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The magnetic properties of oxygen pair clusters are investigated theoretically for different cluster
geometries which can be realized by doping molecular cryomatrices with oxygen. Anomalous temperature
and pressure behavior of the magnetic susceptibility, heat capacity, and entropy is predicted. It is
proposed to use these anomalies for studying the parameters characterizing the oxygen clusters and the
parameters of the host matrix: the effective spin-figure interaction constant D for the molecule in the
matrix, the exchange parameter J, and the number of pair clusters N_, which can deviate markedly from
the purely random value N_= 6N¢& (N is Avogadro’s number, and ¢ is the molar concentration of the
impurity). The data on the magnetic susceptibility may be used to analyze the character of the positional
and orientational short-range order in the solid solution. The value of D contains information about the
orientational order parameter; the distance and angular dependence of the exchange interaction parame-
ter is still a subject of discussion in the literature. The tempearture dependence of NP contains
information about diffusion and clusterization processes in the system.

PACS: 36.40.Cg, 65.40.+¢g, 65.40.+m, 75.40.Cx

1. Introduction

The study of the properties of cryocrystals doped
with impurities is a well-known source of informa-
tion about the impurity molecules isolated in the
matrix. At the same time, rich information can be
extracted from these studies on the matrix lattice
dynamics and about the interaction of impurity
molecules with the matrix and with each other.

Among of the most interesting in this respect are
oxygen molecules, which are frequently employed
as a probe of properties of atomic and molecular
cryocrystals. As we know, O, in the electronic
ground state has spin S =1 and is therefore para-
magnetic. The triplet ground state of O, , 32; , is
split by the intermolecular spin—spin and spin—orbit
interactions into a singlet with M = 0 and a doublet
with M = £ 1. The splitting for the free particle
(the so-called spin-figure constant) amounts to
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D, =5.71 K [1]. Upon introduction of O, into a
cryocrystal matrix, quasilocal levels appear in the
low-energy part of the spectrum. As a result, such
crystals display low-temperature anomalies in their
thermal, optical, and magnetic properties.

One of the most studied is the N,-O, system.
Studies by Burford and Gracham [2], Sumarokov et
al. [3], and Jezowski et al. [4] were devoted to the
specific heat and thermal expansion of solid nitro-
gen containing oxygen impurities. The anomalies
found in those works correspond satisfactority to
the Schottky curve with a twofold degenerate upper
level and splitting D = 5.14 K. The difference be-
tween D and D, results from the fact that the
effective magnitude of the spin-figure constant for
the embedded molecule in a crystal is renormalized
by librational motion of the oxygen molecule [5].



With increasing concentration of the impurity,
an observable number of clusters of exchange-cou-
pled molecules appears. Their appearance affects
the position and magnitude of the impurity anoma-
lies, since the magnetic spectrum of a cluster differs
from that of a single molecule [6,7].

Some futher information on the impurity spec-
trum in N,~-O, solid solutions was obtained in
EPR [8,9], optical [10,11], and thermal conducti-
vity [12] studies.

There are several experimental studies of the
magnetic susceptibility of cryocrystals doped with
oxygen impurities [13—15], but in the absence of a
theory of the magnetic properties of such solid
solutions, little information was extracted from
these studies. At the same time, magnetic systems
containing magnetically active molecules or molecu-
lar groups can exhibit unusual magnetic properties
[16,17] as compared with ordinary magnets. In
addition to solid oxygen and oxygen-containing
solid solution of cryocrystals, some alkali hyperox-
ides are examples of such magnetic systems. The
magnetic Hamiltonian in this case contains a new
parameter, the angle 8 between molecular axes. For
matrix-embedded oxygen clusters this parameter is
matrix-dependent. For example, in the case of
a fluorine matrix, the angle 0 is close to zero
(the collinear cluster), for an a-nitrogen matrix,
0 Elarccos (1,/3), and for a y-nitrogen matrix,
0 Elmt/2 (the orthogonal cluster).

In comparison with heat capacity studies, the
magnetic measurements can be performed in high-
pressure conditions, which makes it possible to use
oxygen molecules as a probe for cryocrystals under
high-pressure conditions.

In this paper we obtained exact analytical ex-
pressions for the contribution of a pair oxygen
cluster to the magnetic susceptibility as a function
of the parameters of the magnetic Hamiltonian —
the intermolecular exchange interaction constant,
the spin-figure constant, and the angle 6 between
the molecular axes. It will be shown that the
magnetic susceptibility is very sensitive to changes
in these parameters, and it is this sensitivity that
makes the magnetic susceptibility an additional
convenient characteristic for studying properties of
both the host matrix and oxygen clusters. The most
peculiar anomalies in the behavior of the magnetic
heat capacity and magnetic entropy will be dis-
cussed in brief.

2. General equations

The spin Hamiltonian of an exchange-coupled
pair of oxygen molecules can be written as [3,7]
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H=Ho+ I (2.1)

2
H = DI(S;n ) + (Sn,)* = 5SS+ 1)] .(2.2)

H _=JSS,, (2.3)

where D is the spin-figure constant, S, are spin
operators (S =1), n, are the unit vectors of the
molecular axes, and J is the exchange interaction
constant.

In a magnetic field H = Hj, where j is the unit
vector along the magnetic field, the Hamiltonian
(2.1) acquires an additional term, the Zeeman en-

ergy

I, =~ gHS, +8S,) , (2.4)

where | is the Bohr magneton and g is the split-
ting factor.

An exact analytical expression for the zero-field
magnetic susceptibility for the system described by
the Hamiltonian (2.1) can be obtained by using
perturbation theory, with Eq. (2.1) as the unpertur-
bed Hamiltonian and the Zeeman interaction term
(2.4) as the perturbation [18]. The total Hamil-
tonian for the system in the magnetic field is

Hyp= Hyr Hr 7 25

Let E; = E,(H) be the set of eigenvalues of f{ot.
Then the free energy %, the magnetic moment M,
and the magnetic susceptibility X are given by the
equations

F=-T ane_BEi(H) : (2.6)
1 .
M= oF__ z e PEMD 2.7)
H i
2
_oM _ 1 Z o BE(H) |
oH Z aH2
2 2
DF [ oF,
+ B 3 F o BE®E) _ B @ o PE, (H)D
Z & 9H 7> & 0H H’
o 0
(2.8)

where B =1,/T, Z = z exp (-E; /T).
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The energy corrections to the eigenvalues of the
unperturbed Hamiltonian can be written in the
form of a series in the magnetic field:

o)

E(H) = E© + Z(uBg)kaika .9
k=1
Taking into account the relations
oF; 2 k k-1
= Sy a, ki
k=1 (2.10)
’E, oo
o ka“Bg) a,, Kk = DH

we get the final expression for the zero-field mag-
netic susceptibility

14?0 O
X(T)H: 0 (HBQ) L 2@ @ (211)
where
1
@?1D= ZZ 01.21 exp (- E,/T) ;
‘ (2.12)

1
[&;,0= zZ a;, exp (=E,/T) ;
i

The last term in Eq. (2.8), which is the squared
magnetic moment, vanishes in the limit of zero
magnetic field (there is no spontaneous magnetiza-
tion in the system under consideration), i.e., the
following equality holds:

0
z a ePE =0
i1
i

Thus the zero-field magnetic susceptibility is de-
fined by the eigenvalues E} (0 and by the coefficients
a;, and a;, which determlne first- and second-order
correctlons in the perturbation theory.

The eigenvalues E gO) determine the magnetic part
of the impurity contribution to the heat capacity
and entropy. The magnetic heat capacity is given by

the expression

(2.13)

Co 1,
- =5 [E'D- Ed,
g T

(2.14)
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where

1
E20= 7 Z El.2 exp (-E,/T) ;
' (2.15)
1
(E0= 7 z E. exp (-E /T) .
i

In a similar way, the magnetic entropy is given by
the expression

S
k—m =lnZ+ %D .
B
Thus, Egs. (2.11), (2.14), and (2.16) give the con-
tribution of the discrete set of magnetic energy
levels to the magnetic susceptibility, magnetic heat

capacity, and magnetic entropy, respectively.

(2.16)

3. Spectrum of exchange-coupled O,-O, pair

in zero magnetic field

In order to calculate the coefficients a,; and a,,
one needs to have a complete set of eigenvectors and
eigenvalues of the unperturbed Hamiltonian (2.1).

The symmetry group of the Hamiltonian (2.1) is
D,, [7], that is, the system under consideration has
three mutially perpendicular twofold symmetry
axis. Let us transform the coordinate system in such
a way that allow us to use the symmetry considera-
tions explicitly. First of all, we execute a parallel
translation, making the centers of mass of the mole-
cules coincide. This transformation does not change
the symmetry of the Hamiltonian (2.1) and thus
does not change the spectrum of the system. Then it

4
22
6/21 0/2
N
X
Fig. 1. Coordinate systems related to the molecular axes.
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is natural to choose the coordinate system x,y,z
with the molecules lying in the xz plane and with
the z axis directed along the bisectrix of the angle
between the molecular axes.

Let us introduce two intrinsic coordinate systems
(1,92 and (xy,y,,2,) with the local 2z axis
rotated with respect to the z axis by the angle
+6/2 in the xz plane, so the local 2z, axis is
directed along the axis of the ith molecule (Fig. 1).
The relation between the components of the spin
operators in the fixed and rotated coordinate sys-
tems are:

1y 1y1

S, =-S5, sin-+.S cosg'

1z 1z, 2 1z, 2’ (3.1)
S, =S, cosO-S sinD;

e = 2, cos - 5, S5

S2y = 2y2 !
S. =5 sin 9 +S. cos~
2z 2x2 ! 2 222 2

Replacing the Cartesian spin components defined in
the intrinsic coordinate systems by cyclic spin com-
ponents according to the relations:

_

Sy =
V2

- oh . R SO
(51_51)’52352_72 (5,59

b oo o+
S =772(S1+S1) ;S

_b e ot
1y, "72(52+S2)’

2y2
(3.2)

we transform the Hamiltonian (2.1) into the form

2
— 2 2 _ 2 Uy 7O -
_ﬂlDﬁurS% 356+1E+ﬂf%%6m59
- . [ P
= (8755 + S1Sy) cos? 5 = (S7S; +S157) sin® ) +

1 - + - .l
t oy HS - 52)5121 -8 - SDSZZBsm BH(3_3)
From the nine states | S, d S, Oof the 0,-0,
1 p

pair (S, , S,, =0, £ 1) that realize the reproduc-
2

b
121

ible representation

r= 4A1g + 2B1g + Bzg + 233g , (3.4)
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we can form 9 orthonormal basis functions @, that
transform according to the four irreducible repre-
sentations of the group D, (see Appendix A).

Because of the symmetry, the matrix elements
of the Hamiltonian (3.3) between states ®, that
transform according to different irreducible repre-
sentations are zero. As a result, the Hamiltonian
matrix in the basis of the functions ®; assumes the
block-diagonal form

P, 0 0 00O
0 T2 0
Oo #, o o0O
P " 5 39
go o0 %3 0
0 g][ 0
0o 0 0 /, O
O 190
where
% =D+];
29
P _ D -JcosH -Jsin® 0O
w B-Jsin® 2D +]cosB
P _D+JcosH Jsin® O
B, Ejsine 2D - J cos GE’
E 0 -J J cos 6 0 E
P _g -/ 2D J cos 6 0 0
g %cosﬁ J cosB 2D —V2J sin BE'
0 - ; - O
u 0 0 v2Jsin® D-J g
(3.6)

The constant term (2,/3)DS(S + 1), which deter-
mines the reference level for the spectrum, was
omitted in transforming the Hamiltonian (3.3) into
the form Eq. (3.6).

For two interesting cases, 8 =0 (the collinear

cluster) and 6 =1/2 (the orthogonal cluster), all
the unperturbed eigenvectors and eigenvalues can
be found in an explicit analytical form, which in
turn permits finding analytical expressions for the
zero-field magnetic susceptibility. In the general
case, analytical expressions can be found for the
eigenvectors and eigenvalues corresponding to rep-
resentations B1g, Bzg , and Bsg , and the rest can

be found by numerical diagonalization of the
Hamiltonian 7‘(4 (Eq. (3.6)). The eigenvectors
tg

and eigenvalues are given in Appendix B.

The spectrun of an exchange-coupled pair of
oxygen molecules as a function of the parameter
J/D for different angles between the molecular
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Fig. 2. Energy spectra of exchange-coupled pair oxygen clus-
ters. Dependence of the energy spectrum on: the angle between

the axes of the molecules (J/D = 1) (a); J/D for the collinear
cluster (b) and for the orthogonal cluster (c).
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axes is shown in Fig. 2. Figure 2,a illustrates the
sensitivity of the spectrum to the parameter ©.
Figures 2,b,c give the spectrum as a function of
J/D for the collinear and orthogonal cluster, re-
spectively. In the region J /D << 1 for all angles 8,
the spectrum of the cluster is close to the spectrum
of noninteracting molecules, and the effect of the
exchange interaction is small. In the opposite limit-
ing case J/D >> 1 the behavior of the spectrum is
also in fact universal for all angles. In the limit
J/D - oo the nine levels of the (325) (SZ;) ground
state of the pair split into a quintet of energy +/
(states with the total spin of the pair S =2), a
triplet of energy —=J (total spin of the pair S =1),
and a singlet of energy —2J (total spin of the pair
S =0). In the region J/D [11 the spectrum of the
cluster depends essentially on the angle between the
molecular axes.

At low temperatures the thermal properties of
the system (the heat capacity and the thermal
expansion) are determined primarily by the gap
between the ground state and the first excited state
of the system AE. This value depends essentially on
both J/D and 6. Near 6 = 1/2 there is a certain
range of 6 where the two lowest levels as a function
of J /D intersect. At 8 = /2 the intersection takes
place at J /D = 3/4 (Fig. 2,c).

It is this sensitivity of the low-temperature ther-
mal properties of the system to the position and to
the value of the energy gap AE as a function of
J/D and 0 that was used in Refs. 3,7 to obtain
information about the dependence of the exchange
interaction of oxygen molecules on both the inter-
molecular separation and the intermolecular orien-
tations.

As will be shown below, the zero-field magnetic
susceptibility is strongly J/D and 8 dependent; as
a result, the low-temperature zero-field magnetic
susceptibility can be used as a source of information
on the peculiarities of the O,~O, exchange inter-
action.

4. Zero-field magnetic susceptibility

4.1. Collinear 0,-0, cluster (8 =0)

Transverse susceptibility (X, = X ’ ). The spin
spectrum of a collinear O,-0O, clusf;/er consists in
general of three doublet levels and three singlets. In
the limit J /D = 0 corresponding to a pair of nonin-
teracting molecules, the nine levels of the system
are split into the ground-state singlet and two
quadruplets; in the opposite limit J/D = the
spectrum consists of a singlet, a triplet, and a
quintet (Fig. 2,a). An additional degeneracy occurs
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at J/D =1/2 and J/D =1. All these particular
cases should be considered separately.
It is easy to check that all the energy corrections
of the first order are zero:
AED = |
1 1

I, | WO=0 . (4.1)

The energy corrections of the second order can be
found from the equation

WA |

AE® = M (4.2)
1 0 _ EO
k#i i k

in the case of nondegenerate levels; in the case of

doublet levels the energy corrections can be found

from the secular equation

D HOH " HH" O
e R
0 0 0 0
¢m Egn) E( ) Zm E&n) EE )E
= (),
E y_[ﬁlﬂfm y_lgl]_[;n E
D) 3 - 820
o 2 EQ - O & EO - O 0
0 l¢n l I#n “pn I 0
0 0
(4.3)

where W, and EgO) are listed in Appendix B.
As follows from Eq. (4.1),

a§1)=0,i=1,2, .,9. (4.4)

After finding the matrix elements with the help
of W, given in Appendix B, we get from Egs. (4.2)
and (4 3) the set of coefficients a(z)

a(12) = ag) = —% . dP =0

) 2 ’
@-,0-,0=1
ajy’ =ag’ =ag =D
1 (02 1,/2 -1
0.2 E) M _J, 9,07 370
7 7D 1 D 4 pn2d T o2pU-
Djz+ (E(70))2DD D 4DD 2DD
1T (02 1/2 -1
o2 Yk Eﬁ-i&fi% +378.
8
D12+;(E§30))2D]] D 4DD 2DD
(2) = @(2) + 0(2)@
(4.5)

A sum rule holds for the coefficients a§2) :
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Y a? =0 (4.6)
1
Taking into account that all the a§1) coefficients
equal zero (Eq. (4.4)), the transverse zero-field
magnetic susceptibility for a collinear cluster is
described by the expression

z aEZ)e BE
Xg=~ 2(“39)2 lﬁ :

¢

Let us consider now the limiting cases J/D - 0
and J/D - . Generally speaking, since the spec-
trum for each of these cases has a structure that
differs from that considered above, each of them
should be treated separately. In fact, the result may
be obtained from the same Eq. (4.7) if we find the
corresponding limits. Really, the only condition to
be met is the condition of applicability of the
perturbation theory, i.e., the separation between
levels, which we consider as belonging to different
zero-order energies, should be large compared with
the perturbation energy. In the case J/D - 0 the
separation between the levels which tend to form
quadruplets goes to zero as J, so the following
inequality should hold:

(4.7)

J>> pygH . (4.8)

Thus, in passing to the limits //D - 0, H - 0
in Eq. (4.7), we must take them in such a way that
the inequality (4.8) is obeyed.

When J/D - 0, D # 0 the limiting values of the
a§2) and EgO) are as follows:

A2 -y @-,o-_1.

8 D' 8 % 9 D’

@ -, - ©0) = ) = g0 = g0 = .
ay’ =a; =0 EV=E"=E”=E"=D;

1
- - - 2 _-_".
a3 =ds” =dg" =dz;" =15
E(SO) = Ego) = E(GO) = E(70) =2D .
(4.9)

As a result, we get

1-ePD

1+ 2¢7PD

which is twice the transverse susceptibility for a
molecule described by the Hamiltonian #/= DSZ2 .
When D - 0, ] #0,

1
Xy = 4p9)° 1 . @10
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@__9 O — 74,25,
07 - E7 —J+3Dv

o|

a® =0, E 0)=-2]
(4.11)
As a result, we get

—BJ 1+5 e_ZBJ
1+3e P 4+ 5e7W

(4.12)

5 1
0 = 2(“39) T e )
the magnetic susceptibility of a Heisenberg antifer-
romagnet pair cluster.

In the low-temperature limit BAE >> 1, where
AE is the gap between the ground and the first
excited levels, taking into account only the two
lowest levels, we get

X(T — 0) =
0 0 AE
— 2 (2) O at
= 2,0 3 + §o|a<2>| -2 37D
0 O 0
9 .07 7
A= -DI+3J%0 -y, 43
| 0
where ag) is defined by Eq. (4.5).
The zero-temperature limit
X(T = 0) =
(]+ E(O)) 9 .42 3 541
= 4(1,9)” 7(0) 2-DI+2 % +5 50
T2+ 5 (B9 m 0 0
(4.14)
where the ground state energy
1 9 5,12
Eg=+D=oJ-(D*=DI+3")" . (415

In the limiting case of small and large J /D we get

N Jo J
aH - 250 p ==t
o 5, 4 OO O
XD(T_O)_(“Bg) ED 3
il T
astyd > D
(4.16)

Thus, at small J/D, the zero-temperature trans-
verse susceptibility decreases linearly with rising
J/D, but at large J this quantity is practically
suppressed.
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In the high-temperature limit BAE >> 1, ex-
panding Eq. (4.7) in powers of inverse tempera-
ture, we get corrections to Curie law:

_4 21
D_g(“Bg)?

D1 Ol 2, 2 1 'D1 0

x%[+ D+fD]+f] + .
0

. gfs 9 6 .
(417)

The expression in curly brackets gives the correc-
tions to the Curie law.

Longitudinal susceptibility. As in the case of the
transverse susceptibility, the coefficients 051) and
052) can be found from the first- and second-order
energy corrections. As a result, we arrive at the
following sets of coefficients a,g” and agz):

a(11) = ag) =1; ag) =2 a(41) = ag) =-1;

(4.18)
ag) =-2; a(51) = ag) = ag) =0
All the coefficients agz) vanish in this case:
d?=0, i=1,..,9. (4.19)

Substituting the coefficients a§1) from Eq. (4.18)
into Eq. (2.11) and taking into account Eq. (4.19),
we arrive at the following expression for the longi-
tudinal susceptibility:

o 2(1,9)° BO-T) 4 o BOH) g BRDH)
Xi=X2= "7 5 ¥, '
7 (4.20)

Considering that in this case the perturbation ope-
rator Eq. (2.4) commutes with the spin-figure in-
teraction Hamiltonian #, , the result (Eq. (4.20))
can be readily obtained by employing the fluctua-
tion-dissipation relation [19]

(y9) Sp (52, +52) P

X:= T sp P V74

4.21)

At low temperatures the longitudinal susceptibil-
ity exponentially goes to zero:

Hz9)° 0 1 12 JO
- B 2 20
X..= 2 T exp g B) - DI+ 7] 5%
(4.22)
The high-temperature expansion has the form
1035
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4 s1o o 2
X, =3 Mp9) 7 Ol-ED+35 /o +

-3 TH B3

Lot 4 1 >0t 0
—D*+-DJ-~J +..7. (4.23)

H 18 9 6" Hr2 E

At J =0 Eq. (4.20) reduces to
1 e BD
=4 2o (4.24)
X,, =4 9)" 4 90D

which is the longitudinal susceptibility for two
noninteracting molecules.

At D =0, Eq. (4.20) reduces to Eq. (4.12), the
magnetic susceptibility of a Heisenberg antiferro-
magnetic cluster.

Average susceptibility. The average or powder
susceptibility is given by the expression

1 2

X=§X|| +§XD . (4.25)

In the general case X is given by Eqs. (4.4), (4.5),
(4.7), and (4.20).
_ The low-temperature asymptotic expression for

X is

— 2
X{T — 0) = 5(9)°

'ﬂ\l>

.

O

(4.26)

where ¢{?) is defined by Eq. (4.5) and A, the gap
between the ground and the first excited levels, is
given by Eq. (4.13).

At zero temperature in the limiting case of small
and large J/D we get

xg|a<2>|+ P2 B oo -
bt Bl

D

Jo J
_255’ 5<<1
_ 8 ) 1 s
XT=0=5WMp9)" 5O 3
o Sy
F g D
(4.27)
i
0(12)=—(a§2) + 0(32)); a? =
3
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The high-temperature asymptotic expression for is
given by Egs. (4.17) and (4.23):

st et s D*+37* O

=sMp9) 7w -F-7g .5 *0

3 TH T B 7 .
(4.28)

As one can see, the factor that determines the
deviation of the average susceptibility from the
Curie law at high temperatures contains no terms
linear in the spin-figure constant D, at any rate in
terms up to T72.

4.2. Orthogonal 0,-0, cluster (6 =1/2)

The eigenfunctions and eigenvalues of the unper-
turbed Hamiltonian (3.5) can be found readily in
this case in analytical form (see Appendix B). In
order of decreasing energy, the sequence of terms is
as follows:

Eg2E,=E,2E,>E >E,=E,2E ,E,.
(4.29)

There are two doublets; for the others the equality
sign, where indicated is realized for the limiting
cases D =0 and J =0. The only crossing occurs
between the E, and Ey levels at J/D =3/4
(Fig. 2,¢). At J/D > 3/4 the ground level is the
E9 term, and otherwise it is the E term.

Calculation of the X, = X,, components. In the
general case (0 #0), classification of the compo-
nents into transverse and longitudinal loses mean-
ing, but in the case 8 = /2 the equality X,.. =X,
holds from symmetry considerations, so these com-
ponents, can be considered as an analog of the
transverse component, while Xyy is an analog of the
longitudinal component.

Let us consider first the general case of J /D; the
special case J,/D =3,/4 will be considered below.
We will proceed in the same manner as in the
previous Section. As a result, we get the following

sets of coefficients agn and agz):

(m, — Ly’
1 3 3
2 12
Ji%D%J% -5
U
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(L, = mm)? (1L, = mm.)*
a(42) - 2 o % 2 + (14 + m4)2 x
D _d o, 20 2, 20 D _d ». ;0 20
5 - gl +Jg +J - - D" +Jg ]
2 M H %3 O 2 H H %)
O (g = mg/N2) (l - m9/72)2 O
XEJ 4 1,/2 4 : 0 12 * J d D D1 9 1/2%
J _ o o0 y 1 9 o0 Z 1)2+j2 D? + D]+ J2 O
D gD +J°0 gD +2D]+4J|] 2 g g 0
g
2
CZgz) _ (sl - msms) (s, - / smy)’ o (L +m)? x
D d.p o0 5o 2D/2 D O 20 2, g’
St DI %)+] 7+gD+] g)+j
0 (I - m8/72) (ly — mg/V2)? 0
L . I N P i I I g )
Yt VRS VR N A DA S LA Tai
d 0 i 0 : s
2 2
= E (Llg = mymg) (Islg = mgmy) E.
6 0 1,2 1,2 D 1/2 1,20°
0D _d 2, 20 2, 20 —+D1D2+J2D -hr+’d O
g
2 2
0(72) __ E o 1_/27”4’”7) .\ (5L, _1”/2;7”7) E_
O 1/2 D o 1,20’
0P _d 2, 20 2. 20 S+ D+ PH + D20 O
D7_gD+JD+%)+JD 27| H P 0 0
g
2 tod
@=_4 _
4" = gs 72 80
9 9 90
: (I, +m) (Is + mg)” -
T - o 7 T dprer el praipr. ol
vV _ 2 201 2, 1 < 20 S+ Do+ ] +5 D +5DJ+ ] 0
o - oD+ o D°+o DJ+57°g 2 O E i 2 4 ED
g g g g
(4.30)
The magnetic susceptibility X, = X., is defined by
Eq. (2.11) with the coefficients agﬁ and agz) from 51 N 3 Lz J << 1
Eq. (4.30). o 220 8p2’ D
Since at J/D = 3/4 a change of the ground state Xe T =0) = %139 E pu 3
occurs, the zero-temperature susceptibility is de- U4 g% , J >> 1
fined either by a(72) or ag): % [1[ 0 D
(4.32)

P p <
X,.(T = 0) = 2(u, 9)* O o J 3 (43D
a,9| 5>Z

In the limit of large and small J /D we obtain
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It is interesting to note that the result Eq. (4.32)
for the orthogonal cluster is one-half of that for the
collinear cluster (Eq. (4.16)), a fact which can be
explained on purely geometrical considerations.

In the case J/D = 3/4 the ground state is dege-
nerate, and the coefficients a; and aq can be deter-
mined from the secular equation. As a result, no
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X, (T = 0) = (1,9) @7%’ a§ - (4.34)

As a result, the zero-temperature magnetic sus-
ceptibility given by Eqs. (4.31) and (4.34) is a
nonmonotonic discontinuous function of J/D at
J/D =3/4. The jumps in the X, vs J/D curve
smears out with temperature. This peculiar behavior
is displayed in Fig. 3,a.

X, component of the magnetic susceptibility.
Having found the second-order energy corrections
to the nondegenerate levels from Eq. (4.2) and that
to the degenerate levels from Eq. (4.3), we arrive
at the following sets of coefficients a§1) and agz):

1038

a b c
T/D=0.002 3r
Ny T/D=0.002
\§ ol
=
1 T/D=0.002
0 0.5 1.0 15 0 1.0 15 0 0.5 1.0 15
J/D J/D J/D
Fig. 3. Low-temperature magnetic succeptibility vs J/D: X, /X, (a); Xyy /%, (&) f/xu (¢), where X, = (ng)z/D.
a\1) coefficients appear for this degenerate case. The
1) (1) - (1)~ (1) _ (1) _
C(l)efficients a?) and ag) take the form: a(1 ) = aé) = 0(7) = aé) = ‘15(9) =0
7
1) — _ . 1) _ _ .
0 om D2 ay’ = 2 (lm, —1m,); a3’ = x(ljms~Ilm,);
@ = —(,@ 4+, @ _,O _9 4 5
a (a )_ a ad? Y + 40 0 x (4.35)
g ) 7(0) 9(0) 2 g 7(0) 9(0) |]9 2 0
2) _ 2 2N . 2) — (2) -
x% (L +my) (L, = mm)) @) == @ +dP); a) =af) =0
0 1,2 1,2
_ [ + (! —l
. (I + mg) (Il = msm.) EE 0(22) _ a(42) __ i (Iym, - 3) (Lymg ~ Lm ) |
1,2 1,2 ’ v 2
Q+D1D2+]2D + g)erJZD/ EE \/f)/4+]
2 T 0 O 0o
O u (1, - m)?
(4.33) ) =2 —t &
N R
where a(72(%)) , 05(92(%)) are the coefficients for the nonde- -J+ VD*+ ]
generate case. (I -m )2
The zero-temperature susceptibility at the level- 0(72) -9 — LT
crossing point J + D%+ J? (4.36)

In this case the coefficients a; and aq are unaffected
by the crossing of the E; and Eq levels, and
Eq. (4.36) is universal for all J/D.

The zero-temperature susceptibility

@ L3
ﬁ b <3
J 3
T =0)= 2(,9)° ?|a(2)| 5= 43D
[0 J > 3
o’ D™ 4

The function Eq. (4.37) exhibits a jump at
J/D =3/4. In the limit of small J /D
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1 J
X,.,(T = 0) = 4(h 95 @ -2 DE'
For J/D > 3/4 Xy (T = 0) is identically zero. The
low-temperature beﬁavior of x as a function of
J /D is shown in Fig. 3,b. As can be seen, the jump
in X at the crossing of the two lowest spin levels
is smaller than the jump in X, . The jump smears
out with temperature.
Average susceptibility. The zero-temperature av-
erage susceptibility for the orthogonal cluster is
given by

(4.38)

T/D

=|

cos6 =0 J/D=05

cos@=1/3

0 1 2 3
T/D

Fig. 4. Temperature dependence of the magnetic susceptibility
of pair clusters of different geometry: J/D =0.1 (a);
J/D =0.5 (b).
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J 3
%|a(72)xx|+|‘l(72)yy|, D < "
— 2 1 J _3
X(T=0) = 5 (1z9)° @a?’“l+|a§f>yﬂ+2|a‘72)wl, 5 1
) J.3
Eﬂlag E D 4
(4.39)
In the limits small and large J /D we have
O
8 p o _% st
—r w8 s 1
g p>>1t
B D
(4.40)

The low-temperature behavior of the average sus-
ceptibility for the orthogonal cluster as a function
of J/D is displayed in Fig. 3,c for two tempera-
tures. As one can see, the jump at the crossing of
the two lowest spin levels smears out with tempe-
rature.

Comparing Eq. (4.40) with the equation for the
collinear cluster (Eq. (4.27)) we arrive an equation
which displays the sensitivity of the low-tempera-
ture susceptibility of pair clusters to the angle
between the molecular axes:

_ J J

T%-00 _d-p p<<!
5B TH I
00="20r - 0’ D~

(4.41)

0.4

0.3

Cm/kB

0.2

0.1

J/D
Fig. 5 . Magnetic heat capacity.
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s . -~

0.6

0.5

Sm/Kg

0.3F

0.2F

0.1

Fig. 6. Magnetic entropy.

5. Results and discussion

The magnetic susceptibility for an arbitrary
angle between the molecular axes is given by
Eq. (2.11) with the help of the coefficients , from
Appendix C. Figure 4 gives a comparison of X vs
T /D curves for three cluster geometries for differ-
ent values of J/D. As can be seen, except at very
small /D, the low-temperature magnetic suscepti-
bility is very sensitive to the cluster geometry. At
zero temperature the angle dependence of the aver-
age susceptibility can be given in the analytical
form [20]:

O
8 51—1(“ cos 8) , EAP
o) — 2 D D
Xx(6) = 3D (Hg9)" O 5
%é,"z% (143 cos? e),%» 1.
0
(4.42)

Anomalies in the behavior of the magnetic heat
capacities and magnetic entropy for the orthogonal
cluster are shown in Figs. 5 and 6. A double-maxi-
mum Schottky-type anomaly in the magnetic heat
capacity and a peak in the magnetic entropy are a
consequence of the crossing of the lowest spin levels
of the system with a change in J/D. In an experi-
ment different values of the parameter J/D can be
obtained by changing the pressure applied to the
system. The same behavior of the magnetic entropy
was observed experimentally in PrNig in Ref. 21. In
this case the level crossing takes place in a strong
applied magnetic field.

1040

As follows from Fig. 2, similar anomalies are
characteristic for clusters with arbitrary 6 since
there is a minimum in the AE vs J/D curve, where
AE is the gap between the two lowest spin levels.
But in the absense of the crossing the anomalies are
not so pronounced and the Schottky anomaly in the
heat capacity has only one peak [3,7].

6. Conclusion

The magnetic properties of oxygen pair clusters
were investigated theoretically for different cluster
geometries which can be realized by doping molecu-
lar cryomatrices with oxygen. Anomalous tempera-
ture and pressure behavior of the magnetic suscepti-
bility, heat capacity, and entropy is predicted. It is
proposed to use these anomalies for studying the
parameters characterizing the oxygen clusters and
the parameters of the host matrix: the effective
spin-figure interaction constant for the molecule in
the matrix, the exchange parameter, and the num-
ber of impurity clusters in the solid solution. As a
result, the data on the magnetic susceptibility may
be used to extract information about the positional
and orientational short-range order in the solid
solution and about diffusion and clusterization
processes in the system.

Appendix A

The orthonormal basis functions are
O, (By) = O+ 0.4y
OB, = O, = 0,
OB, = 2y U+ 0L
OBy =y B, + 0,8
OBy = (0, - 0.4
Oy, ) = ol i O, ) = 0U

1
OylA;) =00, Oyldy) = U= 0y

(A1)
where ¢,=[00 ¢, =(1,/¥2) (10|10, and

|0 0|+ 1 Oare eigenvectors of S, ; in the same
1
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' o

' ‘ : o o

way (=100 ¢, =(1V2)(1&|-10 are

formed from eigenvectors of .S, .
2
Appendix B
The unperturbed eigenvectors and eigenvalues are

E =D+]J;

LI—’(B2g) =0,

W,(By,) = L,®, + m,®,;

3 3 3
3 1,/2
=§ D1 +D]c059+]2D ;
i .
0 2 172
J ik 1 Eé H
l2=5 n0g 5 sin? 9+E‘r Bcose—ﬁ 0
3 1l O
%
m, = * a —l2 o LIJ4(B39) =l4CD4+m4CDS;
3 0 30 5 5 5
1,2
3
E4=§D$D1D2 D]cose+]2D ;
5 g D
0 2[]_ /2
J 72 e "o
_ o/ __°no
14—5 6 sin 9+% Bcose po O
5 O
1,2
_ _ 720
m4—ia Z4D
5 O 50

The remaining four eigenvectors and eigenvalues

9
WA, ) =S ¢yl /D, cosO)®, ;
6

E =E(]/D, cos®), i=6,7,89

belonging to the A, p representation can be found in

the general case only numerically as the result of a
diagonalization of #, (Eq. (3.6)).
1g

Explicit equations for the eigenfunctions and
eigenvalues belonging to the fourfold representation
A, for the two limiting cases of the collinear and
orthogonal clusters are given below.
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Collinear cluster ( cos ©=1)
_1 .0 :
Vild,) = @+ ®) 5 Eg=2D 4

0\2 0

9 (E7)" 12 E;
ar g U 8 (o — )
(@, S)H

oJ
WA =Ey S0 Bh® - o
A 5 ap?n g ¢ 2D

1,2
+ 2 DJ+—J2D :
O D

I\J\\

— . 0 _ _
WA, )=y Eg=D -],

Orthogonal cluster ( cos 6 = 0)

_ o AT
W4, ) = g + mo. E;=D+VD"+ J*;
7 7 7 7
00 5 1 2-1,2
7 m O B%
=D%E+Dﬂ+ Ho =1
O m D O il

Y (A )-ISCD + m®
7 9 9
3 1 Ao 1 9 0%
9
z J o2
s- p U0
s Do
1 212
1D1+]/D$[1+L+ 2D Eé
2g 2 g 2 4pH gl o
mo=%0-120"
8 O 80
9 o °0O
Appendix C

Coefficients 052) for the general case

In a general case all coefficients a§1) are zero,
except special cases of J/D when there is an addi-
tional (accidental) degeneracy in the spectrum. The
coefficients a(2) are different for different compo-
nents of the susceptlblhty The sets of 4(2) coeffi-
cients for X and X, , respectlvely, are as

» X
follows. e vy
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0(12) - 0(22) + aéz)) : agz) _ 3

Nl @
000,

0(2) - Z r 2616 Ccos g + 726 COSQ -cC. Sin 2Dl + D—VZC SII] g +72618 Siﬂ g - 019 COS

O
Oom
2 i8 2~ Yo Ds 5 D§

%ZCk(scos +V2¢, cosg—c sin ng+

“= 2 p_f
iz67 ki T
0 0 6 o0 O
+ [T V2¢,, sin 3 + V2c,, sin 5 " Chg COS H0M, 5 k=6,.,9.
g o 0O
Here c,, are components of the eigenvectors belonging to the eigenvalues of Eq. (3.6).
ny ’
(Lm, = m]l )" (Lm, - m])
@ =D+, 4,04,y = 3 SRR )
ai” == (ag’ + a’ + ag +¢19), a’ = a’’ =

_ 4
3 =45 Ei-E 5

w N

(€ = Cp)
a, =20 (k=69
Ek_Ei

a(12) =- (0(42) + ag)) ;

619 sin

N D

Odad
3

ood,

M\CD
TS

9
1
agz)=ZE_Eé.=§726i651ng—720i851ng+c coségl +%72(; cosf+72(; Ccos

3

2
1 6 6 ol 6 6 60 O
(2) = i -y i 7 -

E %7201'6 sin 5 2¢,q sin 5 + ¢,y cOs ZElk + §720i7 cos 5 +V2¢,g cos 5~ Cig sin QDmkD

k=2,3 i
(i=6,...,9).

Acknowledgments 3. V. V. Sumarokov, Yu. A. Freiman, V. G. Manzhelii, and

V. A. Popov, Sov. J. Low Temp. Phys. 6, 580 (1980).
The work was supported in part by the Polish 4. A. Jezowski, Yu. A. Freiman, A. M. Tolkachev, V. P.
Committee for Scientific Research through Grant Azarenkov, V. G. Manzhelii, and E. A. Kosobutskaya, Sov.

J. Low Temp. Phys. 6, 723 (1980).
No. 2 PO3B 14210. 5. Yu. A. Freiman and A. Jezowski, Sov. J. Low Temp. Phys.

10, 340 (1984).

1. M. Tinkham and M. W. P. Strandberg, Phys. Rev. 93, 937 6. Yu. A. Freiman, A. Jezowski, and V. V. Sumarokov, J.
(1955). Phys. C, Solid State Phys. 19, 5309 (1986).

2. J. C. Burford and G. M. Graham. J. Chem. Phys. 49, 763
(1968).

1042 Fizika Nizkikh Temperatur, 2000, v. 26, Nos. 9/10



7. V. S. Ostrovskii, V. V. Sumarokov, and Yu. A. Freiman,
Sov. J. Low Temp. Phys. 12, 116; 552 (1986).

8. G. M. Graham, J. S. M. Harvey, and H. Kiefte, J. Chem.
Phys. 52, 2235 (1970).

9. R. Simoneau, J. S. M. Harvey, and G. M. Graham, J.
Chem. Phys. 54, 4819 (1971).

10. V. A. Pavloshchuk, Yu. A. Pikus, and L. I. Shanskii,
Optika i Spectroskopiya 49, 867 (1980).

11. I. M. Pritula and L. V. Khashchina. Sov. J. Low Temp.
Phys. 18, 727 (1992).

12. A. Jezowski, P. Stachowiak, J. Mucha, Yu. A. Freiman,
and V. V. Sumarokov, High Temperatures — High Pres-
sures 29, 423 (1997).

13. H. K. Jemieson and A. S. Hallis-Hallet, Proc. LT-10, Vol.
4, p. 158, VINITI, Moscow (1967).

14. T. G. Blocker, C. L. Simmons, and F. G. West, J. Appl.
Phys. 40, 1154 (1969).

Fizika Nizkikh Temperatur, 2000, v. 26, Nos. 9/10

15.

16.

17.

18.

19.

20.

21.

Yu. A. Freiman, A. Jezowski, Z. Litwicki, A. P. Brodyan-
skii, and E. V. Manzhelii, Proc. LT-21 (Chech. J. Phys.
46, 2101 (1996).

M. E. Lines and M. A. Bosch, Comments Solid State
Physics 11, 73 (1983).

A. P. Brodyanskii and Yu. A. Freiman, Sov. J. Low Temp.
Phys. 11, 538 (1985).

J. H. Van Vleck, Theory of Electric and Magnetic Suscep-
tibilities, Oxford Press, Oxford (1932).

H. E. Stanley, Introduction to Phase Transitions and
Critical Phenomena, Clarendon Press, Oxford (1971).

Yu. A. Freiman, S. M. Tret’yak, A. Jezowski, and A. P.
Brodyanski, to be published.

P. J. von Ranke, V. K. Pecharsky, K. A. Gschneider, Jr.,
and B. J. Korte, Phys. Rev. B58, 14436 (1998).

1043



