem
separated from the electrons (holes) because of
small free carrier contribution to the total magneti-
zation of the system. The consideration of magnetic
ions with the RKKY interaction in terms of the
Curie — Weiss field permits one to incorporate in it
the spin—spin interactions caused by other mecha-
nisms (LL interaction). The latter mechanisms are
assumed to result in a temperature shift ©;; in the
Curie law for the magnetic susceptibility without
free carriers, )(_1 0T -0,; . Thus, the electrons
(holes) change this dependence by the additional
shift ©; ; [1]:

-1
X 0T-0©,,-90;,; (1)

Since for Mn-based DMS ©;;, <0 while ©7,.1 >0,
the FM phase transition can take place if ©; ,; >0, |.

Another approach to the problem under consi-
deration was developed in Refs. 5,6, where the
carrier—ion exchange interaction was treated in terms of
a self-consistent mean field approximation (MFA).
Indirect Lel. interaction does not appear in this



approach, but the free-carrier contribution to the
thermodynamic potentials was taken into account in
the MFA. As a result, this theory predicts a tem-
perature shift @, in the Curie law:

-1
X'0T-0,, -0, (2)

Now we would like to emphasize that the values
of temperature shifts ©, ,, and ©,, calculated
under some additional (but common enough) as-
sumptions coincide with each other for 3D, 2D, and
1D electron gases [2]. This coincidence can lead to
the spurious conclusion that the MFA and LeL (or
RKKY) interaction considered in the Curie—Weiss
field approximation are of an identical nature. This
paper draws attention to the fact that free carriers
still cause a significant contribution to the thermo-
dynamic potentials even after the Lel. interaction is
taken into account. This contribution treated in the
MFA is not identical to the Lel. (or RKKY) inter-
action. This last statement becomes clear if we take
into account that the Lel. (RKKY) interaction
appears after partial diagonalization of the interac-
tion Hamiltonian with respect to space quantum
numbers (the electron wave vectors k in the case of
the RKKY interaction). While the MFA approach
(Refs.5,6) uses only the diagonal part of the inter-
action and therefore does not depend on the spatial
configuration of the magnetic ions. So, it is possible
to imagine a physical situation in which the MFA
contribution exceeds the RKKY contribution to the
magnetic susceptibility. Thus the main result we
want to prove below can be reduced to the state-
ment that the static magnetic susceptibility depends
significantly, generally speaking, on both @, and
OLel -

The structure of the paper is following. First we
illustrate our approach to the model allowing exact
statistical calculations. Then we consider more rea-
listic system that is related to experimental situ-
ation in [1-3]. In conclusion we discuss the general
approach to the FM phase transitions in the DMS
and compare our approach with the works devoted
to this problem.

Magnetic susceptibility in exactly
solvable model

The Hamiltonian of our model is similar to that
applied in the aforementioned works and comprises
a sum of localized spin moments (LSM), electrons,
and their interaction Hamiltonians:

H=H +H +H, , (3)

where
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Here Sf is the Z component of the jth LSM spin,
while M, —Z SZ,]—1 , N, ; N, is the num-
ber of LSMS 1n the system; g, and 00 =g,MpB are,
respectively, the LSM ¢ factor and Zeeman split-
ting in the field B; w, is band electron Zeeman
splitting in the field B. Three quantum numbers can
be attributed to electrons: band number b, intra-
band quantum number k, and projection of spin
o=x1/2; ab ko and a, o are the creation and
annihilation operators; J is the carrier—ion exchange
interaction constant; the normalization factor N,
equals one-half of the number of electronic states in
each of bands b, and Ab,b' is an interband transition
matrix element.

The structure of Hamiltonian (3) is similar to
that in [1-3,6]. The difference is both in the disper-
sions of band carriers, € k= p s that corresponds
to flat bands, and in the lack of intraband exchange
scattering. The exchange scattering between bands

b and b’ is taken into account by the matrix element

A,
b’ff we restrict ourselves to only two electronic
bands b = 1, 2, the diagonalization of the Hamil-
tonian becomes trivial. Eigenenergies E are defined
by the repopulating of electrons within bands b = 1
and 2 as well as by normalized amount of ions spin
projection u =M, /N, . For simplicity we assume
Ay =1 Thus, the energy of unit volume reads:

E,=ne, +£)/2+(G, +w)(n,, —n, )+

1 2D1/2
O
t(AE/) A +G 00 +wnru.  (4)
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The signs «—» and <«+» correspond to b= 1 and
b= 2; AE is the energy interval between these
bands; ny, and n,_ are concentrations of electrons
with spin projection o=+1,/2 and -1,/2 in
the band b, the total electron concentration is
ny =mn,, +n,_; G, =Jxp is an effective exchange
field of magnetic ions acting on electrons,
x=N, /N, is the fraction of magnetic cations in
the crystal, n,, and N, are their concentration and
total number, and N, o is the total number of cations
in the crystal.
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Since value of G, is infinitesimal at T > T (T,
is the FM phase transition temperature) and B - 0,
the square root in Eq. (4) can be expanded in the
small parameter (G, /AE)? up to the first nonvan-
ishing term. We will also assume that only the
lowest energy band b = 1 is filled, i.e., AE >> kT.
Then the energy spectrum assumes following form:

E=ng +nG,0,+w n i -nG;/(40E) . (5)

For brevity, we introduce the total concentration of
electrons n, = n,_, and the average projection of
electronic spins 0, = (n* — n7)/2(n" + n"); the elec-
tronic g factor is assumed to be equal to zero.
There are two possible courses of further action.
The first one (following Refs. 1-3) is to restrict
consideration to the magnetic ions only. This re-
striction means consideration of only the last two
terms in Eq. (5). The second way [5,6] is to
consider only the first three terms. Note that last
term in Eq. (5) is just the contribution to the
energy from the LeL. spin—spin interaction induced
by the band electrons, because G% 0z SfZSfZ'
while all the rest of the terms are due to the
electron and LSM energies with the diagonal part of
their interaction. We consider a third approach that
takes into account the full energy of the system (5).
For magnetic susceptibility calculations we need
the partition function. This function has the form

Z =JI UNm(ML) UNe(MB) e E/RT dM dM, | (6)

and can be immediately calculated with the help of
Eq. (5). The projections of the total LSM spins
M, =N, W and the band electrons M, =N o, are
introduced in Eq. (6). Beyond magnetic saturation,
the statistical weight U,(M) is given by a Gaus-
sian distribution in the thermodynamic limit
N, - o N, - o[7]

m

es+ )N M
=y
S

where A = 23 S(S + 1)N. Equation (7) is also ap-
plicable for band electrons with S = 1,2 if the
electrons obey Boltzmann statistics. Such an ap-
proach is evidently realized in the limit N, << N .
Thus, the partition function Z is calculated by
straightforward integration in Eq. (6) with the
aforementioned assumptions. After some algebra we
arrive at following final result:
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where Xo.1 = 73 8(S + 1)(guB)2nm/T is the para-
magnetic susceptibility of noninteracting 1.SM, and
Q, is the volume of the unit cell.

Calculations in the framework of the approach of
Refs. 1-3 reproduce the result (8) but without the
last term (©,,,/ T)?. This term appears as a contri-
bution of free carriers to the thermodynamic poten-
tial due to diagonal part of the carrier—ion exchange
interaction H,, (3). One can see that the diagonali-
zation procedure does not remove this term, and
therefore the Lel. interaction can never take it into
account.

Another approach [5,6] treats the interaction
H,  in the first order of perturbation theory only.
As a result, the last term in Eq. (5) does not
appear, and therefore ©; ,; =0 in Eq. (8) for our
model. It is interesting to note that, in spite of the
extreme simplicity of the model under considera-
tion, the expression for ©,,r in Eq. (8) reproduces
the result of [6] obtained in terms of self-consistent
exchange fields for a more realistic situation.

One can see that expression for ©, . (8) is
neither quantitatively nor qualitatively similar to
©;,; - It permits one to make following general
statement. For problems of magnetic phase transi-
tions, magnetic susceptibility, magnetization, etc. it
is important to simultaneously take into account the
contributions of both the magnetic ions and electron
subsystems to the thermodynamic potentials despite
the negligible magnetization of the free carriers. In
doing so, it is also important to take into account
both the diagonal and off-diagonal parts of the
carrier—ion exchange interaction. The omission of
any of the aforementioned terms in the Hamiltonian
leads, generally speaking, to significant inaccuracy
or even to qualitative changes.

General approach to calculation of
crytical temperature

We present now the correct consideration of the
problem of spontaneous magnetic transitions in-
duced by band carriers in DMS. We choose the
Hamiltonian in a form similar to (3) but incorpo-
rate the LL spin—spin interaction H;; between the
LSM in the magnetic part H, and the intraband
exchange scattering between Bloch electron states
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in the interaction H, [8]. In such a case the
intraband exchange scattering generates the ILelL
interaction. To calculate the magnetic susceptibility
with the help of the modified Hamiltonian (3), we
shall carry out the approximate diagonalization of
Eq. (3) by elimination of its off-diagonal (in k and
k') components by the canonical transformation
method [9] in the second order of perturbation
theory. As a result, the effective Lel. spin—spin
interaction operator assumes the form

Hp =5 J 4RSS, (9)
i
where R; ., is the radius vector joining the pairs of
magnetic ions at the crystal lattice sites j and j'.
The structure of the indirect interaction (9) is
similar to the Hamiltonian H,,, so they can be
joined. The specific form of J off(R; ;) in Eq. 9
depends on the degeneracy of the electron gas [10],
the influence of magnetic field [11], the effect of
casual anisotropy [12], the structure of the energy
band of the semiconductor [1], and the dimension-
ality of the system [2].

Then, the diagonal part of the operator H,,
should be written in the form of the Zeeman energy of
the LSM in the effective field B, =JQ, 0,/g, Hp
and added to the Zeeman term of the magnetic
Hamiltonian H, . We should emphasize here that
B, is similar to the Knight field in nuclear magne-
tism. The LSM g-factor shift induced by the field
B, has recently been observed in DMS [13].

One more standard step is the transformation of
the spin—spin interactions in H, to the energy in
the Curie— Weiss fields. It is well known that such
an approach reduces the thermodynamical treat-
ment of interacting spins to consideration of isolated
spins with an effective temperature Ty = T — ©. The
parameter @ =, , + O, ; is determined by both
the LL and the LeL interactions (Eq. (9)).

As a result, the free energy can be presented in
terms of the electronic and ionic parts only [14]:

F=F(o)+F (B+JQo, /g H,,T-0), (10)

where F (B+B,,T -0) is the contribution of
noninteracting (isolated) spins subjected to the uni-
form magnetic field B + B, at the temperature
T - ©. Note that Eq. (10) takes into account both
diagonal (the term B, =7Q0,/g,Hp) and off-di-
agonal (the term ©, ,,) parts of the carrier—ion
exchange interaction. The electronic spin polariza-
tion g, is found by minimization of the functional
(10). Further substitution of G , obtained in such a
manner to Eq. (10) defines completely the thermo-
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dynamic characteristics of the system: the magneti-
zation M, =-0F/0B,; magnetic susceptibility
Xoa =~ 62F/6B O = x, y, z; and the temperature
of the magnetic phase transition 7', .

The specific form of the free energy functional
(10) depends on the aforementioned and many
other peculiarities of our system. As an illustration,
we consider now the most popular case of a degen-
erate electron gas in a simple isotropic band of a
semiconductor. We consider the magnetic transition
temperature T, on the basis of the previous results
[1-3,6]. Equation (10) permits one to obtain the
following equation for the critical temperature
point:

(Typ), —©p =0 (11)

Here ©,, is given by the corresponding formu-
las of [2,6], and (T),=T,~©;; =~ Oprry
where ©, ; = Op -y for the specific case consid-
ered. The parameter O 4y coincides with ©, .
only under the assumptions mentioned in the intro-
duction to this paper. Parameter ©,, should be
taken from the experiment, ©,, =—T,, where
T, >0 corresponds to the antiferromagnetic LL
exchange interaction realized in the majority of
experimental situations for DMS (see Ref. 15 and
references  therein). We can thus obtain
T, =20y~ T, . If one takes into account only
self-consistent exchange mean fields or RKKY in-
teractions, the value of T, is determined by a
different expression: T, = O, — T, . This differ-
ence can be important in the prediction of condi-
tions for the realization of carrier-induced ferromag-
netism in different experimental situations.

Conclusion

We have shown that neglecting the electronic
contribution to the free energy (10) leads to a
substantial lowering of the predicted T, value de-
spite the consideration of the indirect interaction
via free carriers. Moreover, the example considered
shows that such neglect can lead to qualitatively
different results in some cases. The present work
also shows that different parts of interaction opera-
tor are responsible for different mechanisms of FM
ordering in DMS. Therefore, both diagonal and
off-diagonal (in k) parts of the carrier—ion ex-
change interaction are important. Nevertheless, the
main conclusion of previous works remains valid:
carrier-induced FM transition in DMS is possible
under high enough carrier concentrations, and re-
duction of the dimensionality of the system en-
hances this effect.
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