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The thermodynamic properties of a mesoscopic-size simply connected cylindrical normal metal in
good metallic contact with superconducting banks are studied theoretically. It is commonly accepted
that if the superconductor thickness is quite small (of the order of the coherence length), as is assumed
to be the case here, a vector potential field, whose value can be varied, exists inside the normal layer.
It is further assumed that the quasiparticles with energy E <A (2A is the superconducting gap) move
ballistically through the normal metal and undergo Andreev scattering caused by the off-diagonal
potential of the superconductor. An equation is obtained within the multidimensional quasiclassical
method which permits us to determine the spectrum of the Andreev levels and to calculate the density
of states of the system in question. It is shown that the Andreev levels shift as the trapped flux ®
changes inside the normal conductor. At a certain flux value they coincide with the Fermi level. A
resonance spike in the density of states Vv(E) appears in this case, since near E =0 there is strong
degeneracy of the quasiparticle states in respect to the quantum number g characterizing their motion
along the cylinder axis. As a result, a macroscopic number of ¢ states contribute to the amplitude of the
effect. As the flux is increased, the density of states V(E) behaves as a stepwise function of ®. The

distance between the steps is equal to the superconducting flux quantum #c/2e.

PACS: 72.10.—d

Introduction

Quantum interference phenomena in condensed
matter were first observed in superconductors. Soon
after the microscopic Bardeen—Cooper—Schrieffer
theory of superconductivity [1] appeared, the effect
of flux quantization was detected experimentally in
a superconducting ring [2,3]. This effect had been
predicted previously by F. London [4] who showed
that in a doubly connected superconductor a certain
quantity (fluxoid) could take only quantized val-
ues. The fluxoid is determined by the sum of mag-
netic fluxes through the superconductor cross sec-
tion plus an integral term dependent on the
superfluid current. In a bulk superconductor with
an orifice, flux quantization exists in its direct

© G. A Gogadze, R. I. Shekhter, and M. Jonson, 2001

meaning since the magnetic field does not penetrate
inside the superconductor. The integration path
used to calculate the integral fluxoid term can be
chosen to lie rather deep inside the metal, where the
superfluid current is zero.

For a thin-wall cylinder the flux can take any
value, and flux quantization shows up as oscilla-
tions of the current circulating over the cylinder
surface. The oscillation period of the magnetic field
flux is equal to one superconducting flux quantum
®, = he/2e.

It was thought for a long time that flux quanti-
zation could exist only in superconductors and was
associated with (i) the sensitivity of quantum elec-
tron states to the vector potential field (the Aharo-
nov—Bohm effect [5]), and (ii) the presence of an
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off-diagonal long range order in superconduc-
tors [6]. In 1970 Kulik published an important
theoretical paper [7] describing the behavior of a
thin-wall cylindrical normal conductor in the vector
potential field excited by an inserted solenoid. That
was the first evidence suggesting that coherent
quantum properties are possible in normal (nonsu-
perconducting) systems of quite small (though
«macroscopic» in atomic scale) dimensions at low
temperatures. It turns out that the magnetic mo-
ment of such a system is an oscillatory function of
the magnetic flux through the cylinder orifice, and
the oscillation period is equal to one flux quantum
of the normal metal /c/e. The quantization effect
takes place in the absence of off-diagonal long-
range order.

Reference [7] has stimulated much interest in
quantum interference effects in normal condensed
media. It has become clear that the Aharonov—
Bohm effect is possible in solids because the elec-
tron retains its «phase memory» over a finite length
&y = Mop/T0T, which has the meaning of a co-
herence length in a system with a disturbed long-
range order (v is the Fermi velocity, T is the
temperature). With an infinitely long electron
mean free path and at temperatures T [J1 K, & N 1S
about 107 c¢m, and coherent quantum phenomena
become possible in normal conductors whose trans-
verse dimensions are of the order of &,, . However,
because a doubly connected conductor should have
a very small cross section, the idea of an experiment
with an inserted solenoid seemed problematic. The
need arose to study coherent quantum effects in
simply connected cylindrical conductors in a mag-
netic field and to analyze the influence of surface
and bulk collisions on the oscillation amplitudes. It
was shown for the first time in 1972 [8] that flux
quantization is possible in pure cylindrical solid
conductors placed in a weak longitudinal magnetic
field (such that the cyclotron radius much exceeds
that of the cylinder). The oscillations of thermody-
namic quantities in simply connected normal con-
ductors present a more complicated case, which
involves two oscillatory components in their mag-
netic-field dependence. One of them is intricately
dependent on the number of the harmonics and the
magnetic field and is correlated with the electrons
of the central Fermi surface section. The other is
characterized by a universal (independent of the
dispersion relations for the carriers) period of the
magnetic field flux Ac/e. The latter oscillations are
caused by the skipping-orbit electrons localized in a
thin layer (with a thickness of about the de Broglie
electron wavelength) near the cylinder surface. The
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effect is due to size quantization and to the sensiti-
vity of the phase of the electron wave function to
the vector potential field.

The spectrum of magnetic surface levels respon-
sible for the coherent phenomena in a normal cylin-
drical conductor in a weak magnetic field was
obtained in Ref. 8. The nature of these levels is
different from what was described by Nee and
Prange [9]. The magnetic surface levels at a flat
boundary are genetically related to the magnetic
field and vanish when the field is zero. In a cylinder
the magnetic surface levels are formed by the sam-
ple boundary, but the magnetic flux is included
directly in the expression for the electronic energy
spectrum. This expression has been used to calculate
a number of specific effects [8,10—14]. In particu-
lar, the effect of doubling the oscillation period of
the critical temperature has been calculated for a
superconducting hollow cylinder with allowance for
the quantization of single-particle excitations [15].
When the electron spectrum is smeared, a charac-
teristic period of the Little—Parks effect [16—18]
equal to the superconducting flux quantum /%c/2e
appears. We should also mention the Aharonov—
Bohm effect for electrons localized above liquid
helium covering the surface of a dielectric cylinder
with the magnetic field applied along its axis [19].
In such a system the electrons which obey
Boltzmann statistics move along quasiclassical tra-
jectories and acquire equal increments of wave func-
tion phase. As a result the system experiences mag-
netic-moment oscillations with a universal period
hc /e of magnetic flux.

The effect of flux quantization in a normal,
simply connected cylindrical conductor was ex-
perimentally detected by Brandt, Gitsu, Nikolaeva
and Ponomarev [20] (see also Refs. 21 and 22)
while investigating the longitudinal magnetoresis-
tance of pure Bi single crystals. This was the first
observation of an interference effect related to flux
quantization in nonsuperconducting condensed
media.

An important distinctive feature of flux quanti-
zation in normal metals is the presence of the factor
cos (2Tk R + q) in the oscillation amplitude (ﬁkF is
the Fermi momentum, o is a auxiliary phase). The
implication is that in normal metals a variation of R
(fluctuation) by a value of the order of the atomic
spacing causes a 100% change in the effect [23]. In
this case the flux quantization effect should vanish
after oscillation amplitude averaging along the cyl-
inder axis. For this reason the effect was observed
experimentally in semimetals, where fluctuations on
the scale of the atomic radius are unimportant for
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the amplitude of flux quantization because of the
smallness of the effective mass of the carriers. In
currently accepted terms, this feature of flux quan-
tization amplitudes in normal metals reflects the
mesoscopic character of the effects [24].

The concepts of interference phenomena in con-
densed media have been further extended to dirty
systems. Now we understand that because of its
mesoscopic character, the flux quantization effect
with period /c/e is only possible in small metallic
rings where no averaging over different impurity
configurations is required [25,26]. In this case we
are dealing with interference effects in the conduc-
tivity of low-dimensional conductors, since with
increasing impurity concentration the oscillation
amplitude of the thermodynamic (and kinetic) mag-
nitudes decreases exponentially. In rather long
dirty cylindrical conductors (or a large number of
rings) the kc/e quantization disappears.

Along with mesoscopic flux quantization in nor-
mal metals, there is another important class of
interference phenomena induced by weak localiza-
tion. These phenomena were predicted theoretically
by Altshuler, Aronov, and Spivak [27] in 1981
when they were calculating the quantum correction
to the conductivity of a metallic thin-wall cylinder
in a longitudinal magnetic field. The quantum cor-
rection evolves from interference of the wave func-
tions of the particles moving along different trajec-
tories. For arbitrary trajectories the difference
between the wave function phases is a random
value, and the wave interference (after trajectory
averaging) makes zero contribution to the conduc-
tivity. The sole exceptions are self-crossing trajecto-
ries, when each trajectory can be related to its
time-reversed counterpart. The electron on the re-
versed trajectory experiences scatterings identical
to those on the initial trajectory but in a reversed
sequence.

When the flux is trapped in the cylinder hole,
the phase difference of the interfering waves can be
varied, which makes the magnetoresistance oscillate
with the magnetic flux period &c/2e [27].

To observe this effect, the cylinder radius should
not exceed the distance along which the electron
retains its «phase memory». This scale is Ly =
= (DT¢)1/ 2 where D is the diffusion coefficient,
and Ty, is the phase break time, which is dependent
on temperature. Magnetoresistance oscillations in
dirty metallic cylinders with flux period /c,/2e were
first observed experimentally by Yu. Sharvin and
D. Sharvin [28,29]. These experiments prove that
elastic scattering does not disturb the phase coher-
ence of the electrons. Only inelastic processes
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(changing the energy condition of the electron) can
influence the «phase memorys» by smearing the
interference situation. The effect does not disappear
on averaging over the impurity distributions. In
contrast to the mesoscopic effects, the ic,/2e oscil-
lations vanish in rather weak magnetic fields.

The experimental detection of the Aharonov—
Bohm effect in condensed media has become possi-
ble due to the recent advance in the technology for
producing metallic, semimetallic and semicon-
ducting cylinders and rings. In his experiments
Brandt et al. [20—22] used casting technology to
produce Bi single crystals from the liquid phase.
Cylindrical samples of high purity were obtained
under a glass coating which was not removed during
the measurement. The coating reinforced the sam-
ples mechanically and protected their surfaces from
environmental influences. Experimental measure-
ments on such samples ensured reproducible results
even several years later (private communication by
Ya. G. Ponomarev).

Observation of interference effects in disordered
media has become possible due to miniaturization
of structures and to the progress in microelec-
tronic lithography. The experiments performed by
Yu. Sharvin and D. Sharvin [28,29], Webb et al.
[25], and Chandrasekhar et al. [26] have clarified
the possibility of making quite small instruments
taking advantage of new mesoscopic features of the
physics of condensed matter.

Quantum interference phenomena have been dis-
cussed in detail in a number of surveys [ 30—33, 24]
and articles [34—36].

This study is concentrated on coherent quantum
phenomena in a mesoscopic-size cylindrical normal
conductor contiguous with a superconductor.

In recent years there has been extensive work in
the field of mesoscopic systems, including supercon-
ducting structures in proximity with normal metals.
The experimental work [37] discussed the magnetic
response of clean Ag-coated Nb proximity cylinders
in the pPK region. In the mesoscopic temperature
regime the normal-metal—superconductor system
shows the as yet unexplained paramagnetic reen-
trant effect, discovered some years ago [38]. The
theoretical paper [39] reported numerical results for
the local density of states in the semiclassical An-
dreev billiards. It was shown that an energy gap
develops in a chaotic billiards near the Fermi en-
ergy, but there is no gap found in a circular bil-
liards.

For our system we believe that the contact be-
tween the pure normal and superconducting metals
is good. As a result, Andreev scattering [40] of
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quasiparticles appears to be the main mechanism
responsible for the formation of quantum states in
the normal metal. It is assumed that the width of
the superconducting layer on the cylinder boundary
is of the order of the coherence length &, . In this
case the fluxoid is quantized and the value of the
trapped flux may change continuously. It is as-
sumed that the cylinder radii R >> g, .

A dispersion relation has been derived for the
excitation spectrum, and the quasiclassical picture
of the quasiparticle motion has been analyzed.

In previous studies on normal cylinders [7,8] the
formation of quantum states was associated with
specular electron reflection at the metal boundary.
After each reflection from the boundary, the elec-
tron traveled along a trajectory tangent to a caustic
whose radius was dependent on the magnetic quan-
tum number. After Andreev scattering at the NS
boundary of the cylinder, the trajectory of the
quasiparticles is more complicated. The energy of a
«particle»> type of excitation is higher than the
Fermi energy, and its momentum exceeds the Fermi
momentum h'kF , too. As a result of Andreev scat-
tering the «particles transforms into a <hole»
whose momentum is smaller than 7k . It follows
from the law of conservation of angular momentum
that the «particle» and the <hole» have different
caustic radii, the caustic radius of the latter being
larger. This feature of the quasiparticle motion was
taken into account in deriving the condition for
quasiclassical quantization of excitations. That con-
dition for quantization has been obtained within the
multidimensional quasiclassical method, which per-
mit us to determine the spectrum of the Andreev
levels and to calculate the density of states of the
system in question.

The density of states as a function of ® has a
steplike behavior and experiences jumps at
® = he(s + 1) /2e (where s is a natural number),
i.e., it has a resonance character. The distance
between steps is equal to the flux quantum /Ac,2e.
Giant-amplitude oscillations of the conductance of
an SNS contact were predicted in [41,42] for the
case when the phase difference of the order para-
meter of the superconductors is equal to an odd
number times TL For our system the resonance
spikes of the density of states can be explained as
follows.

Let us consider two points A and B on a given
section of cylinder. Let us assume that a quasiparti-
cle moves along the line AB. In the case where the
distance AB is of a mesoscopic scale there exist a
Josephson current between these points. The energy
spectrum of such a local SNS contact is determined
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by the order parameter phase difference at points A
and B, which depends on the flux ® and the radial
angle a0 between those points. The energy of the
Andreev level reaches the Fermi surface whenever
® =®y(s +1). In this case the spectrum exhibits
strong degeneracy insofar as it becomes independent
of the longitudinal (along the cylinder axis) compo-
nent of the quasimomenta. The range of degeneracy
depends on the total flux ®@. Therefore, in this case
the density of states experiences a resonance in-
crease with amplitude, showing a steplike behavior
with increasing ®.

Formulation of the problem

Let us consider a pure simply connected normal
cylinder of radius R. The particles with energy
E < A experience Andreev scattering at their super-
conducting boundaries. It is assumed that the width
of the superconducting layer is of the order of the
coherence length &, (or A,). In this case fluxoid
®, is quantized,

2
_ T[)\L . _ —
CDL—CD+T g)st—nCDO,n—O,LZ, e,

and the value of the trapped magnetic flux
® =n®, through the superconductor cross section
may change continuously (A, is the London pene-
tration depth, j is the superfluid current, and
D, = he /2e).

In this Section we deduce a quasiclassical equa-
tion describing the spectrum of quasiparticles in the
normal part of the cylinder. To clear up the sys-
tematics of the states it is useful to proceed from the
Bogoliubov—de Gennes equations [43]:

H u(r) + Ar)o(r) = Eu(r) , 0
‘ {
- 15%(r) + A0)u(r) = Eofr) .

o0
O
O

quasiparticle, E stands for the energy eigenvalues,

Here is the two-component wave function of a

2

- 1 . e 1

H:—D'ZED——AD—Z
° om’Q g

is the single-particle Hamiltonian dependent on the
vector potential A, C is the chemical potential of the

metal, and m" is the effective electron mass. It is
hard to solve Eq. (1) exactly, but the problem can
be much simpler if we use the stepwise potential

approximation for A. Within the gauge chosen for
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A, the order parameter is preassigned by the expres-
sion:

A(r) = A(r) exp (=i[n18) ,

r >R,
r <R,

A = E% ’ (2)
D ’

where 0 is the angle, which varies in the interval
0 <0 <2m and [n] is the integer part of n. With
this choice of the pairing potential it is a single-val-
ued function of the coordinates. We disregard the
distortions of the excitation trajectories caused by
the magnetic field. In this study we confine our
consideration to the vector potential field, taking
into account its influence on the phase increment in
the wave function of the excitation. The case of
weak magnetic field will be the subject of another
paper.

As was shown in Refs. 7 and 8, the interference
patterns of the oscillations of thermodynamic values
have a common cause, namely the Aharonov—Bohm
effect. To describe the field of the vector potential,
we shall consider a normal hollow cylinder whose
inner radius tends to zero. Let us assume that a
solenoid is inserted into the orifice of the cylinder.
It excites the field of the vector potential. It is hard
to realize the situation in practice. Nevertheless, it
is interesting to consider it because it demonstrates
unambiguously the fact of flux quantization. Ac-
cording to a calculation [8], in a simply connected
cylinder the oscillations that arise have the largest
amplitudes in the vector potential field because
they take contributions from all electron states with
arbitrary magnetic quantum numbers. When such a
cylinder, with specular reflection of quasiparticles
at the dielectric boundary, is placed in a weak
magnetic field, the surface states with the highest
magnetic quantum numbers m (the <«whispering
gallery» type states) are responsible for the oscilla-
tions with the quantum flux period fc/e [8].

Having performed the gauge transformation in
Egs. (1), we can change over to the real pairing
potential. In this case the wave function can be
written as

_ g .[nl U
u(r) = u'(r) exp [+ 5 e,
O O
(3)
O
o(r) = o'(r) exp %% en.
O O

The components #' and o' of the new wave
function are dependent only on the radial variable.
Therefore, Eqs. (1) can be solved as
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u'(r) = u'(r) exp [i(mB + q2)] ,
(4)

'(r) = 0'(r) exp [i(mb + q2)] ,

where m is the magnetic quantum number, and ¢ is
the wave vector component along the axis of the
cylinder. Proceeding from the single-valuedness re-
quirement for the initial wave functions, we arrive
at the following condition: the parity of 2m is
determined by the parity of the trapped flux quanta
[n]. Substituting the solution of the type Egs. (4)
into Egs. (1), we obtain the equation for the radial
function of the problem. Its matrix form is

2
0h‘zg_a’2 td, o 0o
L R
omB O dr r dr 0 22

- (= IR + O A0R, =ER,() , (5)

where o,, 0, are the Pauli matrices, ﬁ =n +[n],
and the * on R refers to a «particle» or a <hole»
radial function, respectively. In a normal metal
(r <R) A(r) =0, and Eq. (5) reduces to the equa-
tion for the Bessel function:

E oo
R(M) OJ 5 Tkt - (6)
i 00

Here the notations k, = We%_—_qz (the radial wave
number) and o, (the radial velocity) are intro-
duced. The solution of Eq. (6) for N =1 coincides
in form with the wave function found for the vortex
lines of a pure type II superconductor [44,45], if
magnetic effects are neglected. We can thus see that
the angular momentum is 7(m - n/2) for the «par-
ticle» and 7i(m + n/2) for the <hole».

In the superconducting region (r > R) the solu-
tion of Eq. (5) is expressed in terms of the Hankel
functions Hg}i)(krr) and Hg)(krr). Matching these
solutions at the NS boundary, we can obtain the
equation for the quasiparticle spectrum. It is, how-
ever, hard to derive the general expression for the
quasiparticle spectrum of the system by this method
even in the case of our chosen stepwise potential
A(r). The thermodynamic values can be calculated
more conveniently using the approach based on
derivation of the equation for the spectrum which
gives asymptotically correct estimates of the energy
levels. To do this we employ the multidimensional
quasiclassical method.

Keller and Rubinow [46] have generalized the
conditions of the Bohr—Sommerfeld quasiclassical
quantization. Commonly, such conditions have been
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derived assuming that the quasiclassical wave func-
tion was

Wa; ) = Alg, , 1) exp (iS(q; , /1), (D

where S(q; , ?) is the total action and the amplitude
A(qg; , t) is a single-valued function of the coordi-
nates g, . Because of continuity of the function ¥,
the difference AS between any two values of the
multiple-valued function S(g; , ?) is

AS = Pp,dg; =21, n=0,1,2, ... (8)
L

This equation should be valid for an arbitrary
closed curve in g space. The integral in Eq. (8) is
the same for any closed curves which can be trans-
formed one into another without crossing the singu-
larity of the integrand (equivalent contours). The
authors of [46] assume that the amplitude A(g; » 1)
is also a multiple-valued function of the coordi-
nates, and they write

[3S,(q, )0
W, = z A,(q, t) exp GTD (9
p 0 0

instead of Eq. (7). Here S, and A, are the branches
of the multiple-valued functions S and A. Then the
requirement of continuity of W, leads to

- _ i 0
AS = @DSkds— 2T[71'B?+1—T ?D In4, a’sD ,
L 0O L 0

(10)

where ds is the length element along the path £

Since the functions 0S and O In A are multiple-
valued (e.g. , M-multiple), we can join M sheets of
our g space and introduce the notion of a covering
space in which the functions S and In A become
single-valued. The independent (nonequivalent)
contours in the covering space give the number of
quantization conditions [46,47].

The increment in the wvalue ?DIHA ds in
L

Eq. (10) should be calculated taking into account

the fact that the function In A changes at the

contour points where A goes to c. This occurs on
caustic surfaces and surfaces of the points at which
the quasiparticle stops (i.e., its velocity becomes
zero). Keller and Rubinow [46] obtained the gene-
ralized quantization conditions taking into account
the contributions from the above specific points in
the contour £ :
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d b
@p.dq.=2Trh'%z+—+—E (11
i i 0 4 4|:|
L

(d is the number of intercepts of the contour £ and
the caustic surfaces, and & is the number of stop
points). The quantization conditions of Eq. (11) are
valid both for the smooth potentials in the
Schrodinger equation and for the free motion of a
particle in a region confined within hard walls that
reflect the particle specularly.

A rigid-wall circle

Keller and Rubinow’s method permits construc-
tion of asymptotic expressions for the exact wave
functions and the eigenvalues of the problem. Here
we briefly outline the method for a particular exam-
ple. Let a particle move freely in a circular region
with the radius R restricted by rigid walls. Its
behavior can be described by the Schrodinger equa-
tion

2m"E
@+ k)W =0, kZ:_’ZZ_. (12)

It is required that W be zero at the boundary. The
quasiclassical solution is searched for assuming that
for high k values the wave function has the form

N
W=y et o H. (13)
o 0 il

Let us assume further that each term in Eq. (13)
complies with Eq. (12). Substituting Eq. (13) into
Eq. (12) and setting the coefficients of k? and k
equal to zero, we can obtain the equations for S i
and A]. with any arbitrary j [46]:

qos)* =1, (14)
OS0A + AAS =0 .

The first of Eqs. (14) is the eikonal equation for
geometric optics. The other has the meaning of the
law of conservation of <«probability» for |A]%.
S = const can be interpreted as the wave-front sur-
face. The rays orthogonal to these surfaces are
straight lines. To fulfill the boundary condition
W =0, the terms should enter Eq. (13) in pairs
satisfying the conditions:

aS. aS.,
S=S.,, A=-4.,, —L=—1_(@15)
J J J ) on on

In passing through the caustics the phase with
the amplitude A changes by —T1/2, and on reflection
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at the boundary it changes by -1t (see Eq. (15)).
The quantization condition takes the form [46]

b
2

d
pp.dq.ZZTrh'Ey+—+ E (16)
i i 0 4 0
L

To solve the eigenvalue problem, it is necessary
to consider all possible rays inside the circular
region. These rays are tangent to the circle of radius
a, which acts as a caustic for them. In this case two
families of rays pass through each point of the ring,
and each family occupies completely the region
inside the circle (Fig. 1). On each event of reflec-
tion at the boundary, the rays change over from one
family to the other. It is easily seen that in this case
the covering space consists of two circular rings
which are joined along their peripheries, their radii
being R and a,, . Topologically, the covering space
is a torus. The torus has only two independent
contours which do not contract to a point. Conse-
quently, the number of quantization requirements
necessary to describe the motion of the wave inside
the circular region reduces to two. Let us choose the
circumference with the caustic radius @, as one of
the integration contours. It does not cross the caus-
tic, and therefore d =b=0. On the basis of
Eq.(16) this gives the condition of angular momen-
tum quantization:

k2ma, = 2mm, m =0, 1, 2, ... a7

The other contour on the toroidal surface can be
deformed (without affecting the integral) as shown
in Fig. 2. Calculating the contour integral, in Eq.
(16) and taking into account that d = b =1, we can
obtain, by means of Eq. (17), a transcenden-
tal equation for the eigenvalues of the wave vec-
tor [46]:

] w

VEZRE = m? - m arccos 7 - T[@p + E,
kR
oo (18)

n,m=0,1, ...

Fig. 1. Two congruences of rays in a circular domain of the cy-
linder. The concentric circle of radius a, is the caustic of these
rays.
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Fig. 2. A closed curve on the toroidal covering space associated
with two ray congruences, considered in Fig. 1.

This method also permits us to find an analytical
expression for the wave function. Keller and Rubi-
now compared it with the exact solution of the
problem,

wm%ﬁméw, (19)

and thus showed that the quasiclassical solutions
obtained for eigenfunctions and the eigenvalues are
asymptotically exact. In the region between the
caustics and the sample boundary, the Debye as-
ymptotics of the Bessel function (1 << m < kR) is
used as an asymptotic approximation to the func-
tion J, (kR). The solution attenuates exponentially
inside the caustic (m > kR).

SNS contact in zero magnetic field

We can show that similar quasiclassical quanti-
zation conditions can be written for structures in
which excitations are reflected at the boundary of
their localization region by the Andreev mechanism.
Let us first consider an SNS contact with flat
parallel NS boundaries. We analyze a family of
parallel rays (trajectories) directed at a certain
angle a to the normal to the film boundary. We
choose one of the rays as a path of integration £, .
The covering space can be constructed out of two
similar g spaces (of SNS contacts) in which the
quasiparticles move in opposite directions. On each
event of the Andreev reflection the amplitude of the
wave function of quasiparticle is multiplied by the
factor

y= e—i arccos E /A ‘ (20)

For a closed contour Z; the complete change of
the phase on the NS boundaries is:

L

1
(-i) 2 arccos E/A = — arccos E/A . (21)
2n T
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In the case of a current-carrying state, the differ-
ence between the superconducting order parameter
phases ¢ of two the given superconductors is added
to the phase Eq. (21). Assuming d =b =0, we
obtain the generalization of the Eq. (11) for a SNS
contact:

© 5 (2

1 E
pp.dq.ZZTrk'%z+—arccos—i—
Pt o ™ A 21

L

Let us denote the quasiparticle momentum inside
the N layer as K:

by = V2T + B),
K=p

7=V,

«particle» ;

(23)
«hole» ,

where C is the chemical potential of the metal minus
the energy of the motion along the NS boundary.
Proceeding from Eq. (22), we obtain

@de :Ipods—fp1ds=
L

1 E
:2Trh'Ep+—arccos—iig. (24)
0 Tt A 2Tl'|:|
Introduction of the quasiparticle velocity along
the path of the motion leads to the expression for

the spectrum of the SNS contact which was ob-
tained by Kulik [48]

o
rg 1 E ¢0
E = + —arccos — * —A.  (25)
n L gl T A 211%

Andreev reflection of excitations at the cylinder
boundaries

Let us deduce an equation for the spectrum of
quasiparticles with energies E < A which move in-
side a normal cylindrical conductor with a super-
conducting coating. The normal metal is assumed to
be pure. Excitations move in it ballistically and
experience Andreev scattering at the NS boundary.
We shall analyze the features of the quasiparticle
trajectories within the system studied. Let us as-
sume that the normal metal initially has no trapped
magnetic flux, ® = 0. The tangential components of
the wave vector of the quasiparticle are conserved
at the NS boundary of the metal during the scatte-
ring of a «particle» into a «holes (and vice versa).
The angular momentum of the «particle» and
<hole» are conserved, too. Since the <hole» has a
smaller quasimomentum than the «particle», the
caustic radius a; of the hole should be larger than
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the caustic radius @ of the particle. Therefore the
angles of incidence of the «particle» and the <hole»
at the NS boundary will be different, that of the
hole being smaller. Thus the quasiparticle trajec-
tory is not strictly recursive. When a certain flux
@ is trapped in the normal cylinder, the angular
momentum of the «hole» increases to 7z (m + 1,/2),
while that of the «particle» decreases to
7 (m = n/2). This implies that at ® # 0 the differ-
ence between the angles at which the «particle» and
the «hole» approach the boundary becomes larger.
The change in the angular momentum in the case of
® # 0 is caused by the screening superfluid current
in the S layer of the structure. The qualitative form
of the quasiparticle trajectory inside the cylinder
cross section is shown in Fig. 3.

The multidimensional quasiclassical method can
be generalized readily to the motion of quasiparti-
cles experiencing Andreev scattering at the bounda-
ries of a circular region. Instead of Eqs. (14), we
obtain similar separate equations for «particles»

and for <holes». The wave function %@of the initial

equation (1) in the preassigned field of the vector
potential A ( A, = A, =0; Ag = ®/21w) is a single-
valued function of r on a complete circuit over the
cylinder surface. After the gradient transformation

A' = A + [x using the function X = +%c[n]6,2e, the

pairing potential A becomes real and the new wave
IjtEdiffers from the former |]‘tEin having a

g %)D
factor (-1)[N1, where [n] is the number of quanta of
the trapped flux [43]. The phase increment in the
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Fig. 3. Quasiclassical picture of the quasiparticle trajectories
inside the circular normal domain of the metal coated with a
superconducting layer. The «particle» and <«hole» trajectories
are tangents to caustics of different radii.
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wave function of the «particle> on the circular
. e
contour of the radius @ is SP%O + ™ A’Sds = 2Tn.

The phase increment of the wave function of a
<hole» can be found similarly on the contour of
radius a, . As a result, we arrive at the expressions

koaozm—ﬁ/Z, k1a1:m+r~]/2. (26)
The derivation of the second equation in (26) takes
into account the fact that the effective charge of the
<hole» is opposite in sign to the charge of the
«particle».

The problem of the energy eigenvalues can be
solved using a geometrical approach. As seen in Fig.
3, the ray tangential to the caustic radius @, de-
scribes the motion of a «particle». The ray of a
<hole» is tangent to the caustic radius @, . Let us
first consider the rays describing the motion of the
«particle». As in the case of specular reflection from
the boundary, the circular ring between the radii R
and ¢ contains two families of such rays. Family I
includes the rays moving from the NS boundary to
the caustic @, , and family IT consists of the rays
moving in the opposite direction. At the NS bound-
ary the rays of family I transform into those of
family II. After Andreev scattering on the off-diago-
nal potential, a «particle» transforms into a <hole»,
for which we can also introduce two families of rays
moving inside the circular ring and having the radii
R and a, . Thus, in our case the covering space
consists of two circular rings for «particles» joined
along the circumferences of radii R and &, and two
rings for «holes» joined along the circumferences of
radii R and @, . Topologically, this space has the
form of two tori, one inside the other, whose sur-
faces have a common contact line along the radius
R. Such surface has only three independent con-
tours which do not contract to a point. Two of them
give quantization conditions relating the corre-
sponding angular momentum, quasimomenta, and
caustic radii of the «particles> and the <«hole» (see
Eq. (26)).

The third contour on the covering surface can be
deformed to the shape shown in Fig. 4. The contour
integral can be calculated taking into account the
condition ¢ = 0 and the increment in the wave func-
tion phase at each Andreev scattering event. Procee-
ding from Eq. (26), we thus obtain the equation for
the spectrum of quasiparticles inside the cylinder:

_____ m

- 0
- \ﬁefRz - m% -m arccos —— +

ZpZ 2
\/%OR -m 1 0 kOR

0
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Fig. 4. Shape of the integration path used to derive a quasiclas-
sical equation for the spectrum of Andreev levels. For illustra-
tion, two intersection points between the integration path and
the NS boundary are mutually shifted so that they could show
the processes of «particle»-to-<hole» and backward scattering.

my 1 1 E
+m, arccos 75 =T # + 5 + — arccos — [. (27

1 kR EV 2 A E @7
Here k, and k, are the wave vectors of a «particle»
and a <hole», respectively, in the N layer (their expres-
sions are given in Eq. (23)); fimy = fi(m - n/2)
and fim = fi(m +n/2) are their angular momenta,
m is the absolute value of the magnetic quantum
number, and n =0, 1, 2... The quasiclassical para-
meter of the problem is k)R Ok R Ok R >> 1.

Note that the coefficient 1 /2 within the brackets
on the right-hand side of Eq. (27) shows the change
in the wave function phase during the quasiparticle
scattering at the caustics ¢, and a; . The number of
intersections of the path of integration and the
caustic surface is two, as is seen in Fig. 4. We
should then put d =2 and b =0 in Eq. (16) and
take into account that because of the two Andreev
reflections of the quasiparticle at the NS boundary,
the phase has the increment -arccos E/A (see
Eq. (21)).

As follows from Eq. (27) the energy € in units of
72/2m"R? and the quantum numbers m, g are asso-
ciated by the condition: (k% -¢)R?z ¢+ m% . In
order to clarify its meaning we introduce the angle
9 at which the quasiparticle is incident on the
NS boundary: W@%_—_cﬂ =kpsind. In this case,
for a fixed m the minimal angle of incidence for
the quasiparticle with energy € is equal to
9., = arcsin (Vl_c,_+_;n%/kFR). Assuming m, = 0, we
see that the limiting value of the angle is
9§ LVE /T, below which a change of the Andreev
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reflection on the conventional specular reflection on
the off-diagonal potential of the superconductor
takes place [49,50].

Equation (27) implicitly determines the depend-
ence of the E levels on the quantum numbers n, m,
hq: E,,(q)-

Let us consider special cases of Eq. (27).

i) Let m =1, n = 0. A quasiparticle moves along
the cylinder diameter. When the radius R is large,
the situation resembles an SNS contact. Indeed, in
this case Eq. (27) can give a spectrum resembling
that obtained by Kulik, where the phase difference
of the order parameters is zero,

Trﬁvr
E,= 2R

Ep + % + ! arccosEE, (28)
0 n Ag
where v, = V2T /m".

ii) Let the trapped flux be [n] = 1. The magnetic
quantum number 2m is then half-integer. Expand-
ing Eq. (27) into a power series of the small
parameter 1/k R << 1 gives

_ Am 9
E= @ i (29)
If R =&, (&, is the coherence length), the spectrum
in Eq. (29) coincides with the spectrum of low-
lying levels of the vortex lines of the type II
superconductor [44,45,52], if all magnetic effects
are neglected:

TAm
E=—.
2C

Finally, note the following particularity of the
system, seen from the Eq. (27). In the limiting case
kR >> 1, after expanding the left-hand side of
Eq. (27) up to first order in 1,/k,R and taking the
limit € - 0 one obtains ™ /2 = nNm/k R =T(n +
+1). Thus to zeroth order in 1,/k;R

n=2xn+1). (30)

We will show below that whenever the trapped flux
® in the N layer is a multiple of the flux quantum
hc/2e, the mesoscopic system in question manifests
resonance.

Density of states of normal excitations
in a cylinder

Let us calculate the density of states V(E) for
excitations localized in a normal cylinder which
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experience Andreev scattering at the NS boundary.
We proceed from

V(E) =Y qué (E-E, (). (31)

n,m;c

The summation is over all quantum numbers and
the spin 0.

Equation (27) determines the quasiparticle spec-
trum £, (g). In the quasiclassical approximation an
analytical solution could be obtained. In particular,
expanding the left-hand side of the Eq. (27) in
1/kpR << 1 and taking into account Eq. (23), we
obtain

W70, (q) n
E (q) = — g[l—id+l+larccos£%.
n 2Rina/2l g 2n 2 m AQ
(32)

The spectrum (32) is similar to that of the SNS
contact obtained by Kulik [48]. This spectrum cor-
responds to motion of quasiparticles between two
points on the cylinder surface parametrized by the
radial angle o, while the distance between these
points is 2R |sin a,/2|. However, contrary to the
case of a standard SNS contact the phase difference
- na,/2m depends on the flux. For given a, the
spectrum (32) describes an «SNS» contact with an
effective density of states V(E; a). The total density
of states is given by:

21

v(E) O ‘!' V(E; a)da . (33)

The spectrum (32) was obtained on the assump-
tion that the quasiparticle energy E was close to the
Fermi energy {. As was noted in the Introduction,
the Andreev levels of the mesoscopic system can
shift when the flux changes; at a certain value of
the flux they can coincide with {. For low energies
E, the quasimomenta of a «particles and a <hole»
(and the radii @, and @, of their caustics) become
practically identical. We may therefore assume that
in the description of these two states the quasiclas-
sical trajectories would be simplier in shape than in
Fig. 3: when the «particle» is reflected from the NS
boundary, the «hole» comes back to its initial point
at the cylinder surface. Within our approximation
(32), we should take into account that inside the
cylinder cross section there exist a great number of
«SNS contacts» with the preassigned chord length,
i.e., these states possess high degenerate multiplic-

Fizika Nizkikh Temperatur, 2001, v. 27, No. 11



Coherent quantum phenomena in a normal cylindrical conductor with a superconducting coating

ity about N LJ21mR /A >> 1 (A is the de Broglie
wavelength). We took this fact into consideration
when calculating the density of states of the system
in the vicinity of resonance.

As a matter of fact, calculation of the thermody-
namic quantities far off resonance should be based
on the general equation for the spectrum of quasi-
particles, Eq. (27).

The resonance contribution to V(E) can be calcu-
lated using the spectrum of lower energy levels

7o, (q) "
T H+t-Lal 30

E =
A 2R]sin o /2] gl 2m

On substituting Eq. (34) into Eq. (31), integrat-
ing over ¢ and a, and summing over spin, we obtain

T

v(e) DAaIdc x
0

+oo 51112%9%1+1—10(—8sin%5

0 2m 0
* Z 1,2

~ ~ 2
n=— oo
Brt-NoBh+1-Dal —2an2d
0 2 4 2n 5 2

(35)

where

T2 )\B

L is the cylinder height, and 6(x) is the step
function, equal to unity at x > 0 and to zero at
x < 0. We introduce the dimensionless energy
e=E/E,, E,=N?/(2m"R?. As Eq. (35) shows,
for a preassigned flux, the denominator of the
radicand can become zero at a certain angle
a = a(®P). When € — 0 one has a, El(n + 1)2r/1. In
this case the inequalities

8LRm" 21R
A —

(n +~1)2Tr <
n

0% a <

m;n= 2 (36)
" )
0
are fulfilled, which leads to the condition
n+[nl= 2(+1). Thus, with a preassigned flux
®, the number of terms in the series of Eq. (35) is
limited, and it increases with growing ®.
Prior to calculation of v(g), let us discuss the
question of the contributions of different angles o,

Fizika Nizkikh Temperatur, 2001, v. 27, No. 11

to the resonance amplitude. It is reasonable to
assume that because of the factor sin? a/2 in the
numerator of Eq. (35), the angles a, = 1 are the
main contributors to the integral. For such an «SNS
contact», the Josephson current flows through the
cross section of the cylinder along its diameter. On
the other hand, since the resonance condition (35)
contains the product of the flux times the angle a,
we may expect an extra contribution to the ampli-
tude of the effect from smaller angles a, when the
flux increases. As a matter of fact, this expectation
is based on the approximate resonance condition
obtained from Eq. (35) in which the first term
in the radicand is kept while the second term,
2 sin? 0,/2, is dropped.

We thus arrive at the conclusion that the main
contribution to the resonance of the density of
states appears near the angle a = 1. Introducing the
notation &=m-a<<1, a=n+1-n/2, b=
=1n/2m, we obtain the equation for the resonance
condition:

2

a® + b%&% + 2abE - € E - E—E: 0, (37

o ‘4o
whose solution is & El-a/b + €. It is seen that for
b U1, the energy € and the value of a are both
small, but the condition a Z € is always fulfilled.
The expression in brackets in front of the radical in
Eq. (35) is therefore of the order of the energy €
and cancels with the energy factor of € in front of
the integral sign. The remaining integral is esti-

mated to be a constant of about unity.

The resonance-induced spike of the density of
states always appears when the Andreev level coin-
cides with the Fermi energy at a certain flux in the
N layer. The sharp increase in the amplitude v(FE) at
E - 0 is caused by the integral contribution of the
states of quasiparticles indexed by the quantum
number g, which describe the quasiparticle motion
along the sample axis.

When the resonance is disturbed, the condition
(n+1-na/2m # 0 is fulfilled, and for low ener-
gies € - 0 we find

1

. 2
vO(e) DZT?SIM Oe. (38
) cos? [212b 4]

Near the resonance, the ratio of the resonance
and nonresonance amplitudes of the density of
states is
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res
\

D1 >> 1 . (39)
v €

It is thus shown that on variation of the trapped
magnetic flux, the density of states of a normal
cylindric conductor coated with a thin supercon-
ducting layer (L)) is described by a stepped
function @. The step spacing is equal to a supercon-
ducting flux quantum ®; and the step height in-
creases with the flux. Differentiation of the density
of states with respect to ® gives a set of resonance
spikes spaced at fc,2e.

The physical reason for the features having a
period of the superconducting flux quantum @ is as
follows. As seen in the spectrum of Eq. (27), for the
preassigned magnetic flux ®, g, and the energy,
there is a highest magnetic quantum number m
which can be used to describe the Andreev levels.
This quantum number is responsible for the largest
caustic realizable for quasiparticles moving ballisti-
cally near the cylinder boundary. At a certain value
of the changing flux, the caustic «crawls» through
the NS boundary of the cylinder, an event which is
accompanied by a rearrangement of all quantum
states. The rearrangement occurs always when the
flux trapped in the N layer changes by ®, = hc/2e.

To conclude, we note that the mean free path of
the quasiparticles was expected to be the largest
parameter of the problem. Allowance for the scat-
tering by impurities will decrease the amplitude of
the resonance spikes.

Conclusions

A theory of coherent phenomena in simply con-
nected cylindrical normal conductors with a
mesoscopic-scale cross section has been developed in
this study. It is assumed that the normal metal is
pure and coated with a thin superconducting layer
with a thickness of the order of the coherence
length &, , and that their electric contact is good.
Under these conditions the quasiparticles with en-
ergy E < A experience Andreev scattering at the NS
boundaries. They move ballistically through the
normal metal in the field of the vector potential
excited by a narrow solenoid at the center of the
conductor. On a single circuit of a quasiparticle
along the perimeter of the cylinder cross section,
the wave function phase of a «particles (<holes)

changes by * %?Ads. This integral is equal to the
L

flux ® through the surface bounded by the trajec-
tory L. In the field A excited by the solenoid, the
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flux @ is a constant independent of the trajectory
shape. The sensitivity to the vector potential field is
identical for all the quantum states of the quasipar-
ticles.

If a simply connected cylinder is placed in a
weak magnetic field, the situation becomes more
complicated. For different quantum states of the
quasiparticle the increment in the wave function
phase is determined by the flux ®, which depends
on the shape of the trajectory. As follows from
studies of quantum coherent phenomena in normal
conductors with specular reflection of electrons at
the cylinder boundary [8], the universal period
hc/e of the flux oscillations of the thermodynamic
quantities is only connected with the states local-
ized near the cylinder boundary.

This study is confined to the effect of the vector
potential field on the phase of quasiparticle wave
functions, which permits us to investigate the
shapes of the quasiclassical trajectories of «par-
ticles» and <holes». The quasiparticles experience
Andreev scattering at the NS boundaries. As a
result, a set of Andreev levels appear, which deter-
mine the behavior of the thermodynamic quantities
of the structure. Within the multidimensional
quasiclassical method, a dispersion relation was
obtained, which can be used to find the spectrum of
Andreev levels. Expanding it in a series in the
parameter 1/k.R <<1 (the quasiclassical para-
meter is kR >> 1) and keeping only the zero-order
terms in the equation, we obtain Eq. (34) for the
energy near the Fermi level, which bears resem-
blance to Kulik’s spectrum for an SNS contact [48].
The expression describes the states of the quasipar-
ticles inside the cylinder cross section when they
move along the chord connecting two points at the
NS boundary of the sample. The chord length de-
pends on the radial angle o at which both the points
are visible. The product of this angle and the
trapped flux has the meaning of the phase differ-
ence of the contact. Using the spectrum of Eq.
(34), the density of states V(E) is calculated as a
function of the flux @, which displays a stepwise
behavior. Whenever the flux increases by the value
®, , the number of steps increases by one. If the
density of states is differentiated with respect to the
flux @, a set of resonance spikes with a period equal
to a superconducting flux quantum appears.
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