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The present-day analysis of the theoretical adaptation status of the experimental curves of the
magnetization and the static magnetic susceptibility as the functions of external parameters H and T
(H is an applied external magnetic field and T is a temperature) is made for granulated ferromagnetic
systems. Once more it is pointed that the consideration of the energy of magnetic anisotropy of a
ferromagnetic material (as against the methods of the adapt used everywhere) play an essential role for
the understanding of the magnetic behavior of the above systems mentioned and allow us to investigate

the magnetoanisotropic behavior of granulated magnetic systems [at the certain granule distribution
functions (by their volume and orientation) as regards the external magnetic field]. It is shown that the
use of the <«blocking» concept is not necessary for the investigations of the thermodynamically

equilibrium magnetic properties of the above systems.

PACS: 75.30.Gw, 75.50.Lk, 75.50.Tt

1. Introduction

Granulated magnetic materials (GMM) have
long been subject of intensive and quite successful
research. They consist of small ferromagnetic (FM)
particles (clusters, granules) in a nonmagnetic
(weakly magnetic) matrix. The subject of research
can be dielectric materials of the FM component
and matrix as well as conducting materials [1-3].

The renewed interest in GMM-materials is ex-
plained by the recent observation of the so-called
effect of giant magnetoresistance (GMR) in such
conducting systems [6,7].

It is not hard to understand that the GMR-effect
is connected with an additional channel of current
carriers scattering on FM granules and is secondary
relating to the unique magnetic properties of GMM
materials. Therefore, below, as the first stage of
research, we limit ourselves to the analysis of equi-
librium magnetic properties of the systems consi-
dered above.

2. Object of research and its main features

A. The object under investigation is a solid
heterogeneous system (an ensemble of FM particles
incorporated into a nonmagnetic solid matrix). As a
rule, these are the systems with a small (volume)
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content of the FM component which is essential
when interactions between particles of the system
are neglected. In other words, FM particles of the
GMM-system can neither rotate nor move forward
nor change their volume (the state of thermody-
namic equilibrium is meant, of course).

B. As is known, the dependence of a magnetic
moment or a magnetization (i.e., magnetic moment
per unit volume) of a gas of noninteracting para-
magnetic (PM) particles on external parameters
(absolute temperature T and the value of external
magnetic field H) within the framework of Lan-
gevin’s classic theory is described by the function of
the same name. Thus, magnetization u(H, T) of a
gas of identical magnetic moments P can be ex-
pressed as (e.g., see [1])

W7, 1y = MWL, 1(3) = Coth (9)—+, (1)
o~ O

where N is the number of atomic magnetic moments
M in the gas unit volume; % is Bolzmann’s constant
and L(x) is the Langevin function. It is necessary to
note that the description of a magnetic particles
system with the help of Langevin function (as in
the present case) is decisively based on the fact that
magnetic energy of each particle of the ensemble
possesses only one minimum (in its orientation
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dependence), which corresponds to the orientation
of the particle magnetic moment alongside the di-
rection of the applied external magnetic field. It is
important that this orientation dependence is des-
cribed by the function of [cos 8, where 6 is the
angle between directions of the magnetic moment
and the field.

C. All real FM materials are magnetically anisot-
ropic ones. This means that the magnetic moment of
each particle of the ensemble in the absence of
external magnetic field tries to orientate alongside
the so-called directions of «easy magnetizations.
For reversing the magnetic moment of each of the
ensemble particles from one of these directions to
another one (under the influence of some external
factors), it is necessary to overcome energy barrier.
The value of this barrier is determined by the
magnetic anisotropy energy of the particle (and,
consequently, by its volume V) and external fac-
tors.

D. If a GMM system consisted of magnetically
isotropic FM particles, i.e., if a corresponding ener-
gy barrier did not exist, the description of its
magnetic properties would be possible with the help
of the Langevin function. In so doing the tem-
perature-field dependence of magnetization (e.g.,
see [1]) of a system-ensemble of identical volume
particles in this case is written as:

(u VHO
WH, T) = M LBWD, (2)
O O

where | is the saturation magnetization of FM
substance, p V is the value of the magnetic moment
of the particle with the volume V. GMM systems
whose magnetization is described by expression (2)
(with the addition of «blocking» concept) are usu-
ally called superparamagnetics and these concepts
were first introduced into the physics of magnetic
phenomena by C. Bean [8].

E. Even if, with the help of an external magnetic
field in the particles of GMM under investigation
the energy barrier connected with the energy of
magnetic anisotropy is destroyed, the orientation
dependence of magnetic energy of system particles
is not described by the cos 6-function (except the
limit case of «a very strong external magnetic field»
which will be treated below).

F. Thus it can be stated that the GMM systems
with granules of real FM material that we consider
cannot be, generally speaking, described by Lan-
gevin classic theory. This circumstance was also
noted earlier also by L. Neel [9,10], Yu. Reicher,
M. Shliomis [11].
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G. Nevertheless, up to now, attempts at des-
cribing real GMM systems with the help of the
Langevin function have continued to be made
(see [1-5], for example). However, it should be
noted that, in order to describe peculiarities relat-
ing to magnetic anisotropy of the FM component,
the concepts of «blocking volumes of particles at a
fixed temperature and <«blocking temperatures of
fixed volume of particles were introduced into the
physics of magnetic phenomena.

H. In a real GMM system there are FM compo-
nent particles of different volume, i.e., in the sys-
tem, there is a certain function of their distribution
f(V) by volume V. It is evident therewith that the
full volume of FM substance in the system is

\%4

max

Vmag :‘J VAV) dV = Z fz Vi ’ (3)

where V. and V__ _ are the minimum and maxi-
mum granule volumes existing in the GMM system,
V, is the volume of the i-granule, f, is the number
of granules with volume V, . Tn (3) we gave both
continuous and discrete description of the subsys-

tem of FM substance granules in the GMM system.

3. Magnetic energy of granules, energy barrier
and free energy of the system

The object for investigation is placed in an exter-
nal magnetic field, the direction of which coincides
with that of magnetic anisotropy axes. Neel was the
first to consider such a geometry of the prob-
lem [10]. At the initial stage of research we neglect
the interaction of FM component granules with
each other. Moreover, all the particles of the GMM
system are supposed to be unidomain, i.e., magnet-
ized homogeneously.

It is evident that, when there is no interaction
between particles (and only in this case), the full
magnetic energy €, of a separate i-particle with the
volume V, and saturation magnetization of granules
of FM substance | represents the sum of a mag-
netic anisotropy energy €,; and its Zeeman energy
€y, in the external magnetic field, i.e.,

& =8 Ty (4

As is known, the expression

— 2
sai - Keff Vi(ui ’ ez) (5)

can be written for magnetic uniaxial particles,
where the constant K g represents the density of
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effective uniaxial magnetic anisotropy energy,
M; =y V, is the value of magnetic moment of
i-particle of the ensemble, y, , e, are unit vectors
along the directions of the magnetic moment M, and
Cartesian axis 2z, along which the magnetic anisot-
ropy axes of all system particles and external mag-
netic field are oriented. The Zeeman energy of the
i-particle is

&=~ KV H(, ,e) (6)
In a spherical system of coordinates with the polar
axis e, we have

M, = (cos cbl. sin 91. ,
H=(0,0, H)

and the expression for the full energy of €, particle
is written as

sin ¢, sin el. , o8 8) ,

(7

g =~ A (cos2 0, + 2h cos 91.) , (8)
usH H
Be, =KV, >0, h=gp=p
eff a

The value of Ae , determines the energy barrier in
the absence of the external magnetic field that is to
be overcome in order to change the orientation of
magnetic moment M; from one of the «easy» direc-
tions 6, = 0, T to another 8, = T, 0.

It is not difficult to show that the value of the
energy barrier in the external magnetic field of
selected orientation decreases with the increase of %
value by the law

De = Ne (1 - hy* . (9

At last, when the value of the external magnetic
field H reaches the value of the so-called magnetic
anisotropy field H, , i.e., k=1, the energy barrier
disappears [see (10)] and in the energy of the parti-
cle g just one minimum is left at 8, =0, i.e., the
only one equilibrium state. In this external mag-
netic field, the energy of the particle ¢ is

g, == De  [(cos B +1)° - 1] . (10)

While the value of the external magnetic field
increases further, there is only additional deepening
of the single minimum in the particle energy ¢, at
9,=0.

Based on the above uncomplicated arguments,
the following conclusions (very important ones for
further discussion) can be made:

1. Granules of different volumes have different
values of corresponding energy barriers. This makes
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it possible, if needed, to introduce the concepts of
«volumey» and <«temperature» of blocking.

2. Energy barriers in the granules of different
volume disappear in one and the same external
magnetic field which is equal to the field of mag-
netic anisotropy H , [condition £ =1 from (9)].

3. Orientational dependence of the energy of
i-particle €; , even at energy barrier disappearance,
is rather far from being [Icos 8 [see (10)]. In other
words, even in this case, generally speaking, the
Langevin description of the GMM system does not
seem to be correct, although all the particles of the
system are <unblockings, i.e., they behave in a way
resembling a superparamagnetic one.

4. Only in cases (which will be demonstrated
below) T >> max {Asai} and H >> Ha can one use
the Langevin description of the system without
doubt.

Thus, the energy of the i-particle of the GMM
system is described by expression (8). The granule
ensemble contains f; particles with V, volume,
where f; is the function of granules distribution by
volume and the full volume V__of the FM compo-
nent is (3). The full energy "of the GMM system
(the energy of noninteracting granules ensemble)
can be written as

E=%[¢, (11)
1
where €, is determined by expression (8).

At finite temperatures the probability of detec-
ting the system (having thermodynamic equilib-
rium) with energy E(x,) in the volume element of
generalized coordinates |_| dx; is determined by the
Bolzman exponent

exp [=E(x))/kT] . (12)

In our case, it means that the probability for the
i-particle (granule) with volume V, to have the
direction of magnetic moment M, in the element of
space angle dQ, = sin 8, d¢, d0 is

[Ne O

dw, = A, exp Dl (cos? 0, + 2k cos Gi)Din , (13)

where A, is some constant. It is clear that in this
case the corresponding statistical sum Z of the
system is determined by an expression

[ﬂ{i

0
Z= %41‘[(1(2 exp (cos 8, + 2h cos G)DIJ
0 D
o O
(14)
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and the free energy F of the system

F=-ThZ (15)
takes the form:
F(H,T)=Y [ F(H,T), (16)
where t
F(H,T)=

, m
;,l (cos’ 0, + 2h cos Gi)%
Q g
g ¢ 0
It is necessary to emphasize that additivity of free
energy F (16) of the system (and the expression for
statistical sum Z (14) as the product) is conditioned
by our neglecting of FM granule interactions with
each other. As will be seen below, the magnetic
moment of the system will also possess the additiv-
ity property. It is mathematically reflected in the
independence of some direction of i-cluster mag-
netic moment from the state of other system par-
ticles.

O [Ae
=-Tln Dﬁl.J’dQ. exp B
0 ¢ i Dk

4. Magnetic moments of system and granules,
its constituents, magnetization and static
magnetic susceptibility

As is known, the magnetic moment of M(H, T)
of the system at temperature differing from absolute
zero is expressed by

M(H,T)=-0FH, T)/0H , 17)

or, accounting for the geometry and symmetry of
our problem,

M(H, T) = M(H, T)e_, (18)

M(H, T) = - 9F(H, T)/0H .
Taking into account expression (16) for the system
free energy, it is easy to obtain from (18)

M(H:T):z}[iMi(H: 7, 19)
MH,T)=T x

ai —

T (cos? 8,+ 2h cos ei)%.

09 O
o O

g U [Ae
x—In A, [dQ, expB.,—
oH O°t) ik
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Further on, it will be convenient for us to use the
so-called reduced parameters (as regards the inter-
nal parameters of the system, namely as regards the
value of energy barrier in the absence of external
magnetic field and the value of magnetic anisotropy

field)

2 _ — —
a; = Ae . /kT =K.V, JRT , h =H/H,,

20

HaZZKeff/us' @0
This is convenient because, e.g., for GMM systems
with various FM components (i.e., different values
of K and us) but with identical functions of
particles distribution by their volume f(V) and iden-
tical Vmag and proportion K ¢V /kT, where V  is
the position of function maximum Vf(V), the curves
of reduced magnetization

-1
m(a;, =8 f, MH, DI S [, V,E @)
0! oo ! O
as functions of reduced magnetic field % just coin-
cide.
It is not difficult to show that, when the vari-
ables (20) are used, the expression for the system
magnetic moment (19) can be written as

MH, T) =7 f,Ma}, k),

M (a?, h) =
a? 0 ) ) I:J_1
=5 S dQ, exp [a;(cos” 6, + 2/ cos Gi)]g X
O

mK O
0
£J’in exp [a?(cos2 8, +2hcosB)] . (22)

Q

In the case of continuum description

m(H, T) =
- -1
D max DD max D
I I
=0 VAVS[aA(V), k] dvD VAV dvE
: HaY 0
g™ g me O
(23)

where m(H, T) is the
(m(H, T) < 1)), and

reduced magnetization
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P(a’, h) =

exp [af(1 + 1)’] - exp [a(1 - h)’]
" I aerfi [a(1 + B)] +erfi [a(t - D]}

1 —exp (—4a?h)
= ~ b
20 {F la(1+h)]+exp(~4a h)F ,[a, (1-h)]}

(24)

In expression (24) for the function ¢(a1.2, h) both
special functions

X
erfi (1) = — [ dt exp () (25)
x) =~ ex
v I P
0
and the Dawson integral were used
X
F(x) = exp (%) I dtexp (£) . (26)
0

Thus, from expressions (23)—(26) it is clear that
equilibrium curves of magnetization of a real GMM
system consisting of magnetic anisotropic FM mate-
rial granules (in this case of magneto-uniaxial),
and, consequently, all equilibrium magnetic pa-
rameters of such a system in the whole range of
external parameters change (H and T) can be des-
cribed only by the ®(a?, h)-function and cannot
described by the ILangevin function L(Zalzh) =
= L(u,V; H/kT).

There are quite substantial reasons for believing
that in real GMM systems the so-called Lifshitz-
Slyozov-Wagner logarithmically normal (log-nor-
mal) distribution [12,13] of particles by volume is
implemented (see, e.g., [12—14]), i.e.,

| 3 In® (V/V)3 o
= exp - ————— 0, 27
) VInve F o 2% O

In expression (27): o0 is dispersion (half-width) of
the corresponding distribution while V is the vo-
lume corresponding to the maximum of the function
VAV). Tt is necessary to note that the using of the
log-normal distribution function (its properties)
gives us the possibility of extending the limits of
integrations in (23) to the whole interval of vo-
lumes {0, o}.

The temperature parameter a% can be expressed
by the so-called blocking temperature. As is known,
(see, e.g., [1-5]), the blocking temperature of the
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particle with V; volume in the absence of external
magnetic field is determined as

0 _ (O
Ty = K V. /kln 7, (28)

07
where T, is relaxation time and T is observation time
(as a rule, in the usual experiment to measure static
magnetic equilibrium properties In (1,/7)) =25 is
used). Then, it is evident that we have

2=, /N g (29)
Ul

However, the following should be noted. The tem-
perature and volume of blocking are introduced into
the physics of GMM systems when their equilib-
rium properties are described in order to break the
sums or integrals in the numerators of expression
(24) into two parts, the first of which relates to
«blocked» particles, the second parts relates to
«unblockeds particles. In so doing, «blocked» par-
ticles are described as showing «ferromagnetics
behavior, while «unblocked» ones, with the help of
the Langevin function, as showing <«superparamag-
netic» behavior.

The use of the function CD[aZ?(V), h] instead of
Langevin’s function eliminates all the noted contra-
dictions and complications and we do not think it is
necessary to use the concept of blocking (at least
when describing thermodynamic equilibrium mag-
netic properties of the GMM system). The argu-
ment of exponent a%(1 - h)? and the argument of
functions erfi [¢,(1 = £)] and F [a,(1 - h)] com-
pletely takes into account the competition of heat
energy with the full magnetic energy of the particle
of any volume at any significant parameters T and
H. This moment is thought to be quite significant
and it is connected with the magnetic anisotropy of
granules of the FM material. This more realistic
description of magnetic properties of GMM systems
was proposed by F. G. West [15] in 1961 (see
also, [16]) and was forgot afterward.

Static magnetic susceptibility of a system is de-
termined as

X(H, T) = oM /0H (30)

or, taking into account that

o _ % 9
o0H 2Keff oh’

we obtain from (30)

(31)
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2
— IJS 2 —
X(H7 T) - 2Keff ;ft Vi LIJ(ai: h) -
|4
2 max
21< VAVW@(V), i) dV,  (32)

min

where
2a,
W(a?, h) = V—n’ (1 +h) x
exp [a?(l + h)*] - exp [a?(1 - h)*]
erfi [a (1 +B)] + erfi[a(t - B)]

OO\:I

-1.(33)

Coxp [aX(1 + h)] = exp [aX(1 - h)zlﬂz
g erfi [a. (1 + h)] + erfi [ (1 - h)] D

In conclusion of this section we would hke to recall
that when describing the GMM system as a super-
paramagnetic one,

MH, Ty =y Y f,V, LQah) =

14

max

= u}[ VLAWY 4V, G

min

and the static magnetic susceptibility

2

M 9
XH, 1) = 5= 3 f, V2@ B =
eff

Vmax
2
=9k [AVEEW), v (35)
where
Zal.h = T

the argument of the Langevin function correspon-
ding to the Langevin classic theory, while

) sinh (Za?h) - 4afh2 (37)
=(a*, h) = —.
i b 2a°1” sinh (2a;h)
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It not difficult to show that, for example, in the
case when the orientation of the applied external
magnetic field is perpendicular to the magnetic
anisotropy axis of granules the ®(a, , A)-function in
expression (23) has the form (this case corresponds
to K < 0)

fexp[~a(1 +h)*]-exp [-a*(1~F)’ ]}

P(a, , h) = ,
! Va [ Erf{a,(1+h)}+Erf{a,(1- h)}]
(38)
2 _ |Keff|Vi IJS H (39)
ST "ok
eff

where Erf (x) is the error function.

5. Some special cases. Comparison with
Langevin classic theory

a) GMM system with granules of identical
sizes.

Under these conditions, it is evident that in a
discrete description of the GMM system there is
only one value of f; different from zero that cor-
responds to the volume of granules V,, and it
coincides with the total number of granules in the
system. When the GMM system is described in
continuum, the distribution function of the system
of particles by their volume has the form of the
Dirac &function

fVybswv -vy . (40)

Here, the reduced magnetization m(H, T) of the
GMM system has the form

m(H, T) = ®(a;, h) , (41)
and the static magnetic susceptibility

2Keff 2

— X(H, T)=Wag, h) , (42)
S

where a K.V, /RT.

Flgures 1-4 (as the examples) presents the re-
sults of numerical calculation of curves m(H, T) vs
the Langevin parameter Za%h =W,V H/kT and
curves X(%) and X(f) for a GMM system consisting of
real FM granules of the same size V|, at different
correlations of external and internal parameters of
the system. In general, it is seen clearly that these
results differ essentially from those that were ob-
tained with the help of the Langevin function.
Especially significant to note is a substantial in-
crease in the initial static magnetic susceptibility of
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~— More realistic functions
om W°
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e— V=102 cem® T=10K
e —V=10"22cm®, T=10K
= —V=10"2" cm3,T=300K

o 1 2 3 4 5
X

Fig. 1. Dependencies of the magnetization m = p/p, of GMM
system with identical particles on the Langevin parameter
x =W VH/RT for different volumes of particles and tempera-
tures (= 10% Gs, K= 108 erg/cm?). The Langevin descrip-
tion of all GMM systems is the same (the different regions of
the lowest curve).

the GMM system (as compared to the Langevin
one) X(k=0) in the range of low temperatures
K4V, /kT >> 1. This can be essential when
GMM objects are used in devices to record and read
out an information.

b) The case f; V, = const (VA(V) = const) is a
specific distribution of the system particles when
particles of any size contribute equally to the mag-
netic component volume of the GMM system.

It is not difficult to show that, in these cases, the
reduced magnetization of the system can be ex-
pressed in the form

VHIBX
@ ! o[aXV), k] dV . (43)
m , = a , .
V.-V ‘J
max min
0.08
- 0.07F \L.\'\k\.kk<— The more realistic case
= RN
o RS
570.06} ey
"% | TheLangevin case —»\
¢ 0.05F
o
0.041
0.03 ; ' : :
5 4 6 8 10

Fig. 2. The static magnetic susceptibility X = dM/dH of a
GMM system with identical particles as a function of the re-
duced applied magnetic field 2 = H/H  at <high» temperatures
t=RI/KV=10>>1.
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20¢
16 .
=2 -~ The more realistic case
012
3
~
% 8
X
S 4
~— The Langevin case
of S trrrssssseesnaanaaans
0 0.2 04 0.6 0.8 1.0

Fig. 3. The static magnetic susceptibility x = dM/dH of a
GMM system with identical particles as a function of the re-
duced applied magnetic field A = H/H  at <«low» temperatures
t=RT/KV =0.1<<1.

Using the theorem of integral calculation on the
average

14

max

O[a(V), k1 dV = (V_ =V, )®[a*(V), h]
| (44)

we come to the expression

m(H, T) = ®[aX(V), ] (45)
where V is some value of the volume from the range
[Viin s Vipaxl» 1-€0 Vipin S VSV

In other words, this GMM system with such a
distribution function behaves as a GFM system
consisting of identical granules with the volume V.
Considered below are some limit cases for values of
the system’s external parameters H and T.

) H>>H,_ (h>>1).

In these conditions, taking into account that
lcos 8] < 1 and neglecting the unity as compared to

\

XSO' ‘\,:— The more realistic case
Jo [ A
220} \\
5 Ny
é‘lo— ‘\L\‘_\
‘'The Langevin case —v-\-\._\‘_\‘
0 005 010 ., 015 020 025

t

Fig. 4. The static magnetic susceptibility X = dM/dH of a
GMM system with identical particles as a function of the re-
duced temperature ¢ = RT/K .V at «weaks external magnetic
field h=H/H, =0.01 << 1.
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h in expressions (13), (14), (16), (19), (22), we
come to the Langevin classic theory. And this is not
surprising as it is under these conditions that the
energy barrier in all the particles of the GMM
system disappears and the orientation dependence of
full magnetic energy of the system [see (9)] be-
comes quite near [Jcos 8.

The same result can be obtained by using asymp-
totic expressions for the above mentioned special
functions at the corresponding conditions.

d) h=0.

In accordance with the general postulates of
equilibrium thermodynamics, in this situation, at
any temperatures, the system under investigation
must be demagnetized, i.e., m = 0. Tt is this result
that comes out of the expression for the function
CD(a?, h) [see (24)] at h = 0, as the numerator of the
first term is equal to zero, its denominator is equal
to 2Vt erfi (a,) and the second term is equal to zero.

e) Let us consider now the region of tempera-
tures which are so «high» that one can think that,
for a, parameters of all the system particles the
conditions a; <<'1, alz << 1 are fulfilled and the
region of values of the external magnetic field is
such that a?h << 1 (this corresponds to the case
of W V,H/RT << 1, KV, /kT << 1). Using ex-
pansions

exp [a2(1 £ 7] = 1+ a2(1 2 1) + 5 alt £ .

(46)
and
erfi [ai(1 * h)] = ai(1 +h) + % a:j“ + h)S +
it is not difficult to obtain
1 1 WV, H
O, h)= 5 2=y AT

which coincides with the expansion of the Langevin
function when Zaizh =W, V,H/kT << 1. Acciden-
tally, it also follows from this that at any tempera-
ture differing from 7 =0 at A - 0 the magneti-
zation of each FM granule (and therefore of the
whole GMM system) tends to zero.

Thus under these conditions, every granule of the
GMM system and the system as a whole can be
described by the classic Langevin theory, i.e., the
phenomenon of superparamagnetism takes place.

The above expressions show that when the condi-
tions a% << 1, Za%h << 1 are implemented, the
presence of the energy barrier in the GMM system
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granules is not essential (it can use the Langevin
description).

6. Conclusions

It has been shown that, in a general case, real
GMM systems with a magnetic anisotropic FM
component cannot be described with the help of the
Langevin classic theory, i.e., their thermodynamic
equilibrium magnetization and static magnetic sus-
ceptibility cannot be described by the Langevin
function and its derivatives.

The function has been found (substituting the
Langevin function) which describes, in a universal
way, the competition of full magnetic energy of a
GMM system particle of any volume (without sepa-
rating them into the so-called <«blocked» and «un-
blocked») with their heat energy. It has been ascer-
tained that the use of the concept of <«blocking» is
not necessary when the thermodynamic equilibrium
properties of GMM are described. In addition to it,
the use of such universal description for all the
particles of a system and a system as a whole makes
it possible to avoid such artificial and ambiguous
models, one of which, for instance is used in [17].

The regions of changing external parameters H
and 7 have been indicated (relating to internal
parameters of an FM component of a GMM system)
where classic Langevin description of investigated
objects is possible. In GMM systems with a known
function of granule distribution by their volume
f(V), magnetization curves m(h) and curves of static
magnetic susceptibility x(%), registered at different
temperatures, may be used both for determining the
value of effective constant of magnetic anisotropy
K ¢ and for clarifying the peculiarity of its tem-
perature dependence. And conversely, the know-
ledge of the temperature dependence of the effective
magnetic anisotropy constant K ¢ may allow one to
reconstruct the volume distribution function (V) of
the GMM system particles. The corresponding in-
vestigations of both the soft-magnetic and hard-
magnetic ferromagnetic components of the different
GMM systems will be published later.

7. Aknowledgment

The author would like to thank the Israel Minis-
try of Absorption (the Department of Science Ab-
sorption) for financial support, Prof. Gad Gorodet-
sky from the Ben-Gurion University of the Negev
(Israel, Beer-Sheva) for the possibility of working
in the region of magnetic properties of GMM sys-
tems and the extremely useful discussions and Dr.
Victor Meerovich for the help in the work.

269



E. Stefanovskii

N

. S. V. Vonsovsky, Magnetism, Wiley, New York (1974).

. C. P. Bean, and J. D. Livingston, J. Appl. Phys. 30, 1209
(1959).

. I. S. Jacobs and C. P. Bean, Fine Particles, Thin Films
and Exchange Anisotropy, in: Magnetism, v. III., G. T.
Rado and H. Suhl (eds.), Academic Press (1963), p. 231.

. B. D. Cullity, Introduction to Magnetic Materials, Ad-
dison-Wesley Publishing Company (1972).

. Magnetic Properties of Fine Particles, J. L. Dormann and
D. Fiorani (eds.), North Holland (1992).

. A. E. Berkovitz, J. R. Mitchell, M. J. Carey, A. P. Young,
S. Zhang, F. E. Spada, T. Parker, A. Hutten, and G.
Thomas, Phys. Rev. Lett. 68, 3745 (1992).

. J. Q. Xiao, J. S. Jiang, and C. L. Chien, Phys. Rev. Lett.
68, 3749 (1992).

. C. P. Bean, J. Appl. Phys. 26, 1381 (1955).

. L. Neel, Compt. Rend. 228, 664 (1949).

. L. Neel, Ann. Geophys. 5, 99 (1949).

270

11.

12.

13.

14.

135.
16.

17.

Yu. L. Reichel and M. I. Shliomis, Sov. Phys. JETP 40,
526 (1974).

V. V. Slezov, Theory of Diffusive Decomposition of Solid
Solutions, Physics Review, Soviet Scientific Reviews/Sec-
tion A, I. M. Khalatnikov (ed.), Harwood Academic Pub-
lishers, v. 17, part 3 (1995).

I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids
19, 35 (1961).

M. H. Mathon, F. Maury, F. Dunstetter, N. Lorenzelli,
C.-H de Novion, and F. Boue, J. Phys. (Paris) 3, 279
(1993).

F. G. West, J. Appl. Phys. 32, Suppl., 249S (1961).
Magnetism and Metallurgy, v. 1, A. E. Berkowitz and E.
Kneller (eds.), Academic Press, NY and London (1969),
p. 421,

B. Dieny, S. R. Teixeira, B. Rodmacq, C. Cowache, S.
Auffret, O. Redon, and J. Pierre, JMMM 130, 197 (1994).

Fizika Nizkikh Temperatur, 2000, v. 26, No 3



